Gene Biomarkers in Congenital Hyperinsulinism
Life Sciences-Endocrine
DOI:
https://doi.org/10.22376/ijlpr.2024.14.2.L25-L29Keywords:
Congenital Hyperinsulinism, Gene Biomarker, Predictive biomarkers, GDA score, Bioinformatics databases.Abstract
Congenital hyperinsulinism (CHI) is a rare type of disease that causes a severe drop in blood sugar in infants. This diseaseprevents reaching enough sugar to the child’s brain and causes lifelong and permanent damage. This study aims to investigate genebiomarkers in congenital hyperinsulinism. In this study, after reviewing the texts and searching for the bioinformatics databases of NCBI,Genecards, Swiss-prot, Diseasome, etc., the genes involved in the disease based on at least one of the methods in-vivo, in-vitro, and insilicohas been extracted as candidate genes. The expression data obtained from each group was standardized compared to the controlgroup to compare the results in case and control groups. Then, the connection network of expression data of candidate genes in patientsand healthy people were drawn separately with the help of MATLAB software (Version 9.1), and the correctness of these networks anddetermined biomarkers were checked using the rectome and diseasome database. All statistical calculations were done using R and Matlabsoftware. In the present study, the essential genes of CHI disease were identified using 5 central criteria, including maximum neighborhoodcomponent, degree, closeness, radiality, and betweeness. Based on the results of the central criteria method, INS-PRKACA-PRKACBPRKACG-AKT1 genes had the most repetitions. According to the identification of the most effective genes related to CHI disease in thepresent study, it is suggested that further studies need to be designed at the in vitro and clinical levels on the identified effective genes asdiagnostic biomarkers of CHI disease.
References
Arnoux JB, de Lonlay P, Ribeiro MJ, Hussain K, Blankenstein O, Mohnike K, Nihoul-Fékété, C. Congenital hyperinsulinism. Early human development. 2010; 86(5):287-94. https://doi.org/10.1016/j.earlhumdev.2010.05.003
Thornton PS, Stanley CA, De Leon DD. Congenital hyperinsulinism: A historical perspective. Hormone research in pediatrics. 2022; 95(6):631-7. https://doi.org/10.1159/000526442
Banerjee I, Raskin J, Arnoux JB, De Leon DD, Weinzimer SA, Hammer M, Thornton PS. Congenital hyperinsulinism in infancy and childhood: challenges, unmet needs and the perspective of patients and families. Orphanet journal of rare diseases. 2022; 17(1):1-12. https://doi.org/10.1186/s13023-022-02214-y
Whipple AO, Frantz VK. Adenoma of islet cells with hyperinsulinism: A Review. Ann Surg. 1935; 101(6):1299–335. https://doi.org/10.1097/00000658-193506000-00001
Hewat TI, Johnson MB, Flanagan SE. Congenital hyperinsulinism: current laboratory-based approaches to the genetic diagnosis of a heterogeneous disease. Frontiers in Endocrinology. 2022; 13(1):873254. https://doi.org/10.3389/fendo.2022.873254
Belabed W, Mnif F, Missaoui AM, Elleuch M, Charfi N, Mejdoub N, Abid M. Endogenous hyperinsulinemic hypoglycemia: A retrospective analysis of 10 cases. Pituitary and Neuroendocrinology. 2023; 90(1): EP733. https://doi.org/10.1530/endoabs.90.EP733
De Visschere PJL, Seynaeve P, Vanrietvelde F, Senepart M. Brain injury due to persistent hyperinsulinemic hypoglycemia of infancy. European Journal of Radiology Extra. 2007; 62(2):35-8. https://doi.org/10.1016/j.ejrex.2007.01.005
Al-Nassar S, Sakati N, Al-Ashwal A, Bin-Abbas B. Persistent hyperinsulinaemic hypoglycemia of infancy in 43 children: long-term clinical and surgical follow-up. Asian J Surg. 2006; 29(3):207-11. https://doi.org/10.1016/S1015-9584(09)60089-0
Bayat Mokhtari M, Raeis Sadat MA, Masoumian M, Vakili R. Persistent hyperinsulinemic hypoglycemia of infancy (PHHI). Med Sci J Islamic Azad University of Mashhad. 2005; 1(3):62-5.
Mosavati SM, Ahmadi J, Kalantari M. Nearly total pancreatectomy in hypoglycemic patients resistant to medical treatment. Iran J Pediatr. 1994; 5(20):287-93.
Zumkeller W. Nesidioblastosis. Endocr Relat Cancer. 1999; 6(3):421-8.
Arnoux JB, de Lonlay P, Ribeiro MJ, Hussain K, Blankenstein O, Mohnike, K, Nihoul-Fékété, C. Congenital hyperinsulinism. Early human development. 2010; 86(5):287-94. https://doi.org/10.1016/j.earlhumdev.2010.05.003
Anyaso-Samuel S, Sachdeva A, Guha S, Datta S. Bioinformatics Pre-Processing of Microbiome Data with An Application to Metagenomic Forensics. Statistical Analysis of Microbiome Data. 2021; 1(1):45-78. https://doi.org/10.1007/978-3-030-73351-3_3
Liu YY, Harbison S. A Review of bioinformatic methods for forensic DNA analyses. Forensic Science International: Genetics. 2018; 33(1):117-28. https://doi.org/10.1016/j.fsigen.2017.12.005
Muntaha ST, Hasnain MJU, Khan WA, Rafiq F, Pervez MT. Role of bioinformatics in forensic science. FUUAST Journal of Biology. 2018; 8(1):133-8.
Fakiha BS. Bioinformatics as a forensic tool in coronavirus outbreak. Journal of Indian Academy of Forensic Medicine. 2020; 42(3):219-23. https://doi.org/10.5958/0974-0848.2020.00057.3
Havasian MR, Panahi J, Khosravi A. Correlation between the lipid and cytokine profiles in patients with coronary heart disease (CHD)(Review article). Life Science Journal. 2012; 9(4):5772-77.
Havasian MR, Panahi J, Mahdieh N. Cystic fibrosis and distribution and mutation analysis of CFTR gene in Iranian patients. Koomesh. 2014; 15(4):431-40.
Wright JJ, Williams JM, Letourneau-Freiberg LR, Kandasamy B, Reyes D, Kanegusuku AG, Moore DJ. Insulin Deficiency From Insulin Gene Mutation Leads to Smaller Pancreas. Diabetes Care. 2023; 46(4):773-6. https://doi.org/10.2337/dc22-2082
Jiajue RZ, Xiao C, Liu YW, Li R, Zhang HB, Yu M. Diagnosis, treatment and genetic analysis of two cases of congenital hyperinsulinemic hypoglycemia caused by GCK gene mutation. Yi Chuan. 2022; 44(11):1056-62. https://doi.org/10.16288/j.yczz.22-226
Giri D, Hawton K, Senniappan S. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management. Journal of Pediatric Endocrinology and Metabolism. 2022; 35(3):279-96. https://doi.org/10.1515/jpem-2021-0369
Worth C, Yau D, Salomon Estebanez M, O'Shea E, Cosgrove K, Dunne M, Banerjee I. Complexities in managing hypoglycemia due to congenital hyperinsulinism. Clinical endocrinology. 2020; 92(5):387-95. https://doi.org/10.1111/cen.14152
Demirbilek H, Hussain K. Congenital Hyperinsulinism: Diagnosis and Treatment Update. J Clin Res Pediatr Endocrinol. 2017; 9(Suppl2):69-87. https://doi.org/10.4274/jcrpe.2017.S007
Milstein JL, Ferris HA. The brain is an insulin-sensitive metabolic organ. Molecular Metabolism. 2021; 52(1):101234. https://doi.org/10.1016/j.molmet.2021.101234
Lewitt MS, Boyd GW. The role of insulin-like growth factors and insulin-like growth factor–binding proteins in the nervous system. Biochemistry insights. 2019; 12(1): 1178626419842176. https://doi.org/10.1177/11786264198421
Hewat TI, Johnson MB, Flanagan SE. Congenital hyperinsulinism: current laboratory-based approaches to the genetic diagnosis of a heterogeneous disease. Frontiers in Endocrinology. 2022; 13, 873254. https://doi.org/10.3389/fendo.2022.873254
Banerjee I, Avatapalle B, Petkar A, Skae M, Padilla R, Ehtisham S. The association of cardiac ventricular hypertrophy with congenital hyperinsulinism. Eur J Endocrinol. 2012; 167(5):619-24. https://doi.org/10.1530/EJE-12-0632
Karamafrooz A, Brennan J, Thomas DD, Parker LL. Integrated Phosphoproteomics for Identifying Substrates of Human Protein Kinase A (PRKACA) and Its Oncogenic Mutant DNAJB 1–PRKACA. Journal of proteome research. 2021; 20(10):4815-30. https://doi.org/10.1021/acs.jproteome.1c00500
Taylor SS, Wallbott M, Machal EM, Søberg K, Ahmed F, Bruystens J, Skålhegg BS. PKA Cβ: a forgotten catalytic subunit of cAMP-dependent protein kinase opens new windows for PKA signaling and disease pathologies. Biochemical Journal. 2021; 478(11):2101-19. https://doi.org/10.1042/BCJ20200867
Chen Y, Huang L, Dong Y, Tao C, Zhang R, Shao H, Shen H. Effect of AKT1 (p. E17K) hotspot mutation on malignant tumorigenesis and prognosis. Frontiers in Cell and Developmental Biology. 2020; 8(1):573599. https://doi.org/10.3389/fcell.2020.573599
Oktelik FB, Yilmaz V, Turkoglu R, Akbayir E, Tuzun E, Deniz G, Cinar S. Expression of Akt1 and p-Akt1 in peripheral T cell subsets of multiple sclerosis patients. Acta Neurologica Belgica. 2021; 121(1):1777-82. https://doi.org/10.1007/s13760-020-01518-9.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Reza Valizadeh, Hossein Seidkhani, Zahra Mohebinejad, Forouzan Kavarizadeh, Abbass Arefipour

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

