Mycofloral Pattern and Its Insights of Bioactive Compounds Against Pathogens

Life Sciences-Botany

Authors

  • S. Rajathi P.G. and Research Department of Botany,Periyar University, Salem - 636 011. Tamil Nadu, India. https://orcid.org/0000-0003-1242-8955
  • S. Murugesan P.G. and Research Department of Botany,Periyar University, Salem - 636 011. Tamil Nadu, India.
  • S. Babu P.G. and Research Department of Botany, A.V.V.M Sri Pushpam College (Autonomous), Poondi–613 503. Thanjavur, Tamil Nadu. (Affiliated to Bharathidasan University, Tiruchirappalli – 24), India.
  • A.S. Shijila Rani P.G. and Research Department of Botany, A.V.V.M Sri Pushpam College (Autonomous), Poondi–613 503. Thanjavur, Tamil Nadu. (Affiliated to Bharathidasan University, Tiruchirappalli – 24), India.
  • V. Ambikapathy P.G. and Research Department of Botany, A.V.V.M Sri Pushpam College (Autonomous), Poondi–613 503. Thanjavur, Tamil Nadu. (Affiliated to Bharathidasan University, Tiruchirappalli – 24), India.
  • P. Prakash Indian Biotrack Research Institute, Thanjavur – 613 005. Tamil Nadu, India.
  • A. Panneerselvam P.G. and Research Department of Botany, A.V.V.M Sri Pushpam College (Autonomous), Poondi–613 503. Thanjavur, Tamil Nadu. (Affiliated to Bharathidasan University, Tiruchirappalli – 24), India.

DOI:

https://doi.org/10.22376/ijlpr.2023.13.3.L73-L87

Keywords:

Paddy field soil, physicochemical, fungal diversity, natural medicine, antifungal activity

Abstract

Soil is considered a well-studied ecological niche for microorganisms that produce beneficial physiologically active natural compounds suited for medicinal purposes. The current study sought to elucidate antifungal activity and metabolism from fungi. The paddy field mycofloral diversity pattern was analyzed from the soil, and its physiochemical characteristics were also determined from the Kanyakumari district, Tamil Nadu, from 2016-2017. Totally twenty-seven fungal species were isolated from the paddy field soil. The physicochemical parameters of temperature, moisture content, pH, organic carbon, organic matter, and organic nitrogen were analyzed with significantly correlated. The most dominant fungal species include Aspergillus flavipes, A.flavus, A.fumigatus, A.nidulans, A.niger, A.ochraceous, Curvularia lunata, Fusarium solani, Saccharomyces cerevisiae, and Trichoderma viride were identified. Natural Products (NPs) synergistic effect was exploited to discover pairwise combinations with potential antifungal activity. A high-throughput screening approach with yeast revealed that NPs in molecules are the most promising novel synergies, namely, EUG+BER. This combination synergistically inhibits fungi, including human and crop pathogens such as Candida albicans, Aspergillus fumigatus, Zymoseptoria tritici, and Botrytis cinerea. This study was about screening pairwise NPs interactions as a tool to find novel antifungal synergies with the potential. Also, improved specificity may help manage fungal pathogens. 

References

Jadon KS, Singh SK. and Rakesh P. New and Future Developments in Microbial Biotechnology and Bioengineering. Recent Advances in Application of Fungi and Fungal Metabolites: Environmental and Industrial Aspects, Potentials of metabolites of soil fungi. 2020: 1-9.

Demain AL. Importance of natural microbial products and the need to revitalize their discovery. J IndMicrobiolBiotechnol. 2014;41(2):185-201. doi: 10.1007/s10295-013-1325-z, PMID 23990168.

Keller NP, Turner G, Bennett JW. Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937-47. doi: 10.1038/nrmicro1286, PMID 16322742.

Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC. Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep. 2005;22(6):672-95. doi: 10.1039/b404943h, PMID 16311630.

Hölker U, Höfer M, Lenz J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. ApplMicrobiolBiotechnol. 2004;64(2):175-86. doi: 10.1007/s00253-003-1504-3, PMID 14963614.

Seviour RJ, Harvey LM, Fazenda M, McNeil B, Archer D, Giavasis I. Microbial production of food ingredients, enzymes, and nutriceuticals. Oxford: Woodhead Publishing; 2013. p. 97-124.

Bérdy J. Bioactive Microbial Metabolites: a Personal View. J Antibiot. 2005;58(1):1-26. doi: 10.1038/ja.2005.1.

Sanchez S, Demain AL. Bioactive products from fungi. Food Bioactives. 2017:59-87.

Brakhage AA, Schroeckh V. Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48(1):15-22. doi: 10.1016/j.fgb.2010.04.004, PMID 20433937.

Demain AL, Velasco J, Adrio JL. Industrial mycology: past, present, and future. In: An Z, editor. Handbook of industrial mycology. New York: Marcel Dekker; 2004. p. 1-25.

Ruiz B, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, et al. Production of secondary microbial metabolites: regulation by the carbon source. Crit Rev Microbiol. 2010;36(2):146-67. doi: 10.3109/10408410903489576, PMID 20210692.

O'Brien J, Wright GD. An ecological perspective of secondary microbial metabolism. CurrOpinBiotechnol. 2011;22(4):552-8. doi: 10.1016/j.copbio.2011.03.010, PMID 21498065.

Pettit RK. Small-molecule elicitation of secondary microbial metabolites. MicrobBiotechnol. 2011;4(4):471-8. doi: 10.1111/j.1751-7915.2010.00196.x, PMID 21375710.

Xu F, Wu Y, Zhang C, Davis KM, Moon K, Bushin LB, et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol. 2019;15(2):161-8. doi: 10.1038/s41589-018-0193-2, PMID 30617293.

Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75(3):311-35. doi: 10.1021/np200906s, PMID 22316239.

Smith E, Lichten CA, Taylor J, MacLure C, Lepetit L, Harte E, et al. Evaluation of the EC action plan against the rising threats from antimicrobial resistance. Rand Corp RB-EC. 2020.

Stan D, Enciu AM, Mateescu AL, Ion AC, Brezeanu AC, Stan D, et al. Natural compounds with antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front Pharmacol. 2021;12:723233. doi: 10.3389/fphar.2021.723233, PMID 34552489.

Chen J, Chen D, Xu Q, Fuhrmann JJ, Li L, Pan G, et al. Organic carbon quality, the composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. BiolFertil Soils. 2019;55(2):185-97. doi: 10.1007/s00374-018-1333-2.

Mishra RR. Fungal population concerning temperature and soil moisture. Proc Natl AcadSci U S A, India. 1968;38:211-24.

Maphuhla NG, Lewu FB, Oyedeji OO. The effects of physicochemical parameters on analyzed soil enzyme activity from Alice landfill site. Int J Environ Res Public Health. 2020;18(1):221. doi: 10.3390/ijerph18010221, PMID 33396701.

Walkley AJ, Black IA. AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Sci. 1934;37(1):29-38. doi: 10.1097/00010694-193401000-00003.

Allison LE. Organic carbon. In: Black CA, editor. Methods of soil analysis. American Society of Agronomy; 1965. p. 1367-78. doi: 10.2134/agronmonogr9.2.c39.

Jackson RM. An investigation of fungi status in Nigerian soil. J Gen Microb. 1958;8:248-58.

Waksman SA. Principles of soil Microbiol. Willims Wilkins Co Baltim Md:1-654.

Gilman JC. Manual soil fungi. Lowa State College Press; 1957.

Ellis MB. DermatiaceusHyphomycetes. Kew Surv UK Common Wealth Mycol Inst;608.

Raper KB, Thom C. A manual of the Penicillia. Baltimore: Williams and Wilkins company. Vol. 875.

Raper KB, Fennell DI. The genus Aspergillus. Baltimore: Williams & Wilkins Company. p. 685.

Vallières C, Avery SV. The Candidate antimalarial drug MMV665909 causes oxygen-dependent mRNA mistranslation and synergizes with quinoline-derived antimalarials. Antimicrob Agents Chemother. 2017;61(9):e00459-17. doi: 10.1128/AAC.00459-17, PMID 28652237.

Grycová L, Dostál J, Marek R. Quaternary protoberberine alkaloids. Phytochemistry. 2007;68(2):150-75. doi: 10.1016/j.phytochem.2006.10.004, PMID 17109902.

Marek R, Seckarova, Hulova D, Marek J, Dostal J, and Sklenar V. Palmatine. Palmatine and berberine isolation artifacts. J Nat Prod. 2003;66(4):481-6. doi: 10.1021/np0204996, PMID 12713397.

Liang D, Xing F, Selvaraj JN, Liu X, Wang L, Hua H, et al. Inhibitory effect of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthetic gene expression and aflatoxin B1 biosynthesis in Aspergillus flavus. J Food Sci. 2015;80(12):M2917-24. doi: 10.1111/1750-3841.13144, PMID 26556681.

Perez C, Pauli M, Bazerque P. An antibiotic assay by agar well diffusion method. ActaBiol Med Exp. 1990;15:113-5.

Taylor M, Urquhart AJ, Zelzer M, Davies MC, Alexander MR. Picoliter water contact angle measurement on polymers. Langmuir. 2007;23(13):6875-8. doi: 10.1021/la070100j, PMID 17503858.

Lawlora K, Knight BP, Barbosa-Jeffersona VL, Laneb PW, Lilleyc AK, Patond GI, et al. Comparison of methods to investigate soil microbial populations under different agricultural management. FEMS Microbiol Ecol. 2000;33(2):129-37. doi: 10.1111/j.1574-6941.2000.tb00735.x, PMID 10967212.

Balota EL, ColozziFilho AC, Andrade DS, Dick RP. Long-term tillage and crop rotation affect microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Till Res. 2004;77(2):137-45. doi: 10.1016/j.still.2003.12.003.

Gaddeyya G, Shiny NP, Bharathi P, Ratna Kumar PK. Isolation and Identification of oil mycoflora in different crop fields at Salur Mandal. AdvApplSci Res. 2012;3(4):2020-6.

Deka HK, Mishra RR. Distribution of soil microflora in jhum fallows in NE India. ActaBotanica Ind. 1984;12:180-4.

Kumar PK, Hemanth GP, Shiny N, Samuel K. Isolation and Identification of soil mycoflora in agricultural fields at Tekkali Mandal Srikakulam District. Int. AdvPharmacol. 2015;14(2):484-90.

Sharma GPPR. Influence of culture media on growth, colony character, and sporulation of fungi isolated from decaying vegetable wastes. J Yeast Fungal Res. 2010;1(8):157-64.

KarmakarPintu, Debbarma P, Das P, Saha AK. Isolation of soil fungi and screening of in vitro antagonistic potentiality of Trichodermaviride against Penicilliumchrysogenum. Eur J Biomed Pharm Sci. 2018;5(2):883-8.

Raja M, Praveena G, William SJ. Isolation and Identification of fungi from soil in Loyola College campus, Chennai, India. IntJCurrMicrobiolAppSci. 2017;6(2):1789-95. doi: 10.20546/ijcmas.2017.602.200.

Agrios G Noriega Group, editor Mexico. Plant Pathol. 3rd ed. Academic Press; 1988. p. 803.

Maheshwari R, Bharadwaj G, Bhat MK. Thermophilic fungi: their physiology and enzymes. MicrobiolMolBiol Rev. 2000;64(3):461-88. doi: 10.1128/MMBR.64.3.461-488.2000, PMID 10974122.

Naing TH, Naing TT, Min YY, Yoshimura A. Identification of Fungal isolates from Soils of Rice and Napier Grass. J ExpAgric Int. 2020;42(9):193-203. doi: 10.9734/jeai/2020/v42i930601.

Sharma K. Soil mycoflora of Darjeeling tea garden. BIOINFOLET. 2010;7(2):142-3.

Christensen EH. A review of fungal ecology. Mycologia. 1989;81(1):5-7.

Rai JN, Sharma BB, Agarwal SC. Increased pH tolerance of some Aspergilli isolated from ’Usar’ (alkaline) soils. A possible indication of ecological specialization. Sydowia. Ann Mycol. 1970;24:336-44.

Phanasenko UT. Ecology of microfungi. Bot Rev. 1967;33:183-225.

Jadhav SY, Shinde PP. Isolation and Identification of soil fungi from Kadegaon Tehsil, Sangli District, Maharastra, India. Int. J. Scient. Res Publ. 2017;7(12):616-20.

MalleshBaradwad CR. Isolation and Identification of soil mycoflora in Agricultural fields of Hubli Taluk, Karnataka, India. IntJCurrMicrobiolAppSci. 2021;10(8):697-712. doi: 10.20546/ijcmas.2021.1008.079.

Chandrashekar MA, SoumyaPai K, Raju NS. Fungal diversity of rhizosphere soils in different agricultural fields of Nanjangud Taluk of Mysore District, Karnataka, India. Int J CurrMicrobiolAppl Sci. 2014;3(5):559-66.

Lei H, Liu A, Hou Q, Zhao Q, Guo J, Wang Z. Diversity patterns of soil microbial communities in the Sophoraflavescens rhizosphere in response to continuous monocropping. BMC Microbiol. 2020;20(1):272. doi: 10.1186/s12866-020-01956-8, PMID 32867674.

Ulanowska M, Olas B. Biological properties and prospects for applying for eugenol-a review. Int J Mol Sci. 2021;22(7):3671. doi: 10.3390/ijms22073671, PMID 33916044.

Neag MA, Mocan A, Echeverría J, Pop RM, Bocsan CI, Crişan G, et al. Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol. 2018;9:557. doi: 10.3389/fphar.2018.00557, PMID 30186157.

Song D, Hao J, Fan D. Biological properties and clinical applications of Berberine. Front Med. 2020;14(5):564-82. doi: 10.1007/s11684-019-0724-6, PMID 32335802.

Jenks JD, Hoenigl M. Treatment of aspergillosis. J Fungi (Basel). 2018;4(3):94. doi: 10.3390/jof4030098, PMID 30126229.

Baell JB. Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod. 2016;79(3):616-28. doi: 10.1021/acs.jnatprod.5b00947, PMID 26900761.

Bisson J, McAlpine JB, Friesen JB, Chen SN, Graham J, Pauli GF. Can invalid bio-actives undermine natural product-based drug discovery? J Med Chem. 2016;59(5):1671-90. doi: 10.1021/acs.jmedchem.5b01009, PMID 26505758.

Abu-Salah KM. Amphotericin B: an update. Br J Biomed Sci. 1996;53(2):122-33. PMID 8757689.

Tevyashova AN, Olsufyeva EN, Solovieva SE, Printsevskaya SS, Reznikova MI, Trenin AS, et al. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob Agents Chemother. 2013;57(8):3815-22. doi: 10.1128/AAC.00270-13, PMID 23716057.

Zida A, Bamba S, Yacouba A, Ouedraogo-Traore R, Guiguemdé RT. Anti-Candidaalbicans natural products, sources of new antifungal drugs: a review. J Mycol Med. 2017;27(1):1-19. doi: 10.1016/j.mycmed.2016.10.002, PMID 27842800.

Xie Y, Liu X, Zhou P. In-vitro antifungal effects of Berberine against Candida sp Planktonic and Biofilm Conditions. Drug Ther. 2020;14:87-101.

Li DD, Xu Y, Zhang DZ, Quan H, Mylonakis E, Hu DD et al. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother. 2013;57(12):6016-27. doi: 10.1128/AAC.00499-13. PMID 24060867.

Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J et al. Requirement for ergosterol in berberine tolerance underlies synergism of Fluconazole and Berberine against fluconazole-resistant Candida albicans Isolates. Front Cell Infect Microbiol. 2017;7:491. doi: 10.3389/fcimb.2017.00491, PMID 29238700.

Han Y, Lee JH. Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol Pharm Bull. 2005;28(3):541-4. doi: 10.1248/bpb.28.541, PMID 15744087.

Lam P, Kok SH, Lee KK, Lam KH, Hau DK, Wong WY et al. Sensitization of Candida albicans to terbinafine by berberine and berberrubine. Biomed Rep. 2016;4(4):449-52. doi: 10.3892/br.2016.608, PMID 27073630.

Ahmad N, Alam MK, Shehbaz A, Khan A, Mannan A, Hakim SR, et al. Antimicrobial activity of clove oil and its potential in treating vaginal candidiasis. J Drug Target. 2005;13(10):555-61. doi: 10.1080/10611860500422958, PMID 16390816.

Rana IS, Rana AS, Rajak RC. Evaluation of antifungal activity in the essential oil of the Syzygiumaromaticum (L.) by extraction, purification, and analysis of its main component, eugenol. Braz J Microbiol. 2011;42(4):1269-77. doi: 10.1590/S1517-83822011000400004, PMID 24031751.

Published

2023-05-01

How to Cite

Rajathi, S., Murugesan, S., Babu, S., Shijila Rani , A., Ambikapathy, V., Prakash, P., & Panneerselvam, A. (2023). Mycofloral Pattern and Its Insights of Bioactive Compounds Against Pathogens: Life Sciences-Botany. International Journal of Life Science and Pharma Research, 13(3), L73-L87. https://doi.org/10.22376/ijlpr.2023.13.3.L73-L87

Issue

Section

Research Articles