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Abstract: Soil is considered a well-studied ecological niche for microorganisms that produce beneficial physiologically active 
natural compounds suited for medicinal purposes. The current study sought to elucidate antifungal activity and metabolism from 
fungi. The paddy field mycofloral diversity pattern was analyzed from the soil, and its physiochemical characteristics were also 
determined from the Kanyakumari district, Tamil Nadu, from 2016-2017. Totally twenty-seven fungal species were isolated from 
the paddy field soil. The physicochemical parameters of temperature, moisture content, pH, organic carbon, organic matter, and 
organic nitrogen were analyzed with significantly correlated. The most dominant fungal species include Aspergillus flavipes, A.flavus, 
A.fumigatus, A.nidulans, A.niger, A.ochraceous, Curvularia lunata, Fusarium solani, Saccharomyces cerevisiae, and Trichoderma viride were 
identified. Natural Products (NPs) synergistic effect was exploited to discover pairwise combinations with potential antifungal 
activity. A high-throughput screening approach with yeast revealed that NPs in molecules are the most promising novel synergies, 
namely, EUG+BER. This combination synergistically inhibits fungi, including human and crop pathogens such as Candida albicans, 
Aspergillus fumigatus, Zymoseptoria tritici, and Botrytis cinerea. This study was about screening pairwise NPs interactions as a tool to 
find novel antifungal synergies with the potential. Also, improved specificity may help manage fungal pathogens. 
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1. INTRODUCTION 
 
The diversity of microorganisms that can survive 
environmental changes by synthesizing natural compounds to 
cope with harsh environments can be abundant in soil. Unique 
metabolites produced by microbes from the hard soil, such as 
in deserts with extraordinary environmental circumstances, 
could be used to make therapeutic goods, although some are 
harmful1. Fungi were estimated to produce 42% of all natural 
products produced by microorganisms2. Therefore, since their 
metabolites may provide a substitute for health security, fungi 
might be regarded as one of the main components of microbial 
production enterprises. Low molecular weight substances 
known as metabolites have a variety of biological functions that 
could be advantageous3,4. Fungi are fascinating and significant 
types of microorganisms that exist all over the planet and can 
be either saprophytes or parasites, depending on the 
environment. The potential antibiotic compounds to be 
secreted by soil mycoflora exists. The capacity of the fungi to 
develop quickly on organic substrates in arid, acidic, coarse-
textured soils allowed them to access nutrients crucial for the 
biological control of plant pathogens. To understand the 
population dynamics of soil, mycoflora in the paddy field were 
analyzed. The population of fungi from the soil was identified 
with physicochemical parameters. When Alexander Fleming 
found that a substance made by a contaminated mould killed 
the bacterium in a petri dish seeded with Staphylococcus aureus 
in 1928, the era of microbiological drugs developed began. 
Penicillium notatum active ingredient was created. Other 
antibiotics, including streptomycin and chloramphenicol, were 
extracted from various bacterial and fungal fermentations 
using the same method. The fermentation process, which was 
first used to make beer and wine about 8000 years ago in 
ancient Egypt and Mesopotamia, can manufacture antibiotics. 
Similarly, Penicillium roqueforti has been used to make cheese 
for approximately 4000 years. Soy sauce making in Asia and 
bread baking are two other traditional fermentations5,6. 
Microbial primary or secondary metabolism can produce 
natural products (NPs) with great commercial value. The 
number of natural chemicals found has surpassed one million 
thanks to technical advancements in screening programs and 
techniques for separation and isolation7. Alkaloids, flavonoids, 
terpenoids, steroids, sugars, etc., are among them; 50–60% are 
created by plants, and 5% of these plant products have a 
microbial origin8. About 20–25% of the reported natural 
products showed biological activity; approximately 10% have 
been obtained from microbes. Numerous substances 
produced by microorganisms have a biological function. Fungi9 
generates about 9000 of the 22,500 bioactive chemicals 
obtained thus far from microbes. Consequently, fungi have 
played a major role in developing antibiotics and other 
medications to treat non-infectious diseases10. Antibiotics, 
pigments, growth hormones, anticancer drugs, and other 
microbial secondary metabolites are not necessary for the 
growth and development of microorganisms. Still, they have 
demonstrated a huge promise for improving human and animal 
health11. Bacteria, particularly actinobacteria, and fungi, 
produce a wide variety of small bioactive molecules with 
substantial promise for use in medicine among the 
microorganisms producing the mentioned chemicals12. The 
expression of these clusters would help exploit the chemical 
variety of microorganisms because these bioactive compounds 
are mostly created by activating inactive cryptic gene clusters 
under normal circumstances13,14. Antimicrobial medicines can 
be found in great abundance in natural products (NPs). They 
make up more than two-thirds of antibiotics used in clinical 

settings and half of anticancer medications15. Numerous 
secondary metabolites produced by plant endophytic and 
pathogenic fungi are crucial for virulence and competitiveness 
with other microorganisms. Due to their broad-spectrum 
action, some NPs can display strong biocidal activity against 
human pathogenic microorganisms. The discovery of marine 
fungi as a new source of fungal NPs in recent years has the 
potential to revolutionize the drug development process; 
however, marine fungi are currently a relatively untapped 
source of a variety of NPs. When germs, including bacteria, 
fungi, viruses, and parasites, develop resistance to one or more 
medications, it is called antimicrobial resistance. Following the 
use of several antimicrobial medicines in clinical settings, it has 
been noted that drug resistance is the main barrier to the 
effective treatment of infectious diseases. AMR's impact on 
humanity is difficult to measure, although drug-resistant 
bacterial infections alone are responsible for 25,000 deaths 
annually in the European Union16. Effective drug recovery 
responses require an effective drug delivery mechanism, a 
crucial component. Recently, it has been thought of using 
nanotechnology to create carriers for certain compounds. 
Drug bioavailability and therapeutic potential are greatly 
increased using nanocarriers and innovative formulations that 
enrich the target location17. However, the overview of these 
substances and the monotony of their modes of action have 
resulted in developing resistance to these substances. As a 
result, controlling pathogenic bacteria has gotten harder over 
the past few decades, exacerbating food production instability 
and insecurity. Drug discovery is constantly needed due to 
drug resistance. An attempt is being made to understand 
better the mechanisms underpinning host-microbe 
interactions, pathogen population dynamics, and medication 
modes of action to manage the risk of developing antimicrobial 
compound resistance. Here, several natural compounds 
generated from fungi are described in terms of their 
structures, biosynthesis, and antibacterial properties. This 
effort to search for natural products is known as 
bioprospecting. The discipline of pharmacognosy, the study of 
natural products with biological activity, provides the tools to 
identify, select and process natural products destined for 
medicinal use. Usually, a natural extract has some form of 
biological activity that can be detected and attributed to a 
single compound or a set of related compounds produced by 
the organism. These active compounds can be used in drug 
discovery and development directly as they are, or they may 
be synthetically modified to enhance biological properties or 
reduce side effects. The present study aimed to find the 
Diversity of mycoflora and their bioactive compounds in 
various diseases for healing human ailments and plant 
pathogens.   
 
2. MATERIALS AND METHODS 
 
2.1. Sample Collection 
 
They are collecting soil samples of paddy fields in Kanyakumari 
district, Tamil Nadu, India. It is situated at 8.3235°N, 
77.3324°E, the southernmost point. Tropical and monsoonal 
weather is typical of the region. In the years 2016 - 2017, there 
was a fair amount of rain. The soil samples were randomly 
collected at a depth of 15 cm from various locations within the 
paddy field. 
 
2.2. Soil Physicochemical analysis 
 
2.2.1. Temperature (°C)18 



 

ijlpr 2023; doi 10.22376/ijlpr.2023.13.3.L73-L87                         Botany 
 

 

L75 
 

 
The soil temperature was analyzed with the help of a 
thermometer, then read the values and recorded; the 
temperature was expressed as oC. 
 
2.2.2. Moisture19 

 
The samples were oven-dried at 105 ◦C for 24 h until the 
constant mass was acquired. Then, dried the samples were 
cooled in a desiccator, and the final mass was measured. 

 
 
2.2.3. pH20 
 
The digital pH meter was calibrated using a standard buffer 
solution at the pH value of 4.01 and 7.00. The pH readings 
were taken by immersing the glass electrode/probe into the 
solution and recording the reading.  
 
2.2.4. Organic carbon21 
 

One gram of soil samples was treated with 5 mL of 
concentrated H2SO4 for four h, then with 5 mL of 0.5 M 
K2Cr2O7. The mixture was heated at 150-160◦C for 5 min 
and then cooled at room temperature. Next, the solution was 
moved into a conical flask with 100 mL of deionized water. 
The unreacted K2Cr2O7 was determined by titrating with 
0.25 M FeSO4. The endpoint approached when the solution 
changed from dark green to blue to reddish-brown.

 
  
Where, 
M=Concentration of FeSO4; 
V=Volume of blank; 
V2=Volume of FeSO4 
0.39=Constant 
 

2.2.5. Organic Matter22 
 

One kg of soil samples was taken in a 250ml conical flask with 10 ml of 1N K2Cr2O7 and swirling gently. Then 20 ml of 
concentrated sulphuric acid was added, and suddenly the flask swirled and placed on a hot plate at 135oC. After the flask was 
cooled and diluted to deionized water titrated against 0.4N ferric sulfate as an indicator at the endpoint, the greenish color changed 
to dark green. Finally, the ferrous sulfate was added to dropwise blue-green to change in reddish-grey and was recorded at the 
endpoint as maintain blank to standardize the FeSO4 solution. 
 
Calculations  
 
The percentage of carbon was determined from the following formula: 
 

 
 
Where:  
S = Volume of FeSO4 used in blank titration (ml)  
W = Weight of soil in grams,  
T = ml of FASS = Ferrous solution with blank titration (ml) 
 
2.2.6. Organic Nitrogen23 
 

One kg of soil samples was mixed in hundred ml distilled water 
in a test tube. In addition, 1.5 ml of NaOH and 1 ml of 
Nessler's reagent were added, and readings were at 540 nm 
using a spectrophotometer. The results were expressed in 
mg/ml.Test OD/test OD conc. Of Std. 100/ volume of a sample 
taken. 
 

2.3. Isolation soil of fungi24 
 

The collected soil sample (Soil dilution method) is diluted with 
1g of soil in 10 ml of sterile distilled water. 1ml of suspension 
was added to sterile Petri plates in triplicates containing sterile 

Potato Dextrose Agar plates were incubated at 28°C for 2-5 
days. 
 
2.4. Identification of fungi25-28 
 
The isolated fungi were identified to the genus and the species 
level based on their morphological characteristics. Then, 
microscopic analysis was analyzed using slide cultures, the 
most taxonomic guides, and standard procedures. 
 
2.5. Different strains and their improvement29 
 

Saccharomyces cerevisiae was derived from sub-culturing three 
times on YPD agar supplemented with 40 µg/mL−1 ethidium 
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bromide. For experimental purposes, the yeasts were 
streaked onto YPD agar maintained at 37°C glycerol stocks 
and cultured for at least 48h before single colonies were 
picked for sub-culture to the broth.  
 

2.6. NPs production from fungi 
 

2.6.2. Extraction of Berberine30,31 
 

Berberine, a quaternary protoberberine alkaloid (QPA), is the 
most common alkaloid in its class. According to current 
research, the QPA alkaloids can be isolated from their matrix 
using various approaches. The interconversion reaction 
between the protoberberine salt and the base provides the 
basis for these approaches. The salts are water soluble, stable 
in acidic and neutral conditions, and soluble in organic 
solvents. Thus, the protoberberine salts are transformed in 
their respective bases throughout the extraction phase and 
then extracted in organic solvents. Berberine extraction 
procedures such as maceration, percolation, Soxhlet, and cold 
or hot continuous extraction use various solvent systems such 
as methanol, ethanol, chloroform, aqueous, and acidified 
solutions. Berberine's sensitivity to light and heat makes 
extraction difficult. 
 

2.7. Extraction of Eugenol32 
 

Xue-Song Company (Jiangxi, China) provided natural eugenol 
(99%purity) isolated from clove buds, dissolved in ethanol. The 
stock solution was kept at four °C until it was used. At 4°C, 
the culture was kept in the dark on PDA media (200 g boiling 
potato, 20 g dextrose, 20 g agar, 1 L). Conidia from a 7-day-
old PDA culture were counted using a hemocytometer after 
being rinsed with 0.01% Tween-20 solution. A suspension 
containing 5 107 conidia/mL was made. The conidia were 
inoculated into YES broth (20 g yeast extract, 150 g sucrose, 
0.5 g MgSO4.7H2O, 1L) at a final concentration of 106 
conidia/mL. After diluting the eugenol stock solution with 
ethanol to a concentration of 80 mM, 500 L of the diluted 
eugenol stock was added to 50 mL of YES broth, yielding a 
final eugenol concentration of 0.80 mM. The control cultures 
were given the same treatment but were not given eugenol. 
Each culture was incubated for five days at 28°C in the dark. 
After that, the mycelia were harvested. Each therapy was 
carried out three times. 
 
 
 

2.8. Antifungal activity33 
 
Agar well–diffusion method was followed for the 
determination of antifungal activity. Potato Dextrose Agar 
(PDA) plates were swabbed (sterile cotton swabs) with 48 
hours old of Aspergillus fumigatus, Botrytis cinerea, Candida 
albicans, and Zymoseptoria tritici respective fungi were 
procured from Indian Biotrack Research Institute, Thanjavur, 
Tamil Nadu, India. Agar wells (5mm diameter) were made in 
each plate using a sterile cork borer. About standard, 25, 50, 
75, and 100μl of Berberine, Eugenol, and its synergies extracts 
were added using sterilized dropping pipettes into the wells. 
Plates were left for 1 hour to allow a period of pre-incubation 
diffusion to minimize the effects of variation in time between 
the applications of different solutions. The plates were 
incubated upright at 28˚C ± 2˚C for fungi. Results were 
recorded as the presence or absence of an inhibition zone. 
Triplicates were maintained, and the average values were 
recorded for antifungal activity. 
 
2.9. High-Throughput Screening33 
 
For high-throughput screens, the test compounds of 750µM 
eugenol and 350 µM berberine were assayed in pairwise 
combinations against off, comprising chemicals at ten mM, 
dissolved in DMSO. For the screens, aliquots (1 µL) of each 
library compound were combined with 49 µL YPD and added 
to 96-well microtiter plates (Greiner Bio-One). Next, aliquots 
(50 µL) of yeast cell suspension (prepared as described above) 
containing one of the four test compounds were added to the 
50 µL library-compound preparations in the microtiter plates. 
It gave final concentrations of 100 µM of each library 
compound in 100 µL total per well. Solvent-matched controls 
at 0.35% DMSO or 0.3% ethanol (70%) were used for control 
assays without added compounds. The growth with added 
compounds was expressed as a percentage of control growth 
and the compounds.  
 
2.10. Statistical analysis 
 
Excel 2010 was used for initially analyzed with data and 
creating a database for drawing related charts. Statistical 
analyses were performed using standard procedures for a 
randomized plot design (SPSS 22.0, SPSS Inc., Chicago, IL, 
USA). The statistical analysis of soil physicochemical 
properties with fungal populations was performed with SPSS.

3. RESULTS 
 
3.1. Soil physicochemical parameters 
 

 
 

Fig 1: Month-wise analysis of temperature of the soil of paddy field 
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The paddy field soil's physicochemical properties, such as temperature, moisture, pH, organic carbon, organic matter, and organic 
nitrogen, were determined for every month of 2016-2017. In addition, the monthly variations of soil temperature were noted 
periodically, such as August (37°C), September (34°C) and March (35°C), October and February (32°C), November (28°C), 
December (27°C), January (29°C), April (43°C), May (40°C), June (42°C) and July (38°C) month temperature were recorded 
respectively (Figure-1).   
   

 
 

Fig 2: Month-wise analysis of moisture level of paddy field soil   
 
The percentage of moisture was measured with the months such as August (40.31%), September (50.23%), January (30.12%), 
February (30.04%), March (30.02%), April (30.19%), May (30.01%), June (30.31%) and July (40.15%) but October, November and 
December months was fully saturated moisture content (Figure-2).  
 

 
 

Fig 3: Month-wise analysis of pH of the soil of the paddy field 
 
Each month's pH content was in August and May (7.0), September and October (7.2), November (6.7), December (7.5), January 
and July (6.9), February (7.1), March (7.3), April (6.8), May (7.0) and June (6.5) respectively (Figure-3).  
  

 
 

Fig 4: Month-wise organic carbon of paddy field soil  

4.31

5.23

0 0 0

3.12 3.04 3.02 3.19 3.01
3.31

4.15

0

1

2

3

4

5

6

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun JulP
e

rc
e

n
ta

g
e

  
o

f 
 M

o
is

tu
re

Months

Moisture (%)

Moisture (%)

7

7.2 7.2

6.7

7.5

6.9

7.1

7.3

6.8

7

6.5

6.9

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

p
H

 r
a

n
g

e

Months

pH

pH

0.39
0.42 0.44

0.36

0.22
0.26 0.28

0.24

0.15

0.29

0.16
0.13

0

0.1

0.2

0.3

0.4

0.5

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

P
e

rc
e

n
ta

g
e

 o
f 

C
a

rb
o

n

Months

Organic Carbon (%)

OC (%)



 

ijlpr 2023; doi 10.22376/ijlpr.2023.13.3.L73-L87                         Botany 
 

 

L78 
 

Organic carbon was estimated in percentage for each month, such as August (0.39%), September (0.42%), October (0.44%), 
November (0.36%), December (0.22%), January (0.26%), February (0.28%), March (0.24%), April (0.15%), May (0.29%), June (0.16%) 
and July (0.13%) month were observed (Figure-4).   
  

 
 

Fig 5: Month-wise analysis of the organic matter of paddy field soil   
 
Organic matters were estimated in percentage for each month, such as August (0.41%), September (0.46%), October (0.56%), 
November (0.37%), December (0.33%), January (0.35%), February (0.26%), March (0.22%), April (0.24%), May (0.26%), June (0.25%) 
and July (0.14%) found to be recorded respectively (Figure-5). 
    

 
 

Fig 6: Analysis of organic nitrogen of paddy field soil  
  
The percentage of organic nitrogen was found for each month, such as August (40.3%), September (45.5%), October (43.6%), 
November (39.6%), December (23.5%), January (26.3%), February (10.2%), March (26.3%), April (09.2%), May (22.3%), June (12.2%) 
and July (10.5%) month represented from the soil sample respectively (Figure-6).   
 
3.2. Microbial diversity 
 
3.2.1. Microbial load  
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Fig 7: Analysis of population density of paddy field soil with different months 
 

The population density of isolated fungal colonies was found for every month, such as August (166), September (137), October 
(152), November (78), December (62), January (77), February (66), March (67), April (85), May (75), June (73) and July (97) were 
analyzed respectively (Figure-7).  
  
3.2.2. Characterization of fungi 
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A. terreus A. variecolor 

  

    
Curvularia indica C. lunata 

 

    
Fusarium oxysporum F. solani 

  

    
Helminthosporium oryzae Trichoderma viride 

 

   
 

Saccharomyces cerevisiae 
 

Fig 8: Identification of isolated fungi from paddy field soil of Kanyakumari 
 
The isolated fungi from paddy field soil of the Kanyakumari district for the period of 2016-2017 found 27 fungal species such as 
Aspergillus awamori, A. candidus, A.flavipes, A.fumigatus, A.flavus, A.nidulans, A.niger, A.ochraceous, A.oryzae, A.rugulosus, A.terreus, A.ustus, 
Curvulariaindica, C.lunata, Fusariumsolani, F.oxysporum, A.variecolor, Helminthosporiumvelutinum, Mucoralboarter, Penicilliumcitrinum, P. 
chrysogenum, P.funiculosum, Rhizopusnigricans, Saccharomyces cerevisiae, Trichodermaviride, T.harzianum, and Verticilliumsp. were 
identified fungi and belonged to the family Trichomaceae, Pleosporaceae, Nectriaceae, Mucoraceae, Hypocreaceae, 
Saccharomycetaceae and Plectosphaerellaceae (Figure-8).  
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3.2.3. Statistical Analysis  
 

Table 1: Pearson correlation matrix between fungal population and physico-chemical characteristic 
of paddy field soil 

Physicochemical 
parameters 

Temperature  
(˚C) 

Moisture 
(%) 

pH OC  (%) OM (%) ON (%) PD 

Temperature (˚C) 1       
Moisture (%) *0.599504 1      

pH -0.46725 -0.19452 1     
OC (%) -0.40021 -0.15975 0.304053 1    
OM (%) -0.4261 -0.31537 0.272254 0.883149 1   
ON (%) *0.43276 -0.19077 0.299933 0.907615 0.862234 1  

PD 0.084212 0.244787 0.130077 0.706435 0.689639 0.692031 1 
 

FS = fully saturated OC = organic carbon; OM = organic matter; ON = organic nitrogen; PD = population density; p>0.005 
the percentage level of significant 

 
3.2.4. Monthly variation of fungi 
  

 
 

Fig 9: Monthly variation in the population of soil fungi (No. of colonies×103 g-1 dry wt of the soil) 
 
The monthly variations in the population of soil fungi were correlated with the physicochemical parameters; the other months of 
temperature, moisture, and pH are significantly represented, respectively (Table-1 & Figure - 9). 
 
3.3. Combination of Natural medicine 
 
The two selected combinations' wider efficiencies were tested against fungal pathogens: Aspergillus fumigatus, Botrytis cinerea, 
Candida albicans, C. glabrata and Z. tritici. In addition, the EUG + BER combination retained synergistic activity against C. albicans 
showing a significantly greater observed. Therefore, the combined effect would be expected from an additive interaction of the 
observed individual-NP effects.  
 

 
 

Fig 10: Structure of Berberine 
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Fig 11: Structure of Eugenol 
 
3.4. Antifungal activity of Natural compounds 
 
The antifungal activity of Berberine and Eugenol against the clinical pathogens are Aspergillus fumigatus, Botrytis cinerea, Candida 
albicans, and Zymoseptoria tritici. The combined effect of different concentrations of 25, 50, 75, and 100µl of Berberine and Eugenol 
was treated against pathogens and produced following zones of inhibition such as Aspergillus fumigatus (0.50±0.20, 0.90±0.05, 
0.88±0.30 and 1.14±0.04mm), Botrytis cinerea (0.91±0.30, 0.95±0.01, 0.93±0.02 and 1.04±0.06mm), Candida albicans(1.13±0.20, 
1.45±0.02, 1.62±0.03 and 1.90±0.80mm)  and  Zymoseptoria tritici (0.95±0.40, 1.10±0.40,  1.19±0.02 and 1.53±0.06mm)  were 
recorded respectively (Figure – 12). 
 

 
 

Fig12: Antifungal activity of Berberine from fungi against clinical fungal pathogen 
 
The different concentration of 25, 50, 75, and 100µl of eugenol was treated against clinical pathogens and produced following 
zones of inhibition such as Aspergillus fumigatus (0.34±0.10, 0.42±0.32, 0.99±0.34 and 0.96±0.78mm), Botrytis cinerea (0.37±0.67, 
0.47±0.56, 0.77±0.20 and 0.90±0.02mm), Candida albicans (0.80±0.10, 0.90±0.30, 0.99±0.32 and 1.20±0.20mm) and  Zymoseptoria 
tritici (0.87±0.32, 0.98±0.30, 1.10±0.15 and 1.30±0.20mm)  were recorded respectively (Figure – 13). 
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Fig 13: Antifungal activity of Eugenol from fungi against clinical fungal pathogen 
 
The different concentration of 25, 50, 75, and 100µl synergies of Berberine and eugenol was treated against clinical pathogens and 
produced following zones of inhibition such as Aspergillus fumigatus (1.0±0.20, 2.2±0.5, 3.8±0.30 and 5.4±0.04mm), Botrytis cinerea 
(4.0±0.30, 6.5±0.01, 7.3±0.02 and 8.4±0.06mm), Candida albicans (9.0±0.20, 11.5±0.02, 12.2±0.03 and 13.0±0.80mm) and  
Zymoseptoria tritici (10.5±0.40, 12.0±0.40, 13.5±0.02 and 14.3±0.06mm)  were recorded respectively (Figure – 14). 
 

  
 

Fig 14: Antifungal activity of synergistic (Berberine+Eugenol) against clinical fungal pathogen 
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4. DISCUSSION 
 
The important factors influencing the variation in the 
population of fungi in the present study could be temperature, 
organic nitrogen, and soil moisture content. The paddy field 
soil was subjected to disturbances such as irrigation, 
fertilization, and agricultural practices resulting in more 
homogeneity of soil which did not allow relatively wide 
fluctuation in the fungi population.The chemical composition 
of the soil and the diversity of the soil microorganisms can be 
impacted by agricultural management practises34,35. Several 
physico-chemical characteristics of agricultural soils have an 
impact on the mycoflora there. Significant effects on a soil's 
fungal variety are caused by its organic content, moisture 
content, and pH36.Soil fungi are related to plant roots, 
providing important nutrients like nitrogen, phosphorus, and 
potassium. Fungi can colonize the upper parts of plants and 
provide many benefits, including decomposing from dead 
material drought tolerance, heat tolerance, and resistance to 
insects and plant diseases. However, fungi help plants to 
absorb nutrients and water more efficiently. Fungi are, 
therefore, a vital part of the huge agricultural industry. It has 
been reported that the density of the fungal population 
occurred during the rainy season when the soil moisture was 
significantly high37. A similar study was done in different parts 
of India where Aspergillus sp. and Penicillium sp. were dominant 
fungal genera38 in Uttar Pradesh. Our results were 
supportedby early studies 39,40. The fungi were isolated from 
paddy fields at Suryamaninagar, Agartala, Tripura41. The 
isolated fungi were identified based on cultural, microscopic, 
and morphological characteristics. It is known that PDA is the 
universal medium most widely used in the isolation of fungi, 
having a complete nutritional basis42. This is probably why 
colony development was faster compared to other media. 
Earlier work supported that the maximum growth of fungi was 
recorded in a potato dextrose agar medium43.Microbial 
diversity of paddy cultivated soil samples have been identified 
as fungal colonies such as Aspergillus niger, A. flavus, A.fumigatus, 
A. terreus, A. carbonarius, A. nidulans, Alternaria sp., Penicillium sp. 
and Talaromyces sp. and the genera of Aspergillus, Alternaria, 
Penicillium, Talaromyces and unknown species of Penicillium and 
Saccharomyces cerevisiae are a maximum number of colonies, 
and similar studies were reported44.The colony morphologies 
of soil fungi are significantly influenced by the growing medium 
used; Alternaria, Aspergillus, Penicillium, and Talaromyces genera 
have all been effectively cultivated on RB media45.The 
dominance and prevalence of the species have been reported 
from India and in various other parts of the world46. The 
species of Aspergillus have been reported to have the most 
tolerance to adverse conditions in the laboratory47, and 
species of Aspergillus and Penicillium were tolerant to a wide 
range of environmental conditions48. Eighteen species belong 
to 4 genera from Kadegaon Tehsil, Sangli District, Maharastra, 
India. The Aspergillus genera were dominant49,50. Similar results 
were reported in the present investigation. Ten fungal species 
representing seven genera were found in the rhizospheric soils 
of paddy, pulse, ragi, sugarcane, vegetable, and banana farms in 
the Nanjangud taluk of Mysore district, Karnataka. Aspergillus, 
Alternaria, Mucor, Curvularia, Fusarium, Penicillium, and Rhizopus 
have all been reported. 27 species from 19 different genera 
have been isolated, with Aspergillus, Fusarium, and Alternaria 
being the most prevalent51. The fungal community of CK soil 
diverged from those of rhizosphere soils in abundances of both 
Ascomycota and unidentified phylum; the former dominated 
in rhizosphere soil, especially in TCC soil (70.0%), and the 
latter dominated in CK soil (39.6%). The abundance of 

Basidiomycota was highest in the FCC community (18.5%)52. 
Eugenol is already used in pharmaceutical products, as a food  
preservative, in agriculture, and cosmetics and can be 
administered at 2.5 mg/kg body weight per day in humans53. 
Similarly, numerous studies have supported the application of 
Berberine for therapeutic purposes in humans concerning 
different conditions, owing partly to good absorption and 
toxicity properties54,55. A variety of significant pathogenic and 
spoilage ascomycete fungi were suppressed synergistically, 
including efficacy against C. albicans biofilms (EUG + BER). 
Additionally, synergy was still seen in isolates of C. albicans and 
A. fumigatus resistant to azoles. It suggests possible significance 
for the clinical context where azoles are important 
medications for treating invasive infections56. Recently, 71 
compounds out of 142 examined in a study of natural products 
with anti-Candida albicans activity met the criterion for having 
antifungal activity by having minimum inhibitory concentrations 
(MIC) values below 8 mg/mL57.Gaining inhibitory activity 
through synergy may be crucial for overcoming the problem 
of promiscuous behaviors linked to several examined NPs58. 
Since synergy often focuses on a shared target of the different 
medicines, this increase in activity adds specificity. In order to 
protect possible translational uses, anti-action promiscuity in 
regular NP-screening59.Amphotericin B, a traditional polyene 
antifungal product of Streptomyces nodosus, is also used to treat 
life-threatening fungal infections from Aspergillus species. It 
works particularly well in patients who have had organ 
transplants, received intensive chemotherapy, or have 
acquired immunodeficiency syndrome60-62.In China, Berberine 
has been used for thousands of years to treat diarrhea, and it 
is still frequently utilized in modern medicine. The effects of 
Berberine on fungi have been the subject of numerous 
investigations. The Candida species, including C. albicans,      C. 
krusei, C. glabrata, and C. dubliniensis, are said to be inhibited by 
Berberine, with MICs ranging from 10 to 160 
g/mL63,64.Berberine also works well with other antifungal 
medications like amphotericin B and terbinafine. In a mouse 
model, the combination of Berberine and amphotericin B 
lowered the amphotericin B dose by around 75%65, and 100 
g/mL berberine can effectively supplement terbinafine's 
antifungal activity66. Clove Oleoresin combined with 
concentrated sugar has a powerful fungicidal action on 
C.albicans, P.citrinum, A.niger, and T.mentagrophytes67. Mycelial 
inhibition was concentration-dependent, as colonies' 
diameters shrank as the amount of EO increased. Except for 
Mucor and Aspergillus, all other fungal strains were inhibited 
significantly at 1ml concentration 68. The present investigation 
suggested that Berberine and eugenol's combined effect was 
better antifungal activity than the individual compounds. 
Obliviously, the synergistic effect of fungal compounds which 
responsible for various diseases. The fungal bioactive 
compounds found to be the specific targeted natural 
compounds were enormous active principles in various 
diseases and disorders of human life.  
 
5. THE FUTURE OF MYCOFLORAL ECOLOGY 
 
Mycofloral significance plays a major role in conserving ecology 
and the environment. We can challenge the mycoflora to alter 
the environment. That could be harnessed to engineer our 
planet and health. However, the current knowledge of the 
metabolic mechanism and evolutionary process in most 
microbial ecosystem dynamics is extremely limited. The 
enormous population sizes and rapid growth rates of 
microorganisms mean that microbial ecology may transform 
the fields of ecology and evolution to test specific hypotheses 
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the specific compounds for the role of variations context 
molecules in future generations. 
 
6. CONCLUSION 
 
It can be concluded that fungi are very successful inhabitants 
of the soil. The integrated approach to soil health assumes that 
soil is living system and health results from the interaction 
between different processes and properties with a strong 
effect on the activity of soil microbiota. The soil 
physicochemical properties were indispensable for the 
population of microflora and enhancing soil conservation and 
human fertility.  As per the statistics of the research work, this 
promoted the ecosystem in the sustainable growth of the 
fungal community and the targeted count measured for the 
pathogens significantly. The fungal synergistic compounds 
were responsible for particular pathogens in particular 
diseases.  
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