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Abstract: Nanotechnology is generating a lot of buzz across the world because of its fascinating applications in various disciplines.
Due to recent breakthroughs in the nanotechnology sector, metal oxide nanoparticles (NPs) have found a number of uses in a
variety of industrial, medicinal, and environmental fields. Titanium dioxide (TiO,) nanoparticles have been widely utilized in
everyday life and maybe manufactured using a variety of physical, chemical, and green approaches. Green synthesis is a non-toxic,
cost-effective, and environmentally responsible way to make NPs. The green, chemical, physical, and biological production of TiO,
NPs has received a lot of attention, and these NPs may be analyzed using high-tech tools. The current study contains extensive
information on the comparative synthesis of TiO, NPs with various properties and their wide range of applications. Because of
the decreased usage of precursors, time-effectiveness, and energy efficiency during green synthesis processes, green approaches
have been proved to be more efficient than chemical synthesis methods for TiO, NPs production. The relevance of green
manufacturing of TiO; nanoparticles using plant extract is discussed in this review study. Recent breakthroughs in the manufacture
of TiO, nanoparticles, from plants have shown promise in various scientific and technological domains. The physical features,
crystal properties, antibacterial, anticancer, and photo catalytic activity of TiO, are summarised in this review. The many
components of the green synthesis strategy for TiO, NPs and medicinal applications were discussed. Nanoparticle stability and
toxicity, as well as surface engineering strategies for ensuring biocompatibility, are also reviewed. Furthermore, the obstacles and
concerns surrounding using green product TiO; NPs in water and wastewater treatment were explored. Hence, this review
article condenses TiO, NPs physicochemical properties, green synthesis, toxic exposure, bio-distribution, and applications.
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1. INTRODUCTION

Nowadays nanotechnology is one of the fastest growing areas
of science and technology. The metallic nanoparticles show
different properties viz. chemical, physical, optical and thermal
as compared to the metallic elements in bulk state due to their
high surface area to volume ratio |. Therefore, these unique
properties make nanoparticles (with diameter smaller than
100 nm) favourable for many different applications.Because of
this unique physicochemical characteristic of nanoparticles
including catalytic activity, antimicrobial properties, they are
gaining the interest of many scientists for their novel method
of synthesis®.The remarkable changes were observed in the
physical and chemical  properties, and enhancements in the
surface-to-volume ratios (increase in surface reactivity) of
materials are obtained when they are prepared in Nano scales
(1-100 nm). Nanoparticles can be categorized into metals (Pt,
Au, Cu, Pd, etc.), metal oxides (SiO;, ALO;, TiO, ZrO,,
Fe,O;, etc.) and semiconductors (ZnS, CdS, CdSe, etc.). The
various Ag, ZnO, TiO; nanoparticles have been an interest for
many authors*'®. Among various nanoparticles Titanium
dioxide TiO, NPs are manufactured worldwide in large
quantities for use in a wide range of applications''"">. It is widely
used as pigment because of its brightness and very high
refractive index. Approximately four million tons of this
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pigment is consumed annually worldwide®. These TiO;,
nanoparticles have been used in paints, coatings, plastics,
papers, inks, medicines, pharmaceuticals, food products,
cosmetics, sunscreens, toothpaste, and also used as a
component for articulating prosthetic implants for the hip and
knee'®?'. Surprisingly, new developed TiO, nanocomposite
membranes have recently shown the properties of both, anti-
adhesion via imparting hydrophilicity and anti-microbial (under
Irradiation)* approaches. Due to their fascinating properties,
TiO; nanoparticles have found vast array of applications such
as in nanobiotechnology®, nanomedicine®, energy devices®,
soil remediation?, food”, healthcare and cosmetic products®,
wastewater treatment”, and paint®®, paper’, and plastics
productions®.

l. Physical Properties of TiO;

Titanium dioxide is extensively used as a white pigment in
outside paintings for being chemically inert, and for its great
coating power and as a bleaching and pacifying agent in
porcelain enamels, giving high
brightness, hardness and acid resistance. The titanium oxide is
also known as titanium (IV) oxide, titanic acid anhydride,
titania, titanic anhydride, The physical properties of TiO; have
been summarized in Tablel.

Table I. Physical Properties of TiO,

Molar mass 79.866 g/mol
Appearance White solid
Odour Odourless
Molecular weight 79.9 g/mol
Density 4.23g/cm’ (rutile)
3.78 g/cm® (anatase
Boiling point 2972°C
Melting point 1843°C
Density 4.26 g/cm3 at 25°C

Magnetic susceptibility (x)

+5.9-107° cm*/mol

Refractive index

2.488 (anatase), 2.583 (brookite), 2.609 (rutile)

Bandgap energy (eV) 3.03
optimum size Il —25nm
Zeta potential in nano pure water (pH 5.6) (mV) 327 £ 05

2. CRYSTAL PROPERTIES

There are three types of TiO, polymorph minerals viz. Anatase, rutile and Brukite available in nature which have been shown in
Fig.| and their crystal properties have been incorporated in Table2. Both anatase and rutile have tetragonal structure and are
vastly used in the different fields of science but Brukite has orthorhombic structure®. The crystal properties of all three phase viz.,

anatase, rutile and brookite have been incorporated in Table2.
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Table 2 The crystal properties of most three common phases of TiO; ****

Crystal structure

Tetragonal Tetragonal Orthorhombic
Heating converts to Rutile - Anatase
Stability Stable most stable least stable
Density (g/cm?) 3.894 4.250 4.120
Space group 14,/amd P4,/mnm Pbca
Molecule (cell) 2 2 4
a=3.784 a =4.594 a=9.184
Lattice constant (A) b=95I5 b =2.959 b =5.447
c=5.154
Ti—O bond length 1.937(4) 1.949(4) 1.87-2.04
(A) 1.965(2) 1.980(2)
O—Ti—O bond 77.7° 81.2° 77.0°-105.0°
angle 92.6° 90.0°
Volume/molecule 34.061 31.216 32.172
~)

Main property and
Refractive index

The most photoactive form
of used as a catalyst or
catalyst support

Highest refractive index(2.65-
2.95) mostly used as pigment
and in optical device

The largest cell volume (8 TiO, groups
per unit cell. 4 from anatase and 2 from
rutile), mixing with anatase form for
catalytic applications.

Mohs Hardness 5.5-6 6-6.5 5.5-6
Melting Point 1200C) 1825°C

brookite n/a (converts to rutile)

Anatase has the most significant use as a photocatalyst due to kJ/mol). Gupta et al.®discussed that anatase phase TiO, can

mobility of charge carriers of Anatase (80cm?V-Is-1) is 89
times faster than rutile®. Both phases have same tetragonal
crystal structures even though they do not belong to the same
phase groups, while brookite has an orthorhombic structure
and the uncommon TiO, (B) phase is monoclinic®*. It has
been reported that even though the rutile phase is less stable
than the anatase phase at OK, the corresponding energy
difference between these phases is rather small (about 2—10

be chosen over other phases due its low density, high electron
mobility, and low dielectric constant consequently the anatase
phase low density, it easily undergoes transition to the rutile
phase at high temperatures (usually around 450—1200° C)*.
They also concluded that both the brookite and anatase phases
usually transform to the rutile phase. A. O Araoyinbo! etal.®®
studied the XRD patterns of titanium dioxide nanoparticles,
shown in Fig. 2.
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Fig |. XRD pattern of TiO, NPs*

The 120°C dried titanium dioxide exhibits an amorphous
phase where no distinct peak is identified. The 400°C titanium

dioxide exhibits anatase phase and the significant peaks were
observed. This result confirmed the width of the anatase peak
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diffraction from XRD indicating the smaller crystalline size at
400°C. Phase transformation occurred from anatase phase to
thermodynamically more stable rutile phase when calcination
temperature increases to 700°C.

3. APPLICATIONS OF TIO; NANOPARTICLES

Recently, environmental purification with TiO, nanoparticles
has also attracted great attention by many authors due to their
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chemical stability, low pollutant loading, low toxicity, self-
cleaning ability, hydrophilicity, and availability at low cost**.
Thus green synthesis by using plants is more beneficial than
production by chemical methods. Literature survey revealed
that in future, the most probability the study of Nano-size
particles, devices, and composites, which find the ways to
make stronger materials,  generate light and
energy, and purify water. The most important applications of
TiO; nanoparticles have been shown in Fig.2.
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Fig 2. Applications of TiO; Nanoparticles

3.1 Wastewater Treatment

For any water body to function adequately in satisfying
drinking water must have corresponding degree of purity.
Drinking water should be free of carcinogenic substances,
harmful bacteria, and toxic chemicals®®. In Future the high
demand for clean water will be increased by about one-third
of its present state”.This is due to its crucial role for the
production of electronic devices, pharmaceuticals, paints,
foods, and other beverages®*2. Recent advances in
nanotechnology and Nano engineering by use of non-
absorbents, promising in achieving good quality of water®,
nanoparticle-enhanced filtration®®, Nano catalysts® and
bioactive nanomaterials®. Various nanoparticles have been
successfully reported for water and wastewater treatment,
such as zerovalent metal nanoparticles (silver nanoparticles,
iron nanoparticles, zinc nanoparticles), metal oxide
nanoparticles (titanium dioxide nanoparticles, iron oxide
nanoparticles, zinc oxide nanoparticles), carbon nanotubes,
and nanocomposites®. NPs, especially the chemically
synthesized titanium dioxide (TiO;), have been extensively
applied in the photo-catalytic treatment of industrial
wastewaters. Ray and Lu et al. 2015*’studied Nano-sized
TiO,-based photo-catalytic treatment and concluded,that, it is
a highly effective method for the degradation and
detoxification of recalcitrant organic and inorganic pollutants

from industrial wastewaters. In past decade various photo
catalytic nanomaterials, such as nanoparticles of zinc oxide®”
¢!, nanocubes of silver chloride®*®nanoparticles of bismuth
vanadate, quantum dots and®, and cadmium sulfide®*have been
investigated  for their water treatment abilities., but
purification with TiO, nanoparticles as a photo-catalyst has
attracted great attention due to their chemical stability, low
pollutant loading, low toxicity, self-cleaning ability,
hydrophilicity, and availability at lowcost®.Oyekale, A.S. et al.
(2017) reported that sustainable and effective treatment of the
wastewater from hospitals is often challenging to
environmental and wastewater engineer worldwide®’. The
effective treatment of the wastewater from hospitals usually
contains pharmaceutical, radioactive, and chemical substances,
alongside numerous pathogenic microorganisms®®*. Chong
and Jin”%studied the use of TiO, nanofibers for the treatment
and biodegradability enhancement of a pharmaceutical
compound (carbamazepine) in a hospital wastewater mimic,
and observed that the TiO, nanofibers removed 78% of the
carbamazepine, 23% phosphate, and 40% chemical oxygen
demand (COD) within four hours. The current interest in the
researchers for the TiO, nanoparticles is also due to the
growing microbial resistance against antibiotics, and the
development of resistant strains. TiO, nanoparticles have
demonstrated significant antibacterial activity”'7*
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3.2 Titanium dioxide is a photo catalyst

TiO; is a great invention in 1972 for using as photo-catalyst
extensively during “Honda-Fujishima Effect”, was described by
Honda and Fujishima’.Fujishima et al’?> describe photo-
catalysis as a reaction which uses light to activate a substance
which modifies the rate of a chemical reaction without being
involved itself. Fatimah Al Qarni'® prepared green NPs which

TiO, (catalyst) +hv
Cr,O,2 + 14H" + 6¢
2H,O + 4h"

H-O + h'

OH + Organics

H'" + Organics
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exhibited improved photo-catalytic activity’®. Xiaolan Kang et
al”’, Malakootian and Mansuri’®studied photo-catalytic
reduction of inorganic contaminants (Cr*® to Cr*®) from
wastewater along with photo-oxidation of organic pollutants.
They proposed the schematic diagram of operation of a photo-
chemically excited TiO, particle shown in fig.3 with the
following mechanism. The characteristics of some TiO,
compounds as photo-catalysts are presented in Table3.

ht + e
2Crt + 7H,0
O, + 4H"

oH + H'
CO, + H,0
CO, +H,O

T102 particle o,

Fig 3. Schematic diagram of operation of a photo-chemically excited TiO; particle

Table 3. Characteristics of photo-catalysts obtained based on non-structured TiO,”

TiO,/Ti 150 Alkaline treatment, followed by oxidation with acetone
Fe304/SiO,/ TiO, 90 Hydrothermal method
TiO, 45 Sol-gel Method

4. SYNTHESIS OF TIO; NANOPARTICLES

Recently numerous types of TiO, nanoparticles have been
synthesized in the form of nanotubes, nanosheets, nanofibers,
nanorods, and interconnected architectures®®'. The regularly
employed synthesis methods are the hydrothermal, sol—gel,

solvothermal, vapour deposition, oxidation, and the thermal
decomposition methods. The Green synthesis of TiO,
nanoparticles is done by various methods viz,, the
Hydrothermal Method, Sol-Gel Method, Solvothermal
Method etc. The other various methods have been shown in
Fig.3 and Fig 4.

Green Sy nthesis of nanoparticles

Bottom up
method

Supercritical flaid
Spinning

Solgel

Green syvnthesis
Laser pyrolysis
Chemical vapoar
Aerosol based process

Top down
method

MhMechanical milling
Etching
Thermal/chemical
Sputtering

Laser ablation

Biclogical method

Bacteria

Fungzi
Algae
Plant

Fig 4. Green synthesis of nanoparticles by different methods
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The synthesis of nanoparticles of TiO, in the laboratory is
mainly carried out by sol-gel method. This method is generally
employed to synthesize crystalline or amorphous structure of
organic and inorganic materials which requires low
temperature *?Hydrothermalmethod has been utilized by
many researchers for the synthesis of TiO, nanoparticles®*®.
In this regard, Dawson et al. synthesized TiO; nanoparticles by
the hydrothermal method, wherein they subjected various
compositions and particle sizes of TiO, mixed powders to
hydrothermal reaction in the presence of NaOH’' Hussain et
al. also synthesized novel nano- TiO, whose size ranged from
10 to 20nm by the sol-gel technique’ In another study,
Chong et al. synthesized TiO; nanoparticles by the sol—gel
method®. TiO,. Arami et al (2007) reported that sol-gel
process, emulsion and pyrolysis have been used to prepare
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mono dispersed spherical TiO; nano-particle, although sol-gel
method for TiO; nano-particle has another disadvantage of the
use of costly organic solvents. The solvothermal synthetic
strategy is closely related to the hydrothermal technique but
for the use of non-aqueous solvents in the former™.
Moreover, the solvothermal method offers intriguing
advantages including an improved tuning of morphology,
particle size, crystallinity of the synthesized nanoparticles, and
temperature and pressure controls of the solvents used for
the synthesis™. Furthermore, TiO, nanoparticles can be
synthesized by either the wet or dry processes. In the dry
process, the vapour phase oxidation of TiCls is conducted,
which leads to formation of amorphous TiO, nanoparticles as
shown below:

TiCly(g) + Ox(g) — TiO: (s) + 2Cly(g)

Recently TiO, nanoparticles have been synthesised by various
sources (Shown in Figure 4) using TiO, nanoparticles have
been synthesized using natural products like Nyctanthes

arbortristis extract’, Catharanthus roseus'® aqueous leaf extract,
Eclipta prostrata aqueous leafextract'' and Annona squamosa L.
peel extract™?”.

TiO2 NP

Plant Microganism Others
Leaves Bacteria Fungus Algae

Fruits .

Flower Gram:{ Microalgae

Stem Gram - Macroalgae
Roots

Fig 5. TiO, Nanoparticles synthesis by different sources

The synthesis of nanoparticles by using plants is less complex
and a single step process unlike microbial isolation. Generally,
the prepared TiO, NPs have been characterized by using
characterized by UV-Vis spectroscopy, X-ray Diffraction
(XRD), Fourier transforms infra-Red spectroscopy (FT-IR),

atomic force microscopy (AFM), and scanning electron
microscopy (SEM), thermo gravimetric analysis (TGA). The
morphology and applications of various plants have been
incorporated in Table4.
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Table 4. Study of TiO, NPs biosynthesis using plants

| Catharanthus roseus Leaf 25-110 Irregular Antiparasitic activity [100]
2 Eclipta Leaf 49.5 Spherical [101]
3 Jatropha curcas Latex 25-100 Spherical [102]
4 Oryza sativa Straw 10-16 Photocatalyst [103]
5 Cassia fistula Whole Plant - Spherical Antibacterial [104]
6 NyctanthesArbortristis Leaf 100 to 50. Spherical Antimicrobial [105]

P. domestica L.(Plum), P. Persia Fruits peel 47-63 Cylindrical antibacterial, [106]

L.(Peach) and A. deliciosa (Kiwi)) antioxidant activities
5 Nyctanthes leaves extract (Night-flowering Jasmine) 100150 Spherical Biomedical systems [107]
6 Annona squamosa Fruit peel 232 Poly dispersed and Bio therapeutics, bioengineering and  [108]

Spherical electronics
7 0.3% aqueous extract of latex of Jatropha Latex 25-100 Mostly spherical and Biotechnology, environmental, [109]
curcasL. (physic nut) Uneven Biomedical and electronic
systems
8 Aloe vera gel extract 80-90 Almost spherical Photocatalytic activity [110]
9 Aqueous flower extract of Calotropis Flower 160220 Spherical and aggregated Acaricidal activity [
gigantea
10 Aqueous leaf extract of Solanum trilobatum Leaf Uneven spherical and Larvacidal and pediculocidal [112]
(Purple fruited pea eggplant) Oval Activities
I Leaf aqueous extract of Psidium guajava Fruits 32.58 Spherical shape and Antibacterial and antioxidant [113]
(Guava) Clusters Activity
12 Trigonella foenum-graecum L. Leaves 20-90 Spherical Antibacterial [114]
13 Cicer arietinum L. Seeds 14 Spherical Antibacterial [I15]
14 Azadirachta indica leaf 15 to 42 Spherical Antimicrobial [116]
extract

15 Psidium guajava 32.58 spherical Antibacterial and antioxidant [17]
16 Trigonella foenum-graecum Leaves 20-90 Spherical antimicrobial activity [118]
17 Psidium guajavaextract Leaves 32.58 spherical clusters antibacterial and antioxidant activities [l 19]
18 Ocimumbasilicum Leaf 100-120 Spherical Antibacterial [120]
19 Echinacea purpurea Herba Whole plant 120 spherical clusters Bioreductant [121]
20 oscimum sanctum herba Leaf 90-100 spherical clusters Bioreductant [122]
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4.1 Physicochemical Properties of TiO, Nps

Titanium has an average content of 4400 mg/kg in the earth's
crust. Ti does not exist in the metallic state in nature due to
its high affinity for oxygen and other elements. Ti's most
common oxidation state is +4; however, there are also +3 and
+2 states. The most often utilized compounds in the industry
are metallic Ti, TiO,, and TiCls. TiO, (CAS: 13463-67-7) is the
naturally occurring oxide of titanium, commonly known as
titanium (IV) oxide, titanic acid anhydride, titania, titanic
anhydride, or Ti white. TiO; is a non-combustible, odourless
white powder with a molecular weight of 79.9 g/mol, a melting
point of 1843°C, and a relative density of 4.26 g/cm3 at 25°C.
TiO, is a poorly soluble particle that has been used as a white
pigment for a long time. The crystal structures of TiO, are
anatase and rutile, with anatase being more chemically
reactive'”. Sayes et al'** found that after UV irradiation, NPs
(80/20; anatase/rutile, 3-5 nm; 100 g/ml) created six times
more reactive oxygen species (ROS) than rutile. When anatase
is exposed to UV radiation, it produces reactive oxygen
species (ROS)'*. TiO, anatase is thought to have a higher
hazardous potential than TiO, rutile'”'*. Under ambient light
circumstances, however, anatase-generated ROS does not
occur. In most cases, TiO, NPs are a combination of anatase
and rutile crystal forms. Shape, size, surface characteristics,
and interior structure are the most critical parameters
impacting particle physicochemical attributes. Chemically,
TiO; FPs (the rutile form) is thought to be inert. However, as
the particles get smaller, their surface areas grow greater, and
researchers are concerned about the detrimental
consequences of TiO, NPs on human health as a result of the
increased size'”. The activity of TiO, NPs is influenced by
surface modification, such as coating. In summary, TiO, NPs
and TiO, FPs have different physicochemical properties. These
characteristics are likely to have an impact on bioactivity. Even
though TiO, FPs have been shown to have minimal toxicity,
adverse health impacts and environmental bio-safety of TiO,
NPs should be carefully examined based on this fact.
Researchers should thoroughly analyze the physicochemical
properties of TiO, NPs in bulk and supplied to the test system.

4. Toxicity and Biocompatibility—an in Vitro and in
Vivo Study of Titanium Dioxide Toxicity

The low toxicity of titanium dioxide explains its widespread
use. Numerous investigations using TiO, of various
nanoparticle and micro particle sizes and crystal shapes were
conducted to assess skin, lung, immune system, and
hematotoxicity. Although titania is a prominent ingredient in
many cosmetic formulas, particularly sunscreens, powders,
and eye shadows, its size and crystal forms (anatase and rutile)
appear to impact its safety.The in vitro and in vivo research on
TiO, NPs' skin-related toxicity raised two issues: skin toxicity
and systemic toxicity connected with skin penetration. After
sub chronic dermal exposure, Wu et al. investigated the
toxicity and penetration of TiO, NPs in hairless mice and
porcine skin'?. According to the findings, nanosized TiO, may
offer a health risk to people following chronic cutaneous
contact over a lengthy period, owing to deeper tissue
distribution. Crosera et al. investigated TiO, NPs' penetration
into Franz cells for 24 hours using intact and needle-abraded
human skin and cytotoxicity on HaCaT keratinocytes in
another investigation. The presence of TiO, NPs was found to
be limited to the epidermal layer, while their concentration in
the dermal layer was below the detection limit. A minor
cytotoxic effect on human HaCaT keratinocytes was
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observed, implying that TiO, NPs may pose a concern only
after long-term exposure'?. Yin et al. investigated the photo-
toxicity of TiO, NPs with various molecular sizes and crystal
morphologies (anatase and rutile) in HaCaT human skin
keratinocytes in related work'”. The findings showed that
TiO, NPs are phototoxic to human skin keratinocytes due to
reactive oxygen species (ROS,) production during UVA
irradiation. It's worth noting that the rutile form of nano- TiO,
was shown to have lower photo-toxicity than anatase'”. Much
research has been conducted on the possible risk of TiO,
inhalation exposure. The toxicology investigation revealed
mostly titania-related side effects and trials that could indicate
severe "overload." Lee et al. did a study that can be used as an
example'®®.  Bronchioloalveolar adenomas and  cystic
keratinizing squamous cell carcinomas were observed in rats
after long-term inhalation exposure to bulk TiO, dust at high
concentrations (up to 250 mg/m3 for 2 years, 6 h/day for 5
days/week). The researchers determined that the observed
cancers formed from excessive dust loading in the lungs, so-
called TiO, "overload," due to the unique nature of the
relevant pre-malignant tumours, which were uncommon for
human lung cancer, and the lack of tumour metastases to
other organs. Vandebriel et al'*', who researched TiO, NPs, a
popular ingredient used in paints during their manufacturing or
applications, recently published an interesting study on the
possible risk of inhalation exposure. TiO, NPs were
investigated in vitro and in vivo for their immunological
activities. The first phase of the study focused on the in vitro
effects of TiO, NPs on the development of dendritic cells,
which are a crucial component of the lung immune system. In
contrast, the nod piece examined their adjuvant action in mice
in vivo. A group of fourteen TiO, NPs was chosen for the
study, each with different crystal shapes and coatings. In vitro,
anatase and anatase/rutile TiO, NPs caused higher expression
of CD83 and CD86 and higher production of IL-12p40 than
rutile NPs, indicating that rutile NPs are safer than anatase
NPs. Anatase and anatase/rutile NPs stimulated dendritic cell
maturation larger than rutile NPs in this approach. This
conclusion is significant for future titanium dioxide crystal
structure selection for industrial applications, particularly in
areas where inhalation exposure during product production
or application must be considered'®'. Dendritic cell maturation
activation has been shown to cause a cascade of physiological
events, including a detailed immunological response and
indirect inflammation'*>. Continuous exposure to TiO, may
thus result in an overactive immune system and persistent
inflammation. Chronic inflammation is thought to be a
detrimental state that leads to tissue loss and the development
of other disorders'*>. Madhubala et al. did complementary
research on the function of inflammatory processes by
studying the in vitro cytotoxic and immunomodulatory effects
of low concentration TiO, NPs on diverse human cell lines'®’.
In a dose-dependent manner, the immunomodulatory effects
of TiO, NPs were investigated on human monocytic leukemia
(THP-1) and human mast (HMC-1) cell lines. In the MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide)
assay, the viability of THP-1 cells treated with titania NPs was
considerably reduced at higher dosages. In conclusion, the
acute toxicity of TiO, NPs has been extensively examined in
rat and mouse models using a variety of exposure various
research focusing on the respiratory system outnumbers
those focusing on other exposure modes. According to
studies, exposure of the pulmonary system to TiO, NPs
resulted in both local and systemic symptoms and aggravation
of pre-existing symptoms. TiO, NPs delivered through the
lungs cause higher inflammation than FPs with the same
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chemistry at equal mass concentrations. On a similar particle
surface area basis, however, pulmonary infllmmation induced
by TiO; NPs was comparable to that caused by TiO; FPs. The
outcomes of the other exposure methods must be considered.
For example, research shows that TiO, NPs can enter the
systemic circulation via the lungs or the gastrointestinal tract
(GIT) and then be disseminated throughout the body, including
the liver, kidneys, spleen, and even the brain'**. Organ damage
and inflammatory responses could be induced by the
distribution and accumulation of TiO, NPs in the organs.
However, most of the doses used are far too high to be
practical in the workplace. TiO, NPs have also been shown to
affect the blood circulation system in vitro'**. Fourth, thorough
toxic kinetics investigations of TiO, NPs absorption,
distribution, metabolism, accumulation, and excretion through
various routes of exposure into the human body are
required. Future research should also look at systemic
reactions that are separate from the organ of exposure and
biomarkers that represent TiO, NP exposure and deleterious
repercussions. Finally, the chemical mechanisms by which TiO,
NPs could induce cancer remain unknown. Limited evidence
suggests that ROS production and signalling changes in cancer-
related genes may play a role in TiO, NP carcinogenicity. As a
result, more research is needed to understand the molecular
pathways of carcinogenicity in TiO, NPs.

4.4 Titanium Dioxide's Pharmacokinetics, Bio-
distribution, and Biological Fate

Only a few studies have looked into the pharmacokinetic
properties of TiO, NPs thus far. In addition, some of the
accounts in the literature are conflicting or imprecise. Particle
type, surface charge, surface coating, size, dose, and exposure
route all affect the pharmacokinetics of metal NPs, including
TiO, ' Orally, transdermally, or via injection, titanium
dioxide can enter the body in three ways. The bioavailability
of TiO, from the gastrointestinal tract is constantly being
researched and discussed. There are numerous indicators that
titania does not or only partially permeate the gastrointestinal
tract. There was no significant increase in NP concentration in
any of the studied tissues 24 hours following oral
administration of TiO, NPs at a dose of 100 mg per kilogram
of body weight in animal tests'*’. Comparative investigations
with greater doses of TiO, produced similar results,
demonstrating that orally administered TiO, does not
penetrate the gastrointestinal tract and that penetration is
medically unimportant'®, High quantities of TiO, NPs, on the
other hand, have been shown to cause agglomeration and so
boost their uptake by macrophages in experiments utilizing the
physiologically based pharmacokinetic modelling technique.
According to Bachler et al.'*’, TiO, NPs can be bio distributed
in two ways: by their ability to permeate blood arteries and
into organs and through phagocytosis of NPs by the
mononuclear phagocyte system. However, it should be noted
that the pharmacokinetics of NPs following intravenous
injection varies'*”. Because NPs' bioavailability is complete in
this scenario, their dispersal in the body must be carefully
examined. In a study by Fabian et al.'®, rats were given 5 mg
TiO, NPs per kg of body weight intravenously and then
monitored for 28 days. Throughout the experiment, the
animals were healthy and acted as usual. TiO, did not
accumulate at measurable levels in blood cells, plasma, brain,
or lymph nodes, according to a histopathological examination.
On the other hand, the liver had the greatest titania levels,
while the spleen, lungs, and kidneys had lower but still elevated
levels'®. Geraets et al.'*' made an important observation about
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rats' TiO, NPs excretion by the kidneys. They observed that
TiO, is slowly excreted from the body, indicating that it could
accumulate in tissues. This is not a severe problem because
the photosensitizer is only used once or several times during
photodynamic therapy'*'. Furthermore, a study conducted on
rats by Xie et al'” revealed that TiO, NPs in urine were higher
than in faeces, implying that renal excretion is the predominant
route of TiO, NP elimination'*.

4.4 Synthesis of TiO; NP

Despite the material's promising features for photodynamic
treatment, work is currently being done to change the NPs'
surface in motor connection efficiency and physicochemical
properties, including visible light absorption. PDT has the
potential to be enabled by surface-modified TiO, NPs with
photosensitizing characteristics'®. Many investigations aimed
at extending the spectral sensitivity of TiO, have shown
effective photosensitization with the use of a broad band-gap
semiconductor. As a result, titanium dioxide may be doped
with various metal ions and non-metal dopants'*'* or dyes'*-
8 Transition metal ions with inorganic or organic ligands are
commonly found in surface complexes that operate as TiO,
photosensitizers. The organic ligands are covalently bonded to
the titanium dioxide surface and are coordinatively bound to
the central ion. Surface titanium may also be linked to metal
centres via inorganic ligands, including CN—, F—, and PO43—.
Photosensitization results from photo-induced electron
injection from the complex's surface into the semiconducting
support's conduction band or whole injection into the valence
band. Direct or indirect photosensitization procedures can be
used to produce photo-induced charge injection. Due to the
presence of anchoring groups in the structure of organic
molecules, the complexes produced at the titanium dioxide
surface can be generated through chemisorptions in some
situations'®. Titanium dioxide'** is a semiconductor-based
material having an energy gap of 3.23 eV for anatase and 3.06
eV for rutile polymorph. When a molecule absorbs a photon
with energy greater than or equal to that amount, it is
stimulated. It can create negative electrons in the conduction
band while leaving positively charged holes in the valence band.
ROS, including superoxide (O2e-), hydrogen peroxide
(H202), and hydroxyl radical (*OH), are formed when free
electrons attack nearby oxygen and water molecules'®. In
biological systems, these forms of oxygen are precarious and
react with cell components, resulting in apoptotic or necrotic
cell death. TiO, NPs have also been shown to prevent efflux-
mediated multidrug resistance'*'**. When titania NPs are
disseminated in aqueous solutions, they tend to form
agglomerates in most situations'>'"'*2. Because these shapes
have a smaller surface area, they have lesser photo-activity. In
addition to TiO, NPs' biological activity, sedimentation can
diminish  their concentration, causing problems with
repeatability and preventing consistent dose. As a result, stable
formulations of NPs with functionalized surfaces on their
surfaces were designed to avoid or remove this unwanted
feature. The modification of NPs, for example, relies on the
application of a charge for electrostatic repulsion or the

adsorption of stabilizers to create stearic hindrance'>’.

4.5 Photo-catalyst section

In vitro and in vivo biological research has often revealed the
photodynamic activity of metallic nanoparticles made of gold,
silver, and titanium. PDT experiments using nanoparticles or
quantum dots in conjunction with photosensitizers such as
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phthalocyanines, porphyrins, and other dyes are becoming
increasingly popular. NPs appear to be suitable carriers for
targeted treatment as well. PDT may be performed in
particular tissues with the use of convenient drug delivery
methods for photosensitizers'*>'*. Because of their
drawbacks, such as their absorption of only short UV
wavelengths and aggregation in aqueous environments, plain
titania NPs have been modified using a variety of inorganic and
organic dopants. Porphyrins and phthalocyanines are two
chemical colours that are frequently combined with TiO,.
Using such hybrid materials as catalysts for visible-light
biomedical and environmental photocatalysis in photovoltaics
to manufacture dye-sensitized solar cells (DSSC) and
photosensitizers for PDT has been extensively used'*”'°. Pan
et al. offered an outstanding example of a TiO, NPs and
phthalocyanine combination when they used electrostatic
interactions to  link  aluminum(lll)  tetrasulfonated
phthalocyanine chloride (TSAICIPc) to nitrogen-doped anatase
TiO, NPs'¢"'¢2. TSAICIPc alone had just a mild photo killing
impact, with more than 83 percent of cells surviving, whereas
NPs were less active, slightly killing more than 70% of Hela
cells. Furthermore, nitrogen-doping of NPs has been shown to
promote photodynamic activity by enhancing the creation of
singlet oxygen (10O;) and superoxide anion radicals while
suppressing the development of hydroxyl radicals'®’. The
continued growth of TiO, applications in photodynamic
treatment can be shown by a work in which phthalocyanine
was deposited on TiO, nanopore thin films. This approach was
employed by Perillo et al. to make a possible photosensitizer
using copper tetracarboxyphthalocyanines (TcPcCu) that was
effective against MRSA'®. A visible light source was used to
irradiate the bacteria and photosensitizer solution. A sample
comprising solely TiO, thin film revealed no variations
compared to the control. The TiO/PcTcCu thin film sample,
on the other hand, inhibited MRSA development by 81.5
percent'®®. Tuchina et al. conducted a photo cytotoxicity
investigation using methylene blue (MB)'¢, one of the earliest
photosensitizers utilized in the laboratory and medical
practice. They tested a combination of two individuals—MB
and TiO, NPs—against S. aureus, E. coli, and Candida albicans
for antibacterial photodynamic activity. Suspensions of
bacteria or fungus were cultured in the dark for 10 minutes
before being treated with two LED lights simultaneously (405
and 625 nm). The combination of both PSs and simultaneous
irradiation with red and blue light decreased the number of S.
aureus cells by up to 90%. Using a mixture of photosensitizers
against C. albicans, very similar results were obtained.
Surprisingly, there was practically no action against E. coli.

4.6 TiO; NPs for Cancer

Every day, cancer becomes a growing concern worldwide, and
no cure eliminates cancer. As a result, it was thought that
nanoparticles, in addition to radiation, chemotherapy, and
other treatments, may be a novel strategy in cancer treatment
investigations. Titanium dioxide (TiO,) and zinc oxide (ZnO)
nanoparticles employed in photodynamic therapy (PDT) are
ROS-producing agents, according to the research. Reactive
oxygen species (ROS) have a high oxidative potential and
damage DNA and cell membrane in cancer cells, resulting in
necrosis. Damage to the nucleus and mitochondria causes
apoptosis, whereas damage to the endoplasmic reticulum
causes autophagy. In research by Youkhana et al., titanium
dioxide nanoparticles were utilized as radiosensitizers on two
cultivated cell lines, human keratinocytes (HaCaT) and
prostate cancer (DU 145) cells; experiment using anatase TiO,
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nanoparticles, the correct radiation dosage was calculated.
Cell viability and clonogenic assays were used to measure cell
survival rates. According to the cytotoxicity test, TiO,
nanoparticles were non-toxic up to 4 mM, and cell viability
remained stable at doses higher than 4 mM. Finally, they
discovered that TiO, nanoparticles positively affect dose
delivery and that Ti,O3 nanoparticles are suitable for imaging;
thus, titanium nanoparticles could be used as theranostic
agents, which define a molecule's ability to be used for both
therapy and diagnostic purposes'®. Nanoparticles employed in
Photodynamic Therapy (PDT) are classed as passive or active
nanoparticles and potentially reduce Pc toxicity. Passive
nanoparticles carry photosensitive compounds, whereas active
nanoparticles are involved in the light stimulation process.
Passive nanoparticles include gold, silica, and polyacrylamide,
whereas active nanoparticles include titanium dioxide (TiO,).
TiO, is a photocatalyst that releases oxidizing radicals by
interacting with water when exposed to UV light, which can
harm adjacent cells'®. Titanium dioxide and zinc oxide are two
of the most effective photosensitizers for PDT applications,
and their efficacy in PDT has been proven to be identical'®’.
Yurt et al.'®® created ZnPc molecules and incorporated them
into titanium dioxide nanoparticles, then investigated the PDT
potencies of these molecules in breast and cervical tumors.
They discovered that ZnPc- TiO, had a substantially higher
photodynamic activity than ZnPc alone and that ZnPc- TiO,
tagged with 1311 had a high cellular uptake in breast and
cervical tumors, suggesting that it may be employed as a PDT
agent'®®. Yurt et al. discovered that ZnPc- TiO, had a more
substantial phototoxic impact in colon tumors than ZnPc'®’.
Because of the challenges with PDT, there is a greater demand
for innovative cancer treatment options. Sonodynamic
treatment (SDT) is one of these approaches involving
sonosensitizers and ultrasound (US). By triggering
sonosensitizer particles, US are more efficient than UV
radiation in reaching deeper into tumour cells. As a result,
activated sonosensitizers produce reactive oxygen species
(ROS) in target cells. Nanoparticles, namely TiO, NPs, may be
used as sonosensitizers when coupled with metals or
antibodies. After ultrasonic stimulation, TiO, nanoparticles
have been shown to destroy nanoparticle-impregnated glioma
cells ' The cytotoxicity of TiO; NPs to HepG2 cells was
investigated by Ogino et al. (2014). TiO, NPs were coupled
with the PreS1/S2 antibody, which hepatocytes recognize. This
conjugation was found to boost the cytotoxic impact of NPs'”".
In their study, you et al. evaluated the use of long-circulating
hydrophilized titanium dioxide nanoparticles (HTiO2 NPs) in
sonodynamic treatment. HTiO; NPs are more resistant to
degradation than traditional sonosensitizers because ROS
does not destroy titanium dioxide. Additionally, a hydrophilic
polymer called Carboxymethyl dextran (CMD) was employed
to coat the NPs, improving their stability and increasing blood
circulation time. CMD's flexible shape also facilitates
extravasations from the tumor vascular. According to in vivo
O, mapping in tumors, ROS levels have risen. H TiO,
nanoparticles in ultrasonically treated cells It has also been
discovered that ROS are detected in blood arteries far more
than in deeper places'’?. According to Ninomiya et al,
ultrasound therapy may distinguish cancer cells using avidin
modified TiO, NPs, and these cells prefer to take avidin TiO,
NPs'”. Titanium dioxide nanoparticles were studied as an
enhancing agent for computed tomography imaging (CT) and
radiation treatment in research by Smith et al. lonising
radiation is used in radiation treatment to target tumors and
cause DNA damage in tumor cells resulting in cell death.
Another use of nanoparticles is dual-mode image contrast and
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enhancement treatment, which is still being explored. Because
iodine is routinely employed as a CT image contrast agent, it
can be utilized to monitor iodine absorption in tumors'’. In
vivo tests were designed by Harada et colleagues; to assess
micelle diffusion across tissues and the effectiveness of
ultrasound in suppressing tumor development '”°. In research
with CT26 cells, it was discovered that TiO, nanoparticles
caused oxidative stress without the need for UV light.
Ozyiincii et al. wanted to make D-Penicillamine (D-PA)
conjugated magnetic nanocarrier (nanoparticles) that were
radiolabeled with [99m Tc (CO)3] + core and then test the
biological activities of the binding complexes on MCF7 human
breast cancer cells. They stated that radiolabelled magnetic
nanoparticles had good absorption ability on MCF7 cells and
that the radiolabeled nanoparticles might be used as novel
agents in biomedical applications and cancer therapy '7¢. New
approaches for medication delivery to cancer cells using
nanomaterials and/or nanoparticles might reduce the side
effects of pharmaceuticals used in cancer treatment, such as
daunorubicin and doxorubicin. Finally, the primary goal of
cancer therapy is to destroy cancer cells while also limiting
tumor development without harming healthy cells. New
medications, chemicals, and materials will be produced in the
future as the prevalence of cancer rises. Scientists will continue
to look for new ways and approaches for cancer patients until
a proper and efficient medication or treatment is discovered.
With the advancement of technology, significantly less
expensive and more dependable therapies might be used in
clinics. Using TiO, NPs in various tumors might be a
revolutionary method in cancer treatment.

4.7 Toxic exposure to TiO; NPs

For many years, scientists have studied the effects of TiO, NPs
on the human body. Its toxicity and exposure to a
human/animal body have been extensively researched and
debated. Surface charge, sedimentation, aggregation, and,
therefore, the toxicity of TiO, NPs are all affected by the
crystalline structure, particle size, and coating'’’. Previous in
vitro and in vivo studies have confirmed the harmful effects of
TiO, NPs on the human body, including disrupted cell cycle,
nuclear membrane constriction, and apoptosis'’®'”’. TiO, NPs
have also been shown to cause DNA damage '® and interact
with the small intestinal epithelium, crucial for nutrition
absorption. TiO; NPs can be identified in numerous internal
organs after exposure to TiO, NPs in various methods,
including inhalation, injection, skin contact, and absorption
through the alimentary canal. TiO, NPs accumulate in the
lungs, alimentary tract, liver, heart, spleen, kidneys, and cardiac
muscle following inhalation or oral exposure, according to in
vivo testing. In mice and rats, they also disrupt glucose and
lipid balance '!'. The age might also play a role in the
detrimental effects of TiO, NPs. Distinct age groups may
require different biomarkers for detecting and monitoring the
oral toxicity of nanoparticles, as evidenced by the results of
experiments on young and adult rats'®?. The existing research
is inconclusive, but most of it suggests that when particles are
ingested, they are not absorbed into the blood circulation
system and are expelled through the gastrointestinal tract'®.
TiO2NPs  were seldom collected from the GIT and
transported into systemic circulation in rats and humans,
according to recent research '*. Toxicity following oral
treatment to rats was shown to be minimal at NOAEL > 1000
mg/kg bw/24 h (NOAEL—no evident adverse effect threshold)
in studies'®. In their experiments, Amedollia et al.'® found that
TiO2 NPs may penetrate the intestinal mucosa following oral
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exposure of rats to a level of 2 mg/kg body weight. According
to Brun et al.'¥, TiO, NPs are expected to be translocated
through the ileac epithelium and Peyer's patches, causing
damage to the intestinal epithelium and, most likely, chronic
failure. After giving mice TiO, NPs (66 nm) via oral gavage at
a dosage of 100 mg/kg for 10 days, Nogueira et al.'®
discovered inflammations in the small intestine. In another
study, it was shown that TiO, NPs with varied particle sizes,
I5 nm (nanoshell), 100 nm (nanoshell), and 5000 nm
(pigments), did not affect enhanced titanium absorption
depending on particle size following administration of a single
dosage to volunteers (5 mg/kg bw/day)'®. In a 14-day study,
Bu et al'® found that daily oral administration of TiO, NPs
(160, 400, and 1000 mg/kg) to rats caused disruptions in
energy, amino acid metabolism, and intestinal micro biota.
They speculated that it might harm the liver and heart in minor
ways. TiO; NPs in the brain can induce protein oxidation,
oxidative damage, antioxidative capability degradation, and
increased reactive oxygen species generation'”’. Nuclear
envelope shrinkage'”', apoptosis'®?, alterations in the
concentration of macroelements and macroelements, such as
copper (Cu), potassium (K), and zinc (Zn)'?, and disruption of
the BBB'** are some of the other results. The principal
mechanisms behind metallic nanoparticle neurotoxicity,
according to test results, are oxidative stress (OS), apoptosis,
and the inflammatory response'**. Antioxidants can counteract
the neurotoxicity of metallic NPs by lowering the generation
of reactive oxygen species (ROS), enhancing the activity of
antioxidative enzymes, suppressing inflammation, and reducing
the proportion of apoptotic cells'”. Our direct or indirect
exposure to metallic nanoparticles has increased with global
economic expansion. Nanoparticles (NPs) are increasingly
being used in commercial goods due to the novel features
provided by their tiny size. Small concentrations of TiO, NPs
can impact the intestinal mucosa, the brain, the heart, and
other internal organs, increasing the risk of acquiring a variety
of illnesses, tumors, and the progression of existing cancer
processes. The mechanism underlying NP nanotoxicity has yet
to be uncovered. Because several studies link it to oxidative
stress, nanotoxicity is a promising subject for further research.

5. CONCLUSION

The plant-based Titanium nanoparticles have huge application
in the field of food, pharmaceutical, and cosmetic industries
and thus become a major area of research. Biosynthesis of
TiO, nanoparticles, using an eco-friendly approach has been an
interest for many authors in the last decade due to clean and
eco- friendly methods, as toxic chemicals are not used. Future
prospect of plant-mediated nanoparticle synthesis, need an
extension of laboratory-based work to industrial scale. The
TiO; nanoparticle finds a newer visionary scientific future in
green chemistry and green nanotechnology. In order to
develop the simple green synthesis, the plant extract mediated
process has been considered as a suitable method for the
synthesis of titanium nanoparticles.
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