An Overview on Green Titanium Nanoparticles Based on Plants: Synthesis, Potential Applications and Eco-Friendly Approach.

Pharmaceutical Science-Medicinal Chemistry

Authors

  • Sneha Olive Dan Department of Chemistry, School of Basic Sciences, SHIATS, Allahabad, India
  • S. H. Khan Department of Chemistry, School of Basic Sciences, SHIATS, Allahabad, India

DOI:

https://doi.org/10.22376/ijpbs/lpr.2022.12.4.P215-233

Keywords:

Green synthesis, Nanoparticles, TiO2, wastewater treatment, photo catalytic activity

Abstract

Nanotechnology is generating a lot of buzz across the world, because of its fascinating applications in various disciplines. Due to recent breakthroughs in the nanotechnology sector, metal oxide nanoparticles (NPs) have found a number of uses in a variety of industrial, medicinal, and environmental fields. Titanium dioxide nanoparticles (TiO2 NPs) have been widely utilized in everyday life and maybe manufactured using a variety of physical, chemical, and green approaches. Green synthesis is a non-toxic, cost-effective, and environmentally responsible way to make NPs. The green, chemical, physical, and biological production of TiO2 NPs has received a lot of attention, and these NPs may be analysed using high-tech tools. The current study contains extensive information on the comparative synthesis of TiO2 NPs with various properties and their wide range of applications. Because of the decreased usage of precursors, time-effectiveness, and energy efficiency during green synthesis processes, green approaches have been proved to be more efficient than chemical synthesis methods for TiO2 NPs production. The relevance of green manufacturing of TiO2 nanoparticles using plant extract is discussed in this review study. Recent breakthroughs in the manufacture of TiO2 nanoparticles, from plants have shown promise in various scientific and technological domains. The physical features, crystal properties, antibacterial, anticancer, and photo catalytic activity of TiO2 are summarised in this review. The many components of the green synthesis strategy for TiO2 NPs and medicinal applications were discussed. Nanoparticle stability and toxicity, as well as surface engineering strategies for ensuring biocompatibility, are also reviewed. Furthermore, the obstacles and concerns surrounding using green product TiO2 NPs in water and wastewater treatment were explored. Hence, this review article condenses TiO2 NPs physicochemical properties, green synthesis, toxic exposure, biodistribution, and applications. 

References

Rehman FU, Zhao C, Jiang H, Wang X. Biomedical Applicationsof nanotitania in theranostics and photodynamic therapy. Biomaterialsscience. 2016;4:40-54.

Chen X, Mao SS. Titanium dioxide Nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891-959. doi: 10.1021/cr0500535, PMID 17590053.

Ahmed SN, Haider W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology. 2018;29(34):342001. doi: 10.1088/1361-6528/aac6ea, PMID 29786601.

Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK Et Al. A cohort mortality study among titanium Dioxidemanufacturing workers in the United States. J Occup Environ Med. 2003;45(4):400-9. doi: 10.1097/01.jom.0000058338.05741.45, PMID 12708144.

Taran M, Rad MR, Alavi M. Biosynthesis of Tio2 and ZnO nanoparticles by Halomonas elongata Ibrc-M 10214 in different conditions of medium. Bioimpacts. 2018;8(2):81-9. doi: 10.15171/bi.2018.10, PMID 29977829.

Ks L. Arbade Gk, Khanna P, Et Al. Biological Approach To Synthesize Tio2nanoparticles Using Staphylococcus Aureus For Antibacterial And Anti-Biofilm Applications. J Microbiol Exp. 2020;8(1):36-43.

Doan Thi TU, Nguyen TT, Thi YD, Ta Thi KH, Phan BT, Pham KN. Greensynthesis of ZnO nanoparticles using orange fruit peel extract Forantibacterial activities. RSC Adv. 2020;10(40):23899-907. doi: 10.1039/d0ra04926c, PMID 35517333.

Shankar S, Oun AA, Rhim JW. Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. Int J Biol Macromol. 2018;107(A)(Pta):17-27. doi: 10.1016/j.ijbiomac.2017.08.129, PMID 28855135.

Shah Z, Nazir S, Mazhar K, Abbasi R, Samokhvalov I. Pegylated Dopedandundoped-Tio2 nanoparticles for photodynamic therapy of cancers, Photodiagnosisphotodynther. 2019;27:173-83.

Tyagi Pk. ”use of biofabricated silver nanoparticles-conjugated Withantibiotic against multidrug resistant pathogenic bacteria.” biol. Insights. 2016;1:1-6.

Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I Et Al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. 2014;4:4134. doi: 10.1038/srep04134, PMID 24549289.

Rai M, Yadav A, Gade A. Silver nanoparticles as A new Generationof antimicrobials. Biotechnol Adv. 2009;27(1):76-83. doi: 10.1016/j.biotechadv.2008.09.002, PMID 18854209.

Noimark S, Dunnill CW, Wilson M, Parkin IP. The Roleof surfaces in catheter-associated infections. Chem Soc Rev. 2009;38(12):3435-48. doi: 10.1039/b908260c, PMID 20449061.

Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol. 2002;3(2):113-26. doi: 10.1016/S1466-8564(02)00012-7.

Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science. 2011;363(1):1-24. doi: 10.1016/j.jcis.2011.07.017.

Manesh RR, Grassi G, Bergami E, Marques-Santos LF, Faleri C, Liberatori G Et Al. Co-exposure to titanium-dioxide nanoparticles does not affect cadmium toxicity in radish seeds(Raphanus sativus). Ecotoxicol Environ Saf. 2018;148:359-66. doi: 10.1016/j.ecoenv.2017.10.051, PMID 29096262.

Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, Fotovat A. Impact of bulk and nanosized titanium dioxide (Tio2) on wheat Seedgermination and seedling growth. Biol Trace Elem Res. 2012;146(1):101-6. doi: 10.1007/s12011-011-9222-7, PMID 21979242.

Serpone N, Dondi D, Albini A. Inorganic and organic Uv filters: their role Andefficacy in sunscreens and suncare products, Inorganicachim. Acta. 2007;360:794-802.

Labille J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M Et Al. Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ Pollut. 2010;158(12):3482-9. doi: 10.1016/j.envpol.2010.02.012, PMID 20346555.

Dudefoi W, Moniz K, Allen-Vercoe E, Ropers MH, Walker VK. Impact of food grade and Nano-Tio2 particles on A human intestinal community. Food Chem Toxicol. 2017;106(A):242-9. doi: 10.1016/j.fct.2017.05.050, PMID 28564612.

Sul YT. Electrochemical growth behavior, surface properties, Andenhanced in vivo bone response of Tio2 nanotubes on microstructured Surfacesof blasted, screw-shaped titanium implants. Int J Nanomed. 2010;5:87-100.

De Faria AF, Martinez DST, Meira SMM Et Al. Anti-Adhesionnd antibacterial activity of silver nanoparticles supported on graphene Oxidesheets. Colloids Surf. 2014;B113:115-24.

Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65(9):4094-8. doi: 10.1128/AEM.65.9.4094-4098.1999, PMID 10473421.

Ren W, Yan Y, Zeng L, Shi Z, Gong A, Schaaf P Et Al. A near infrared light triggered Hydrogenatedblack Tio2 for cancer photothermal therapy. Adv Healthc Mater. 2015;4(10):1526-36. doi: 10.1002/adhm.201500273, PMID 26010821.

Nanomaterials C-S. Applications in energy storage and conversion. Adv Colloid Interface Sci. 2019;267.

Yang Y, Javed H, Zhang D, Li D, Kamath R, McVey K Et Al. Merits and limitations Oftio2-based photocatalytic pretreatment of soils impacted by crude oil Forexpediting bioremediation. Front Chem Sci Eng. 2017;11(3):387-94. doi: 10.1007/s11705-017-1657-8.

Xie J, Hung Y-C, Uv A. Activated Tio2 embedded Biodegradablepolymer film for antimicrobial food packaging application. Lwt2018;96:307–314.

Lu PJ, Huang SC, Chen YP, Chiueh LC, Shih DY. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal. 2015;23(3):587-94. doi: 10.1016/j.jfda.2015.02.009, PMID 28911719.

Nogueira AA, Bassin JP, Cerqueira AC, Dezotti M. Integrationof biofiltration and advanced oxidation processes for tertiary Treatmentof an oil refinery wastewater aiming at water reuse. Environ Sci Pollut Res. 2016;23(10):9730-41. doi: 10.1007/s11356-015-6034-x.

Siddle GR. The prospects for titanium dioxide in the paint industry. Pigment Resin Technol. 1975;4(8):4-12. doi: 10.1108/eb041106.

Shen J, Song Z, Qian X, Yang F. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: preparation and their use in papermaking. Carbohydr Polym. 2010;81(3):545-53. doi: 10.1016/j.carbpol.2010.03.012.

Carneiro JO, Teixeira V, Portinha A, Magalhães A, Coutinho P, Tavares CJ Et Al. Iron-doped Photocatalytictio2 sputtered coatings on plastics for self-cleaning applications. Mater Sci Eng B. 2007;138(2):144-50. doi: 10.1016/j.mseb.2005.08.130.

Fujishima A. Behavior of tumor cells on photoexcited Semiconductorsurface. Photomed Photobiol. 1986;8:45-6.

Mo S-D, Ching WY. Electronic and optical properties of Threephases of titanium dioxide: rutile, anatase, and brookite. Phys Rev. 1995;B51:13023-32.

Hoang VV, Zung H, Trong NHB. Structural Propertiesof amorphous Tio2 nanoparticles. Eur Phys J D. 2007;44(3):515-24. doi: 10.1140/epjd/e2007-00186-5.

Gupta SM, Tripathi M. A review of Tio2 nanoparticles. Chinesescience bulletin. Chin Sci Bull. 2011;56(16):1639-57. doi: 10.1007/s11434-011-4476-1.

Simons PY, Dachille F. The structure of TiO2 II, a high-pressure phase of TiO2. Acta Cryst. 1967;23(2):334-6. doi: 10.1107/S0365110X67002713.

Varghese OK, Gong D, Paulose M Et Al. Crystallization Andhigh-temperature structural stability of titanium oxide nanotube arrays. J Mater Res. 2011;18:156-65.

Bakardjieva S, Šubrt J, Štengl V, Dianez MJ, Sayagues MJ. Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Cat B. 2005;58(3-4):193-202. doi: 10.1016/j.apcatb.2004.06.019.

gupta SM, Tripathi M. A review of Tio2 nanoparticles. Chinesescience Bulletin 56. Chin Sci Bull. 2011;56(16):1639-57. doi: 10.1007/s11434-011-4476-1.

Kingon AI, Maria JP, Streiffer SK. Alternative dielectrics Tosilicon dioxide for memory and logic devices. Nature. 2000;406(6799):1032-8. doi: 10.1038/35023243, PMID 10984062.

Li W, Ni C, Lin H, Huang CP, Shah SI. Size dependence of thermal stability Oftio2nanoparticles. J Appl Phys. 2004;96(11):6663-8. doi: 10.1063/1.1807520.

Gupta SM, Tripathi M. A review of Tio2 nanoparticles. Chinesescience bulletin. Chin Sci Bull. 2011;56(16):1639-57. doi: 10.1007/s11434-011-4476-1.

Tripathi AK, Singh MK, Mathpal MC, Mishra SK, Agarwal A. Study of Structuraltransformation in Tio2 nanoparticles and its optical properties. Journal of Alloys and Compounds. 2013;549:114-20. doi: 10.1016/j.jallcom.2012.09.012.

Araoyinbo AO, Abdullah MMAB, Rahmat A, Azmi AI, Vizureanu P, Wan Abd Rahim WMFW. Preparation of heat treated titanium dioxide (Tio2) nanoparticles for water purification. IOP Conf Ser.: Mater Sci Eng. 2018;374:012084. doi: 10.1088/1757-899X/374/1/012084.

mustapha S, Ndamitso MM, Abdulkareem AS, Tijani JO, Shuaib DT, Ajala AO Et Al. Application of Tio2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl Water Sci. 2020;10(1):49. doi: 10.1007/s13201-019-1138-y.

onali A, Wankhede Dr. AB. Preparation of Tio2 nanoparticles and its use in waste water treatment. Int J Eng Res Technol. 2021;09:04.

ahmed SN, Haider W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology. 2018;29(34):342001. doi: 10.1088/1361-6528/aac6ea, PMID 29786601.

Saxena G, Bharagava RN, editors. Green synthesis of nanoparticles and Theirapplications in water and wastewater Treatmentbioremediation of industrial Wastefor environmental Safety2020.

Setyawati MI Et Al. Cytotoxic and genotoxic Characterizationof titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid)nanoparticles in human fibroblasts. J Biomed Mater Res A. 2013;101(3):633-40.

Borm PJ, Schins RP, Albrecht C. Inhaled particles and Lungcancer, part B: paradigms and risk assessment. Int J Cancer. 2004;110(1):3-14. doi: 10.1002/ijc.20064, PMID 15054863.

Kuempel ED, Tran CL, Castranova V, Bailer AJ. Lung dosimetry and risk assessment of nanoparticles: evaluating and extending current models in rats and humans. Inhal Toxicol. 2006;18(10):717-24. doi: 10.1080/08958370600747887, PMID 16774860.

Bordes MC, Vicent M, Moreno R, García-Montaño J, Serra A, Sánchez E. Applicationof plasma-sprayed Tio2 coatings for industrial (tannery) wastewater treatment. Ceram Int. 2015;41(10):14468-74. doi: 10.1016/j.ceramint.2015.07.083.

Xu J, Sagawa Y, Futakuchi M, Fukamachi K, Alexander DB, Furukawa F Et Al. Lack of promoting effect of titanium dioxide Particleson ultraviolet B-initiated skin carcinogenesis in rats. Food Chem Toxicol. 2011;49(6):1298-302. doi: 10.1016/j.fct.2011.03.011, PMID 21414375.

Bernard BK, Osheroff MR, Hofmann A, Mennear JH. Toxicology and carcinogenesis studies of Dietarytitanium dioxide-coated mica in male and female Fischer 344 rats. Journal of Toxicology and Environmental Health. 1990;29(4):417-29. doi: 10.1080/15287399009531402.

Boffetta P Et Al. Exposure to titanium dioxide and risk of lung Cancerin A population-based study from Montreal. Scandinavian journal Ofwork. Environ Health. 2001;27(4):227-32.

Gali NK, Ning Z, Daoud W, Brimblecombe P. Investigation on the mechanism Ofnon-Photocatalyticallytio2-Induced reactive oxygen species and its Significanceon cell cycle and morphology. J Appl Toxicol. 2016;36(10):1355-63. doi: 10.1002/jat.3341, PMID 27191363.

Sa R, Ray Mk. Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen J Med Sci. 2009;2(2):57-63 [59].

Lu H, Xue Z, Saikaly P, Nunes Sp, Bluver Tr. Liu wt, membrane biofouling in A Wastewaternitrification reactor: microbial succession from autotrophic colonization to Heterotrophicdomination. Water Res. 2015.

Rodríguez J, Paraguay-Delgado F, López A, Alarcón J, Estrada W. Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water. Thin Solid Films. 2010;519(2):729-35. doi: 10.1016/j.tsf.2010.08.139.

Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S. Ce(3+)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep. 2016;6:31641. doi: 10.1038/srep31641, PMID 27528264.

Shu J, Wang Z, Xia G, Zheng Y, Yang L, Zhang W. One-pot synthesis of AgCl@Ag hybrid photocatalyst with high photocatalytic activity and photostability under visible light and sunlight irradiation. Chem Eng J. 2014;252:374-81. doi: 10.1016/j.cej.2014.05.040.

Yang S-F, Niu C-G, Huang D-W Et Al. Srtio3 Nanocubesdecorated with ag/Agcl nanoparticles as photocatalysts with Enhancedvisible-light photocatalytic activity towards the degradation of dyes, Phenoland bisphenol A. Environ Sci Nano. 2017;4:585-95.

Shah AK, Kantasahu T, Devipriyagogoi NR. Peela, Mohammad Qureshi, surface-engineering of decahedron shaped bismuth vanadate for improved photoelectrochemical water oxidation by indium doping coupled with graphitic carbon nitride quantum dots. J Power Sources. 2020;477:30 229024.

Shah AK, Kantasahu T, Devipriyagogoi NR. Peela, Mohammad Qureshienhancement in the photocatalytic H2 production activity of Cds Nrs by Ag2s and Nis Dual cocatalysts. Appl Cat B. 2021;288:119994.

Oyekale AS, Oyekale TO. Healthcare waste management practices and safety indicators in Nigeria. BMC Public Health. 2017;17(1):740. doi: 10.1186/s12889-017-4794-6, PMID 28946876.

Emmanuel E, Perrodin Y, Keck G, Blanchard JM, Vermande P. Ecotoxicological Riskassessment of hospital wastewater: A proposed framework for raw Effluentsdischarging into urban sewer network. J Hazard Mater. 2005;117(1):1-11. doi: 10.1016/j.jhazmat.2004.08.032, PMID 15621348.

Verlicchi P, Galletti A, Petrovic M, Barceló D. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol. 2010;389(3-4):416-28. doi: 10.1016/j.jhydrol.2010.06.005.

Chong MN, Jin B. Photocatalytic treatment of high Concentrationcarbamazepine in synthetic hospital wastewater. J Hazard Mater. 2012;199-200:135-42. doi: 10.1016/j.jhazmat.2011.10.067, PMID 22099943.

Hariharan D. Srinivasa K and nehru Lc. Synthesis and characterization of Tio2 nanoparticles using Cynodon dactylon Leaf extract for antibacterial and anticancer (A549 cell lines) activity. J Nanomed Res. 2017;5(6):1-5.

Subhapriya S, Gomathipriya P. Green synthesis of titanium dioxide (Tio2) nanoparticles by Trigonella foenum-Graecum extract and its antimicrobial properties. Microb Pathog. 2018;116:215-20. doi: 10.1016/j.micpath.2018.01.027, PMID 29366863.

Xing Y, Li X, Zhang L, Xu Q, Che Z, Li W et al. Effect of Tio2 nanoparticles on Theantibacterial and physical properties of polyethylene-based film. Prog Org Coat. 2012;73(2-3):219-24. doi: 10.1016/j.porgcoat.2011.11.005.

Shrivastava A, Singh R, Tyagi P, Gore D. Synthesis of Zinc Oxide, Titanium Dioxide and Magnesium Dioxide Nanoparticles and Their Prospective in Pharmaceutical and Biotechnological Applications. J Biomed Res Environ Sci. 2021 Jan 11;2(1):011-20. doi: 10.37871/jbres1180.

Fujishima A, Honda K. Electrochemical photolysis of water at A Semiconductorelectrode. Nature. 1972;238(5358):37-8. doi: 10.1038/238037a0, PMID 12635268.

Qarni FAl, Alomair NA, Mohamed HH. Environment-friendly nanoporous titanium Dioxidewith enhanced photocatalytic Activitycatalysts. 2019;9:799.

Kang X. †, Sihang Liu †, Zideng Dai, Yunping He. Xuezhi Song Zhenquan Tan,Titanium Dioxide: From Engineering To Applications, Catalysts. 2019;9:191.

Malakootian M, Mansuri F. Hexavalent chromium removal by titanium dioxide photocatalytic reduction and the effect of phenol and humic acid on its removal efficiency. Int J Env Health Eng. 2015;4(1):19. doi: 10.4103/2277-9183.157720.

Tarcea C, Et Al. Photocatalytic degradation of methylene blue dye using Tio2 Andfe3o4/Sio2/Tio2 as photocatalysts. In Iop Conference Series. Materials science Andengineering. 2020.

Amri F, Septiani NLW, Rezki M, Iqbal M, Yamauchi Y, Golberg D et al.. Mesoporous TiO2- based architectures as promising sensing materials towards next-generation biosensing applications. J Mater Chem B. 2021;9(5):1189-207. doi: 10.1039/d0tb02292f. PMID 33406200.

Kenry C, Lim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1-17. doi: 10.1016/j.progpolymsci.2017.03.002.

Sharma R, Sarkar A, Jha R, Kumar Sharma A, Sharma D. Sol-gel–mediated synthesis of TiO2 nanocrystals: Structural, optical, and electrochemical properties. Int J Appl Ceram Technol. 2020;17(3):1400-9. doi: 10.1111/ijac.13439.

Wang Z, Haidry AA, Xie L, Zavabeti A, Li Z, Yin W et al. Applications of ag modified Tio2 porous nanoparticles synthesized via facile hydrothermal Methodappl. Surg Sci. 2020;533:Article 147383.

Nasirian M, Mehrvarphotocatalytic M. Degradation of aqueous methyl orange using nitrogen-doped Tio2 photocatalyst prepared by novel method of ultraviolet-assisted thermal Synthesisj. Environ Sci. 2018;66.

Nyamukamba P, Okoh O, Mungondori H, Taziwa R, Zinyasynthetic S. Methods for titanium dioxide nanoparticles: A reviewed. In: Yang, editor, Titanium dioxide—material for A sustainable environment; 2018.

Ramakrishnan VM, Natarajan M, Santhanam A, Asokan V, Velauthapillaisize D. Controlled synthesis of Tio2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic Applicationsmater. Res Bull. 2018;97:351-60.

Christy PD, Jothi NSN, Melikechi N, Sagayaraj P. Synthesis, structural and optical properties of well dispersed anatase Tio2 Nanoparticlesby non-hydrothermal method. Cryst Res Technol. 2009;44(5):484-8. doi: 10.1002/crat.200900001.

Van Viet P, Van Hieu L, Minh Thi C. The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application. Aims Mater Sci. 2016;3(2):460-9. doi: 10.3934/matersci.2016.2.460.

Zhang Q, Gao L. Preparation of oxide nanocrystals with Tunablemorphologies by the moderate hydrothermal method: insights Fromrutile Tio2. Langmuir. 2003;19(3):967-71. doi: 10.1021/la020310q.

Dawson G, Chen W, Zhang T Et Al. A study on the effect of Startingmaterial phase on the production of trititanate nanotubes. Solid Statesciences. 2010;12:2170–217650 Yan. Hussain M, Ceccarelli R, Marchisio DL, Fino D, Russo N, Geobaldo F. Synthesis, characterization, and photocatalytic application of novel Tio2 nanoparticles. Chem Eng J. 2010;157(1):45-51. doi: 10.1016/j.cej.2009.10.043.

Chong MN, Jin B. Sol–gel synthesis of inorganic Mesostructuredcomposite photocatalyst for water purification: an insight into Thesynthesis fundamentals, reaction, and binding mechanisms. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry. 2012;42(1):68-75. doi: 10.1080/15533174.2011.609231.

Chen X. Titanium dioxide Nanomaterials and their energy applications. Chin J Cat. 2009;30(8):839-51. doi: 10.1016/S1872-2067(08)60126-6.

Ranga Rao A, Dutta V. Low-temperature synthesis of Tio2nanoparticles and preparation of Tio2 thin films by spray deposition. Solar Energy Materials and Solar Cells. 2007;91(12):1075-80. doi: 10.1016/j.solmat.2007.03.001.

Sundrarajan M, Gowri S. Green synthesis Oftitanium dioxide nanoparticles by Nyctanthesarbortristisleaves extract. Chalcogenide Lett. 2011;8:447-51.

Velayutham K, Rahuman Aa RG, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A et al. Parasitol Res. 2011.

Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C et al.. Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett. 2011;65(17-18):2745-47. doi: 10.1016/j.matlet.2011.05.077.

Roopan SM, Bharathi A, Prabhakarn A, Rahuman Aa VK, Rajakumar G, Padmaja Rd. Leksami and Madhumitha G. Efficient phyto-synthesis Andstructural characterization of rutile Tio2 Nanoparticlesusing Annona squamosa Peel extract. Spectrochimacta Part (2012);98:86-90.

Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C et al. Evaluation of Catharanthus roseus Leaf extract-mediated Biosynthesisof titanium dioxide nanoparticles against hippobosca maculata and Bovicolaovis. Parasitol Res. 2012;111(6):2329-37. doi: 10.1007/s00436-011-2676-x, PMID 21987105.

Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ. Eclipta prostrata Leaf aqueous extract mediated synthesis of titanium Dioxidenanoparticles. Mater Lett. 2012;68:115-7. doi: 10.1016/j.matlet.2011.10.038.

Hudlikar M, Joglekar S, Dhaygude M, Kodam K. Green synthesis of Tio2nanoparticles by using aqueous extract of Jatropha Curcas L. latex. Mater Lett. 2012;75:196-9. doi: 10.1016/j.matlet.2012.02.018.

Ramimoghadam D, Bagheri S, Abd Hamid SB. Biotemplated synthesis Ofanatase titanium dioxide nanoparticles via lignocellulosic waste material. Biomed Res Int. 2014;2014:205636. doi: 10.1155/2014/205636, PMID 25126547.

Rajeshkumar S, Swathi N, Sandhiya D, Lakshmi T. Int J Res Pharm Sci. 2019;10(2):856-60.

M. Sundrarajan*, S. Gowri. Chalcogenide Lett. 2011;8(8, August):447-51.

Ajmal N, Saraswat K, Afroz Bakht Md, Riadi Y, Ahsan M, Noushad Md. Cost-effective and eco-friendly synthesis of titanium dioxide (Tio2) nanoparticles using Fruit’s peel agro-waste extracts: characterization, in-Vitroantibacterial, antioxidant activities. Green Chem Lett Rev. 2019;12(3):244-54 [107].

Roopan SM, Bharathi A, Prabhakarn A, Rahuman AA, Velayutham K, Rajakumar G et al. Efficient phyto-synthesis and Structuralcharacterization of rutile Tio2 nanoparticles Usingannona squamosa peel extract. Spectrochim Acta A Mol Biomol Spectrosc. 2012;98:86-90. doi: 10.1016/j.saa.2012.08.055, PMID 22983203.

Hudlikar M, Joglekar S, Dhaygude M, Kodam K. Greensynthesis of tio 2 nanoparticles by using Aqueousextract of Jatropha Curcas L. Latex. Mater Lett. 2012, 75;109:196-9.

Ashok C, Rao KV, Chakra CS, Tambur PGreen Synthesis Of Tio2 Nanoparticles Using Aloe Veraextract. K.G.;110 Rao. Int. J. Adv. Res. Phys. Sci. 2015, 2 (1a), 28–34.

Kirthi AV, Santhoshkumar T, Velayutham K, Bagavan A, Kamaraj C, Elango G et al. Acaricidal Activity Ofsynthesized Titanium Dioxide Nanoparticles Usingcalotropis Gigantea Against Rhipicephalus Microplus Andhaemaphysalisbispinosa. Marimuthu, S; Rahuman, A.A.; Jayaseelan, C. Asian Pac J Trop Med. 2013;6(9):682-8.

Rajakumar, G., Rahuman AA, Jayaseelan C, Santhoshkumar T, Marimuthu S, Kamaraj C, Bagavan A et al. Solanum Trilobatumextract-Mediated Synthesis Of Titanium Dioxidenanoparticles To Control Pediculus Humanus Capitis,Hyalommaanatolicumanatolicum And Anophelessubpictus. Parasitol Res. 2014;113(2):469-79.

Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K et al. Green Synthesis Oftitanium Dioxide Nanoparticles Using Psidium Guajavaextract And Its Antibacterial And Antioxidant Properties. Santhoshkumar, T. Asian Pac J Trop Med. 2014;7(12):968-76.

Subhapriya S, Gomathipriya P114. Green synthesis of titanium dioxide TiO2 nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog. 2018;116:215-20. doi: 10.1016/j.micpath.2018.01.027, PMID 29366863.

Naik GK, Mishra PM, Parida K. Green synthesis of Au/Tio2 for effective dye degradation in aqueous system. Chem Eng J. 2013;229:492-7. doi: 10.1016/j.cej.2013.06.053.

Anbalagankrishnasamy, Mohanrajsundaresan and Pugalenthivelanpugalenthi,Int. J Chemtech Res. 2015;8(4):2047-52.

T, Rahuman AA, Jayaseelan C Et Al.,“Green Synthesis Of Titanium Dioxide Nanoparticles Usingpsidium Guajava Extract And Its Antibacterial And Antioxidantproperties,” Asian Pacific Journal Of Tropical Medicine. Santhoshkumar. Vol. 7(12); 2014. p. 968-76. [.

Subhapriya S. Gomathipriya P.*green synthesis of titanium dioxide (Tio2) nanoparticles by Trigonella foenum-Graecum extract and its antimicrobial Propertiesmicrobial. Pathogenesis 116. 2018:215-20.

Rahuman AA, Chidambaram Jayaseelan, Rajakumar G, Marimuthu S, Kirthi AV, Kanayairamvelayutham et al.3asian. Thirunavukkarasusanthoshkumar. Pac J Trop Med. 2014;119:968-76.

Prathyushakantheti and Padma Alapati, green synthesis of Tio2 nanoparticles using Ocimumbasilicumextract and its characterization. Int J Chem Stud. 2018;6(4):670-4.

Renata Dobrucka, synthesis of titanium dioxide nanoparticles using Echinacea purpurea Herbairanian. J Pharm Res. 2017;16(2):753-9.

S.O. Dan and S.H. Khan Green coalescence and characterization of Tio2 nanoparticles and evaluation of its antibiofilm Activityrasayan. J Chem. 2019;12(4):2252-9.

Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-Tio2 particles: differential responses related to surface properties. Toxicology. 2007;230(1):90-104. doi: 10.1016/j.tox.2006.11.002, PMID 17196727.

Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD et al. Correlating nanoscale Titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92(1):174-85. doi: 10.1093/toxsci/kfj197, PMID 16613837.

Xue C, Wu J, Lan F, Liu W, Yang X, Zeng F et al. Nano titanium dioxide induces the generation of Ros and potential damage in hacat cells under Uva irradiation. J Nanosci Nanotechnol. 2010;10(12):8500-7. doi: 10.1166/jnn.2010.2682, PMID 21121359.

Petković J, Zegura B, Stevanović M, Drnovšek N, Uskoković D, Novak S et al. Dna damage and alterations in expression of dna damage responsive genes induced by Tio2 nanoparticles in human hepatoma Hepg2 cells. Nanotoxicology. 2011;5(3):341-53. 22. doi: 10.3109/17435390.2010.507316, PMID 21067279.

Wang C, Li Y127. Interaction and nanotoxic effect of TiO2 nanoparticle on fibrinogen by multi-spectroscopic method. Sci Total Environ. 2012;429:156-60. doi: 10.1016/j.scitotenv.2012.03.048, PMID 22607744.

Wu, Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L et al. Toxicity and penetration of Tio2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett. 2009;191(1):1-8. doi: 10.1016/j.toxlet.2009.05.020, PMID 19501137.

Crosera M, Prodi A, Mauro M, Pelin M, Florio C, Bellomo F et al.. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. Int J Environ Res Public Health. 2015;12(8):9282-97. doi: 10.3390/ijerph120809282. PMID 26262634.

Yin J-J, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP et al. Phototoxicity of Nano titanium dioxides in hacat keratinocytes—generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol. 2012;263(1):81-8. doi: 10.1016/j.taap.2012.06.001.

Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary response of rats exposed to titanium dioxide (Tio2) by inhalation for two years. Toxicol Appl Pharmacol. 1985;79(2):179-92. doi: 10.1016/0041-008x(85)90339-4, PMID 4002222.

Vandebriel RJ, Vermeulen JP, Van Engelen LB, De Jong B, Verhagen LM, De La Fonteyne-Blankestijn LJ et al. The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Part Fibre Toxicol. 2018;15(1):9. doi: 10.1186/s12989-018-0245-5, PMID 29382351.

Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566-77. doi: 10.1038/nri3477, PMID 23827956.

Shacter, E; Weitzman, S.A. Chronic inflammation and cancer. Oncology. 2002, 16:217-26.

Madhubala V, Pugazhendhi A, Thirunavukarasu K. Cytotoxic and immunomodulatory effects of the low concentration of titanium dioxide nanoparticles (Tio2 Nps) on human cell lines—an in vitro study. Process Biochem. 2019;86:186-95. doi: 10.1016/j.procbio.2019.08.004.

Mlynarczyk B. Ziental, D. Czarczynska-Goslinska. Nanomaterials, B., Goslinski, T., &Sobotta, L.. 2020. Titanium Dioxide Nanoparticles: Prospects And Applications In Medicine;136:10(2), 387.

Carlander U, Li D, Jolliet O, Emond C, Johanson G. Toward A general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. Int J Nanomedicine. 2016;137:11, 625. doi: 10.2147/IJN.S94370.

Lin Z, Monteiro-Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles: pharmacokinetics of metallic nanoparticles. Wires Nanomed Nanobiotechnol. 2015, 7;138:189-217.

Janer G, Mas Del Molino E, Fernández-Rosas E, Fernández A, Vázquez-Campos S. Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol Lett. 2014;228(2):103-10. doi: 10.1016/j.toxlet.2014.04.014, PMID 24793716.

Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 2007;168(2):176-85. doi: 10.1016/j.toxlet.2006.12.001, PMID 17197136.

Bachler G, Von Goetz N, Hungerbuhler K. Using physiologically based pharmacokinetic (Pbpk) modeling for dietary risk assessment of titanium dioxide (Tio2) nanoparticles. Nanotoxicology. 2015;9(3):373-80. doi: 10.3109/17435390.2014.940404, PMID 25058655.

Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Van Ravenzwaay B. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol. 2008;82(3):151-7. doi: 10.1007/s00204-007-0253-y, PMID 18000654.

Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M et al. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol. 2014;11:30. doi: 10.1186/1743-8977-11-30. PMID 24993397.

Xie G, Wang C, Sun J, Zhong G. Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles. Toxicol Lett. 2011;205(1):55-61. doi: 10.1016/j.toxlet.2011.04.034, PMID 21600967.

Macyk W, Szaciłowski K, Stochel G, Buchalska M, Kuncewicz J, Łabuz P. Titanium(IV) complexes as direct Tio2 photosensitizers. Coord Chem Rev. 2010;254(21-22):2687-701. doi: 10.1016/j.ccr.2009.12.037.

Yuan R, Zhou B, Hua D, Shi C, Ma L. Effect of metal-ion doping on the characteristics and photocatalytic activity of Tio2 nanotubes for the removal of toluene from water. Water Sci Technol. 2014;69(8):1697-704. doi: 10.2166/wst.2014.071, PMID 24759531.

Gupta, N; pal, B. Photocatalytic Activity Of Transition Metal And Metal Ions Impregnated Tio2 Nanostructures For Iodide Oxidation To Iodine Formation. J Mol Catal A Chem. 2013, 371:48-55.

Savinkina E, Obolenskaya L, Kuzmicheva G. Efficiency of sensitizing nano-titania with organic dyes and Peroxo complexes. Appl Nanosci. 2015;5(1):125-33. doi: 10.1007/s13204-014-0299-0.

Kondratyeva I, Orzeł Ł, Kobasa I, Doroshenko A, Macyk W. Photosensitization of titanium dioxide with 4′-Dimethylaminoflavonol. Mater Sci Semicond Process. 2016;42:62-5. doi: 10.1016/j.mssp.2015.08.002.

Rochkind M, Pasternak S, Paz Y. Using dyes for evaluating photocatalytic properties: A critical review. Molecules. 2014;20(1):88-110. doi: 10.3390/molecules20010088, PMID 25546623.

Feng X, Zhang S, Wu H, Lou X. A novel folic acid-conjugated TiO2-SiO₂ photosensitizer for cancer targeting in photodynamic therapy. Colloids Surf B Biointerfaces. 2015;125:197-205. doi: 10.1016/j.colsurfb.2014.11.035, PMID 25497292.

Zaleska A. Doped-Tio2: a review. Recent Pat Eng. 2008;2(3):157-64. doi: 10.2174/187221208786306289.

Guiot, C; Spalla, O. Stabilization of Tio2 nanoparticles in complex medium through A Ph adjustment protocol. Environ Sci Technol. 2013, 47:1057-64.

Xu F. Review of analytical studies on Tio2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere. 2018;212:662-77. doi: 10.1016/j.chemosphere.2018.08.108, PMID 30173113.

Kubiak A, Siwińska-Ciesielczyk K, Goscianska J, Dobrowolska A, Gabała E, Czaczyk K et al. Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2019;104:109839. doi: 10.1016/j.msec.2019.109839. PMID 31500036.

Xu J, Sun Y, Huang J, Chen C, Liu G, Jiang Y et al. Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation. Bioelectrochemistry. 200771(2):217-22. doi: 10.1016/j.bioelechem.2007.06.001. PMID 17643355.

Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles ”quantum dots” as drug delivery system and their toxicity: a review. J Drug Target. 2011;19(7):475-86. doi: 10.3109/1061186X.2010.526227, PMID 20964619.

Jia X, Jia L. Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy. Curr Drug Metab. 2012;13(8):1119-22. doi: 10.2174/138920012802850074, PMID 22380016.

Di Carlo G, Biroli AO, Tessore F, Caramori S, Pizzotti M. Β-substituted Znii porphyrins as dyes for Dssc: A possible approach to photovoltaic windows. Coord Chem Rev. 2018;358:153-77. doi: 10.1016/j.ccr.2017.12.012.

Zhang, L; cole, J.M. Anchoring Groups For Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces. 2015, 7:3427-55.

Rehman FU, Zhao C, Jiang H, Wang X. Biomedical applications of nano-titania in theranostics and photodynamic therapy. Biomater Sci. 2016;4(1):40-54. doi: 10.1039/c5bm00332f, PMID 26442645.

Pucelik B, Kuncewicz J, Dubin G, Dąbrowski JM Sensitization Of Tio2 By Halogenated Porphyrin Derivatives For Visible Light Biomedical And Environmental Photocatalysis. Sułek, A. Catal Today. 2019, 335;161:538-49.

Pan X, Xie J, Li Z, Chen M, Wang M, Wang PN et al. Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped Tio2 nanoparticles. Colloids Surf B Biointerfaces. 2015;130:292-8. doi: 10.1016/j.colsurfb.2015.04.028, PMID 25935263.

Pan X, Liang X, Yao L, Wang X, Jing Y, Ma J et al. Study of the photodynamic activity of N-doped Tio2 nanoparticles conjugated with aluminum phthalocyanine. Nanomaterials. 2017;7(10):7, 338. doi: 10.3390/nano7100338.

Perillo, P.M.; Getz, F.C. Dye sensitized Tio2 nanopore thin films with antimicrobial activity against methicillin resistant Staphylococcus aureus under visible light. World. J Appl Chem. 2016, 1:9-15.

Tuchina, E.S.; Tuchin, V. V. Laser Phys Lett. 2010, 7, 607:Tio2 Nanoparticle Enhanced Photodynamic Inhibition Of Pathogens.

Youkhana EQ, Feltis B, Blencowe A, Geso M. Titanium Dioxide Nanoparticles as Radiosensitisers: An In vitro and Phantom-Based Study. Int J Med Sci. 2017;14(6):602-14. doi: 10.7150/ijms.19058, PMID 28638277.

Liu L, Miao P, Xu Y, Et Al. Study of Pt/Tio2 nanocomposite for cancer-cell treatment. J Photochem Photobiol B. 2010;98(3):207-10. doi: 10.1016/j.jphotobiol.2010.01.005, PMID 20149675.

Zhang H, Shan Y, Dong L. A comparison of Tio2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J Biomed Nanotechnol. 2014;10(8):1450-7. doi: 10.1166/jbn.2014.1961, PMID 25016645.

Yurt F, Ocakoglu K, Ince M, Colak SG, Er O, Soylu HM et al.. Photodynamic therapy and nuclear imaging activities of zinc phthalocyanine-integrated TiO2 nanoparticles in breast and cervical tumors. Chem Biol Drug Des. 2018;91(3):789-96. doi: 10.1111/cbdd.13144. PMID 29136341.

Yurt F, Ince M, Colak SG, Ocakoglu K, Er O, Soylu HM, Et Al. Investigation of in vitro pdt activities of zinc phthalocyanine immobilised Tio2nanoparticles. Int J Pharm. 2017;524(1-2):467-74. doi: 10.1016/j.ijpharm.2017.03.050, PMID 28365390.

Yamaguchi S, Kobayashi H, Narita T, Et Al. Sonodynamic therapy using water-dispersed Tio2- polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason Sonochem. 2011;18(5):1197-204. doi: 10.1016/j.ultsonch.2010.12.017, PMID 21257331.

Bogdan J, Pławińska-Czarnak J, Zarzyńska J. Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: a review. Nanoscale Res Lett. 2017;12(1):225. doi: 10.1186/s11671-017-2007-y, PMID 28351128.

You dg, Deepagan Vg, Um W, Et Al. Ros-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer [sci rep] [internet]; 2016. Vol. 6. p. 23200.

Ninomiya K, Fukuda A, Ogino C, Et Al. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles. Ultrason Sonochem. 2014;21(5):1624-8. doi: 10.1016/j.ultsonch.2014.03.010, PMID 24717690.

Smith L, Kuncic Z, Ostrikov K. (Ken), Et Al. Nanoparticles In Cancer Imaging And Therapy. J Nanomater. 2012;2012:1-7.

Harada A, Ono M, Yuba E, Et Al. Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomater Sci. 2013;1(1):65-73. doi: 10.1039/c2bm00066k, PMID 32481997.

Özyüncü SY, Teksöz S, Içhedef Ç, Medinel EI, Avci ÇB, Gündüz C et al.. Radiolabeled d-penicillamine magnetic nanocarriers for targeted purposes. J Nanosci Nanotechnol. 2016;16(4):4174-9. doi: 10.1166/jnn.2016.11646, PMID 27451783.

Shin SW, Song IH, Um SH. Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials (Basel). 2015;5(3):1351-65. Https:// Doi.Org/10.1016/S1470-2045(06)70651-9. doi: 10.3390/nano5031351, PMID 28347068.

Ates A, Nami B, Koçak N, Yildiz B. Acar ms, Bulut Zb. Hum Exp Toxicol. 2015 Titanium Dioxide Nanoparticles Induce Cytotoxicity And Reduce Mitotic Index In Human Amniotic Fluid-Derived Cells;34:174-82.

Coccini T, Grandi S, Lonati D, Locatelli C, De Simone U. Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology. 2015;48:77-89. doi: 10.1016/j.neuro.2015.03.006, PMID 25783503.

Jugan ML, Barillet S, Simon-Deckers A, Herlin-Boime N, Sauvaigo S, Douki T et al. Titanium dioxide nanoparticles exhibit genotoxicity and impair dna repair activity in A549 cells. Nanotoxicology. 2012;6(5):501-13. doi: 10.3109/17435390.2011.587903, PMID 21995316.

Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20(1):1-11. doi: 10.7508/ibj.2016.01.001, PMID 26286636.

Wang Y, Chen Z, Ba T, Pu J, Chen T, Song Y et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small. 2013;9(9-10):1742-52. doi: 10.1002/smll.201201185, PMID 22945798.

Warheit DB, Donner EM184. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: recognizing hazard and exposure issues. Food Chem Toxicol. 2015;85:138-47. doi: 10.1016/j.fct.2015.07.001, PMID 26362081.

Iosi F, Maranghi F, Tassinari R, Cubadda F, Aureli F, Raggi A et al. (2017). Geraets L, Oomen Ag, Krystek P, Jacobsen nr, Wallin H, Laurentie M, Verharen Hw, Brandon efa, De Jong Wh. Part Fibre Toxicol. 2014 Tissue Distribution And Elimination After Oral And Intravenous Administration Of Different Titanium Dioxide Nanoparticles In Rats;11:30.Ammendolia Mg. Baranowska-Wójcik Et Al. 127 short-term oral exposure to low doses of nanosized Tio2 and potential modulatory effects on intestinal cells. Food Chem Toxicol;102:63-75.

Nogueira CM, de Azevedo WM, Dagli ML, Toma SH, Leite AZ, Lordello ML et al. Titanium dioxide induced inflammation in the small intestine. World J Gastroenterol. 2012;18(34):4729-35. doi: 10.3748/wjg.v18.i34.4729, PMID 23002342.

Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S, Chanéac C et al. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol. 2014;11:13. doi: 10.1186/1743-8977-11-13, PMID 24666995.

Jones K, Morton J, Smith I, Jurkschat K, Harding A, Evans G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol Lett. 2015;233(2):95-101. doi: 10.1016/j.toxlet.2014.12.005.

Bu Q, Yan G, Deng P, Peng F, Lin H, Xu Y et al. Nmr-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration. Nanotechnology. 2010;21(12):125105. doi: 10.1088/0957-4484/21/12/125105, PMID 20203358.

Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine. 2015;10:4321-40. doi: 10.2147/IJN.S78308, PMID 26170667.

Hu R, Zheng L, Zhang T, Gao G, Cui Y, Cheng Z et al. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater. 2011;191(1-3):32-40. doi: 10.1016/j.jhazmat.2011.04.027, PMID 21570177.

Márquez-Ramírez SG, Delgado-Buenrostro NL, Chirino YI, Iglesias GG, López-Marure R. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology. 2012;302(2-3):146-56. doi: 10.1016/j.tox.2012.09.005, PMID 23044362.

Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol. 2007;84(4):415-30. doi: 10.1016/j.aquatox.2007.07.009, PMID 17727975.

Brun E, Carrière M, Mabondzo A. In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles. Biomaterials. 2012;33(3):886-96. doi: 10.1016/j.biomaterials.2011.10.025, PMID 22027597.

Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Is neurotoxicity of metallic nanoparticles the cascades of oxidative stress? Nanoscale Res Lett. 2016;11(1):291. doi: 10.1186/s11671-016-1508-4, PMID 27295259.

Published

2022-08-18

How to Cite

Dan, S. O. ., & Khan, S. H. (2022). An Overview on Green Titanium Nanoparticles Based on Plants: Synthesis, Potential Applications and Eco-Friendly Approach.: Pharmaceutical Science-Medicinal Chemistry. International Journal of Life Science and Pharma Research, 12(5), P215-P233. https://doi.org/10.22376/ijpbs/lpr.2022.12.4.P215-233

Issue

Section

Review Articles