Novel Approaches to Enhance Solubility Medicine

Pharmaceutical sciences- Industrial pharmacy

Authors

  • Anurag Kumar Yadav University Institute of Pharma Sciences, Chandigarh University, Mohali Panjab, India. 140413 https://orcid.org/0009-0008-9418-6075
  • Harsh Kumar Pandey University Institute of Pharma Sciences, Chandigarh University, Mohali Panjab, India. 140413
  • Aditya Shiven University Institute of Pharma Sciences, Chandigarh University, Mohali Panjab, India. 140413

DOI:

https://doi.org/10.22376/ijlpr.2023.13.6.P217-P233

Keywords:

Liquisolid system, coating material, non-volatile solvents, carrier material, surfactant, solubilization/solubilityenhancement

Abstract

The solubility enhancement of poorly aqueous soluble drugs presents a significant challenge in pharmaceuticalformulation. Liquisolid technology, also known as powdered solution technology, has emerged as a promising approach toenhance the solubility and bioavailability of such drugs. This paper provides a detailed discussion of the novel approachesemployed within the framework of Liquisolid technology to overcome solubility limitations. The study explores the principles,advantages, and applications of Liquisolid technology in drug formulation, highlighting its potential to revolutionize oralmedication delivery. This research aims to investigate the effectiveness of Liquisolid technology in enhancing drug solubility,elucidate its underlying mechanisms, and evaluate its impact on drug dissolution, bioavailability, and therapeutic outcomes. Theobjectives are to review the background and challenges associated with poor solubility of drugs, introduce the concept ofLiquisolid technology and its principles, discuss the advantages and benefits of Liquisolid technology in solubility enhancement,explore the formulation strategies and key components involved in Liquisolid formulations, evaluate the in vitro and in vivoperformance of Liquisolid systems, and identify future research directions and potential applications of Liquisolid technology inpharmaceutical development. Through this comprehensive analysis, the study aims to provide valuable insights into the novelapproaches based on Liquisolid technology for enhancing drug solubility, facilitating the development of effective and efficientdrug delivery systems. Liquisolid technology, a novel approach to solubility enhancement, offers promising advantages overconventional techniques. It involves solubilizing poorly aqueous soluble drugs using surfactants, then incorporating thesesolubilized drugs into a carrier system or powdered solution. The powdered solution facilitates the conversion of the solubilizeddrug into solid residues, which can be further processed into different dosage forms.

References

Maleki A, Kettiger H, Schoubben A, Rosenholm JM, Ambrogi V, Hamidi M. Mesoporous silica materials: from physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J Control Release. 2017;262:329-47. doi: 10.1016/j.jconrel.2017.07.047, PMID 28778479.

Bhattachar SN, et al. Solubility enhancement techniques of poorly water-soluble drugs: a review. Int J Pharm Sci Res. 2019;10(1):49-62. doi: 10.13040/IJPSR.0975-8232.10(1).49-62.

Spireas S, Bolton J. Liquisolid systems: a review of recent developments. J Pharm Pharmacol. 1999 May;51(5):385-97. doi: 10.1211/0022357991772431.

Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high-dose water-insoluble drug (carbamazepine). Int J Pharm. 2007 April 20;341(1-2):26-34. doi: 10.1016/j.ijpharm.2007.03.034, PMID 17498898.

Javadzadeh Y, Siahi-Shadbad MR, Barzegar-Jalali M, Nokhodchi A. Enhancement of dissolution rate of piroxicam using liquisolid compacts. Farmaco. 2005;60(4):361-5. doi: 10.1016/j.farmac.2004.09.005, PMID 15848213.

Javadzadeh Y, Musaalrezaei L, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2008;362(1-2):172-7. doi: 10.1016/j.ijpharm.2008.06.024.

Javadzadeh Y, Musaalrezaei L, Nokhodchi A, Ford JL. The effect of physical properties of carrier and coating materials on the dissolution profile of a poorly soluble drug (indomethacin) from liquisolid compacts. J Pharm Pharmacol. 2007;59(8):1047-55. doi: 10.1211/jpp.59.8.0011.

Spireas S. Liquisolid systems and methods of preparing same. US Patent no. 6,410,059; 2002.

Gupta P, Kesarla R, Chotai N, Misra A. Methods and strategies for solubility enhancement of poorly soluble drugs. Int J Pharm Sci Nanotechnol. 2017;10(4):3574-91.

Patel A, Vavia P, Bansal A. Formulation development and systematic optimization of solid self-emulsifying drug delivery system of efavirenz for enhanced solubility and dissolution. Drug Dev Ind Pharm. 2011;37(4):444-55.

Date AA, Nagarsenker MS, Patere S. Aqueous solubility of poorly water-soluble drugs: Part 1. W/O microemulsion technique. Drug Dev Ind Pharm. 2008;34(5):524-32.

Guo C, Quan P, Fang L, Wu Z, Pan X. The enhanced oral bioavailability of sorafenib by self-micro emulsifying drug delivery systems: in vitro and in vivo evaluation. Int J Pharm. 2016;515(1-2):1-10.

Jain S, Jain A. K, & Shukla, S.S. Drug Discov Today. 2014. Delivery of liposomes to the gastrointestinal tract;19(6):789-97.

Sareen S, Kumar S. Formulation development and optimization of self-Nano emulsifying drug delivery system (SNEDDS) of atorvastatin calcium by Box-Behnken design. J Pharm Investig. 2013;43(6):551-63. doi: 10.1007/s40005-013-0089-9.

Tran PH, Tran TT, Lee BJ. Soft gelatin capsules: an overview. Int J Pharm. 2017, 530(1-2):450-3. doi: 10.1016/j.ijpharm.2017.06.031.

Spireas S, Bolton S. Liquisolid systems: a review of recent research. Powder Technol. 2007;172(3):153-63. doi: 10.1016/j.powtec.2006.09.005.

Vuddanda PR, Chauhan S. Improved dissolution and bioavailability of piroxicam using liquisolid compacts. Eur J Pharm Biopharm. 2011;78(3):441-7. doi: 10.1016/j.ejpb.2010.12.022.

Saharan V, Kukkar V, Kataria M, Gera M, Choudhury P. Dissolution enhancement of drugs. Part I: technologies and effect of carriers. Int J Health Res. 2009;2(2):107-24. doi: 10.4314/ijhr.v2i2.55401.

Saharan V, Kukka V, Kataria M, Gera M, Choudhury P. Dissolution enhancement of drugs. Part II: effect of carriers. Int J Health Res. 2009;2(3):207-23. doi: 10.4314/ijhr.v2i3.47904.

Javadzadeh Y, Siahi-Shadbad MR, Barzegar-Jalali M, Nokhodchi A. Enhancement of dissolution rate of piroxicam using liquisolid compacts. Farmaco. 2005;60(4):361-5. doi: 10.1016/j.farmac.2004.09.005, PMID 15848213.

Javadzadeh Y, Musaalrezaei L, Nokhodchi A. Liquisolid technique as a new approach to sustain propranolol hydrochloride release from tablet matrices. Int J Pharm. 2008;362(1-2):102-8. doi: 10.1016/j.ijpharm.2008.06.022, PMID 18647643.

Javadzadeh Y, Sheikh Hassan I, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2005;305(1-2):120-9. doi: 10.1016/j.ijpharm.2005.08.012.

Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv. 1975;50(11):613-20. doi: 10.1016/s0031-6865(00)85101-6.

Spireas S, Bolton S. Liquisolid systems: a review of recent research. Powder Technol. 2007;172(3):153-63. doi: 10.1016/j.powtec.2006.09.005.

Gubbi SR, Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J Pharm Sci. 2010;5(2):156-66.

div class "csl-entry" Zhang, Xing H, Zhao Y, Zhao Y, Ma Z, &38; Ma, Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics/I. 2018;10(3). doi: 10.3390/pharmaceutics10030074, PMID 29937483.

Li X, Wei X, Ran Y. Liquisolid technique as a novel approach to enhance solubility and bioavailability of poorly water-soluble drugs. J Nanomater. 2018;2018:1-13. doi: 10.1155/2018/9041325.

Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2007;341(1-2):(26-34). doi: 10.1016/j.ijpharm.2007.03.034, PMID 17498898.

Shah DA, Baviskar DT, Singh KK. Liquisolid technique: an emerging platform for bioavailability enhancement of poorly soluble drugs. J Drug Deliv Sci Technol. 2019;52:802-9. doi: 10.1016/j.jddst.2019.04.032.

Yadav AV, Shete AS. A review on liquisolid technology. Int J Pharm Sci Res. 2016;7(8):3077-88. doi: 10.13040/IJPSR.0975-8232.7(8).3077-88.

Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front Pharmacol (Vol. 8, Issue MAY). 2017;8:261. doi: 10.3389/fphar.2017.00261, PMID 28559844.

Nokhodchi A, Hentzschel CM, Leopold CS. Drug release from liquisolid systems: speed it up, slow it down. Expert Opin Drug Deliv. 2011;8(2):191-205. doi: 10.1517/17425247.2011.548801, PMID 21222556.

Al-St aidan SM, Hassan MA, Alanazi FK, Abdelrahman A. Enhancement of dissolution and bioavailability of simvastatin using liquisolid compact technique. Saudi Pharm J. 2018;26(7):1043-51.

Khames A, Fawaz S, Abdelaziz A. E, Gebrael, T, & Khaled, K.A. Drug Dev Ind Pharm. 2019. Liquisolid technique for improving the dissolution and bioavailability of ibuprofen: In-vitro and in-vivo evaluation;45(3):437-48.

Kulkarni AS, Betageri GV, Dalrymple DM. Taste masking of azithromycin using the liquisolid technique. Int J Pharm. 2019;559:130-8.

Jain P, Vora N, Patel V, Shah A. Liquisolid technique: A new approach for sustained release of metoprolol succinate. AAPS PharmSciTech. 2020;21(6):227.

Patel HR, Patel RP, Patel MR, Thakkar HP, Soni TG. Liquisolid technique for conversion of liquid self-emulsifying drug delivery system into solid dosage form. J Drug Deliv Sci Technol. 2017;39:131-9.

Javadzadeh Y, Siahi MR, Asnaashari S, Nokhodchi A. Liquisolid technique as a tool for enhancement of poorly water-soluble drugs and evaluation of their physicochemical properties. Acta Pharm. 2007;57(1):99-109. doi: 10.2478/v10007-007-0008-6, PMID 19839410.

Patel HM, Patel HK, Patel KK. Liquisolid technique for enhancement of solubility and bioavailability of poorly soluble drugs: a review. Int J Pharm Sci Res. 2019;10(4):1551-66. doi: 10.13040/IJPSR.0975-8232.10(4).1551-66.

Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv. 1972;47(10).

Panda S, Varaprasad R, Priyanka K, Swain RP. Liquisolid technique: A novel approach for dosage form design. Int J Appl Pharm. 2017;9(3). doi: 10.22159/ijap.2017v9i3.18698.

Kulkarni AS, Wairkar S, Sakhare S, Chaudhari P. Liquisolid technology for solubility and bioavailability enhancement of BCS class II drugs: a review. J Appl Pharm Sci. 2016;6(6):156-62. doi: 10.7324/JAPS.2016.60525.

Lu M, Xing H, Jiang J, Chen X, Yang T, Wang D et al. Liquisolid technique and its applications in pharmaceutics. Asian J Pharm Sci. 2017;12(2):115-23. doi: 10.1016/j.ajps.2016.09.007, PMID 32104320.

Javadzadeh Y, Musaalrezaei L, Nokhodchi A. Int J Pharm. 2008;362(1-2):10-5. doi: 10.1016/j.ijpharm.2008.05.007.

Fahmy RH, Kassem MA. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2008;69(3):993-1003. doi: 10.1016/j.ejpb.2008.02.017, PMID 18396390.

Saharan VA, Kukkar V, Kataria M, Gera M, Choudhury PK. Dissolution enhancement of drugs. Part I: Technologies and effect of carriers. Int J Health Res. 2009;2(2). doi: 10.4314/ijhr.v2i2.55401.

Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2007;341(1-2):26-34. doi: 10.1016/j.ijpharm.2007.03.034, PMID 17498898.

Javadzadeh Y, Musaalrezaei L, Nokhodchi A, Rafiee-Tehrani M. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2010;389(1-2):1-7. doi: 10.1016/j.ijpharm.2010.01.015.

Ruiz-Hernández E, Baeza A, Vallet-Regí M. Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano. 2011;5(2):1259-66. doi: 10.1021/nn1029229, PMID 21250653.

Mellaerts R, Mols R, Jammaer J. A, Aerts, C. A, Annaert, P, Van Humbeeck, J, & Augustijns, P. (2008). Increasing the dissolution rate and oral bioavailability of poorly water-soluble drugs by spray-drying onto lactose monohydrate. European Journal of Pharmaceutical Sciences, 35(3), 145-151.https://doi.org/10.1016/j.ejps.2008.07.003.

Verma RK, Yadav AV, Garg S, Singh SK. Enhancement of dissolution rate of a poorly water-soluble drug by liquisolid technique. J Chem Pharm Res. 2015;7(6):720-7. doi: 10.1016/j.ejps.2008.07.003.

Bhatt P, Madan P, Lin S. Formulation and evaluation of sustained release matrix tablet of tramadol hydrochloride using Eudragit RS 100 and Eudragit RL 100. J Drug Deliv Sci Technol. 2017;40:187-94. doi: 10.1016/j.jddst.2017.06.003.

Chavan RB, Chaudhari PD. Formulation and evaluation of tramadol hydrochloride sustained release tablets using hydrophilic and hydrophobic polymer matrix system. J Pharm Res. 2012;5(3):1468-72. doi: 10.1016/j.jopr.2012.01.034.

Jadhav PB, Aher HR. Formulation and evaluation of sustained-release matrix tablets of zidovudine using natural and synthetic polymers. Int J Pharm Sci Res. 2012;3(8):2728-35. doi: 10.13040/IJPSR.0975-8232.3.2728-35.

Kumar V, Dhawan S. Formulation and evaluation of sustained release matrix tablet of losartan potassium using hydrophilic and hydrophobic polymer matrix system. Int J Pharm Pharm Sci. 2014. doi: 10.13040/IJPSR.0975-8232.6.391-95.

Ofori-Kwakye K, Mfoafo KA, Kipo SL, Kuntworbe N, el Boakye-Gyasi ME. Development and evaluation of natural gum-based extended-release matrix tablets of two model drugs of different water solubilities by direct compression. Saudi Pharm J. 2016;24(1):82-91. doi: 10.1016/j.jsps.2015.03.005, PMID 26903772.

Tayel SA, Soliman II, Louis D. Improvement of dissolution properties of carbamazepine through the application of the liquisolid tablet technique. Eur J Pharm Biopharm. 2008;69(1):342-7. doi: 10.1016/j.ejpb.2007.09.003, PMID 17949959.

Chang RK, Guo X, Burnside BA, Couch RA. Fast-dissolving tablets. Pharm Technol. 2000;24(6).

Gubbi SR, Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J Pharm Sci. 2010;5(2).

Sharma RK, Sharma V. Formulation and evaluation of fast-dissolving tablets of loratadine using different super disintegrants. Int J Pharm Sci Res. 2013. doi: 10.13040/IJPSR.0975-8232.4(6).2356-63.

Spireas S. Liquisolid systems, and methods of preparing same. US Patent 5,858,412; 1999.

Javadzadeh Y, Siahi MR, Asnaashari S, Nokhodchi A. Liquisolid technique as a tool for enhancement of poorly water-soluble drugs and evaluation of their physicochemical properties. Acta Pharm. 2007;57(1):99-109. doi: 10.2478/v10007-007-0008-6, PMID 19839410.

Saeedi M, Akbari Javar H, Ghanbarzadeh S. Liquisolid technology: an innovative approach to enhance solubility and bio-avail water-soluble only soluble drugs. Asian J Pharm. 2017;11:S301-9. doi: 10.22377/ajp.v11i0.583.

Patel RB, Patel MR, Patel JK, Patel BG. Liquisolid technology for enhancement of solubility and bioavailability of poorly water-soluble drugs: a review. Int J Pharm Sci Res. 2012;3(11):4249-60. doi: 10.13040/IJPSR.0975-8232.3(11).4249-60.

Habib M, Khankari R. Hontz J. SEDDS: a comprehensive review on self-emulsifying drug delivery systems. Int J Pharm Sci Res. 2012;3(8):2330-43. doi: 10.13040/IJPSR.0975-8232.3(8).2330-43.

Chella N, Kandukuri SA, Bandi S, et al. Formulation and evaluation of liquisolid compacts of poorly water-soluble drug valsartan. Saudi Pharm J. 2013;21(4):397-405. doi: 10.1016/j.jsps.2012.11.010.

Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20. doi: 10.1023/A:1016212804288, PMID 7617530.

Javadzadeh Y, et al. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2010, 389(1-2):1-7. doi: 10.1016/j.ijpharm.2008.05.015.

Javadzadeh Y, et al. Optimization of controlled release valsartan liquisolid compacts using response surface methodology. Powder Technol. 2012;225:117-24. doi: 10.1016/j.powtec.2012.02.035.

Khames A, et al. Liquisolid compacts: an updated review. J Pharm Res Int. 2021;32(24):71-84. doi: 10.9734/JPRI/2021/v32i2430832.

Spireas S; 2002. Liquisolid systems and methods of preparing same. US Patent 6,410,059.

Vasconcelos T, et al. Development and optimization of controlled-release nicardipine hydrochloride liquisolid compacts. Eur J Pharm Biopharm. 2007;65(3):369-77. doi: 10.1016/j.ejpb.2006.11.008.

Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.

Ghadiri M, Brown M, Seville JPK. The determination of the angle of repose of powders from first principles. Powder Technol. 1997;92(3):151-60. doi: 10.1016/S0032-5910(97)03131-1.

Javadzadeh Y, Nokhodchi A. Liquisolid technique as a new approach to sustain propranolol hydrochloride release from tablet matrices. Eur J Pharm Biopharm. 2011;77(3):350-7. doi: 10.1016/j.ejpb.2010.11.003.

Vidyadhara S, Rao KP. Liquisolid compacts: an approach to enhance the solubility of poorly soluble drugs. J Adv Pharm Technol Res. 2013;4(4):157-65. doi: 10.4103/2231-4040.121407.

Craig DQ, Royall PG. The relevance of the liquisolid technique in the manufacture of tablets: an overview. Pharm Dev Technol. 2014;19(3):209-13. doi: 10.3109/10837450.2013.770316.

Heng PW, Wan LS. Process parameter optimization in pharmaceutical manufacturing. In: Quality by design for biopharmaceuticals (page no. 211-232 ISBN: 9780470259666.). John Wiley & Sons; 2009.

Kataria R, Garg S. Process optimization in pharmaceutical manufacturing. In: Process optimization in pharmaceutical industry (page no. 1-17). Springer; 2017. doi: 10.1007/978-981-10-4279-9_1.

Soh JH, Kim DS. Liquid hold up and pressure drop in packed beds for chromatographic separation of proteins. J Chromatogr A. 2018;1544:15-25. doi: 10.1016/j.chroma.2018.02.038.

Mazzotti M, Morbidelli M. Liquid hold up and pressure drop in packed columns with deformable packing materials. Chem Eng Sci. 2006;61(9):2927-36. doi: 10.1016/j.ces.2005.11.056.

Zhang H, Wang L, Qiao Y, Yang Y. Formulation and evaluation of taste-masked orally disintegrating tablets of clarithromycin using ion exchange resins and super disintegrants. AAPS PharmSciTech. 2014;15(3):600-8. doi: 10.1208/s12249-014-0062-1.

Song SH, Kim SJ, Park YJ, Shin SC, Choi JH. Powdered drug suspension formulation for improved solubility and stability of poorly water-soluble drugs. Arch Pharm Res. 2010;33(10):1559-66. doi: 10.1007/s12272-010-1004-1.

Verma S, Fahr A. The particle size of liposomes influences the dermal delivery of substances into the skin. Int J Pharm. 2004;269(2):529-37. doi: 10.1016/j.ijpharm.2003.09.029.

Bhushan R, Rani R. Recent trends in suspension dosage form-a review. J Appl Pharm Sci. 2012;2(5):1-7. https://Doi:/10.7324/JAPS.2012.2527.

DailyMed. Amoxicillin. United States National Library of Medicine; 2021. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=78ce2078-a8b1-4a2a-80c7-60b9e0f7c6e2.

DailyMed. Ibuprofen. United States National Library of Medicine; 2021. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=88e609f0-1ec9-48c6-b813-50fbd5456410.

DailyMed. Loratadine. United States National Library of Medicine; 2022. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=3b3da7da-5b9d-43c3-8723-fa81db1f90b1.

DailyMed. Risperidone. United States National Library of Medicine; 2022. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=fa6f8966-99e1-43b2-8d05-127b82d1ab88.

DailyMed. Metformin. United States National Library of Medicine; 2021. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=790d4a7c-e4c5-4f5c-b3d3-622de1d9a855.

DailyMed. Fluoxetine. United States National Library of Medicine; 2021. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a7e6fde6-44b9-441d-aa19-3a3b28e3b73e.

Zhang L, Xia W. Advances in sustained-release drug delivery systems. J Control Release. 2017;228:216-27. doi: 10.1016/j.jconrel.2016.12.019.

Liu M, Zhang Y, Xia W. Progress and challenges in chitosan-based drug delivery systems. J Control Release. 2021;330:207-24. doi: 10.1016/j.jconrel.2020.11.040.

Le THV, Tran TH. Enhancing solubility and bioavailability of drugs: a review of methods and challenges. Asian J Pharm Sci. 2019;14(3):225-38. doi: 10.1016/j.ajps.2018.07.003.

Kadam V, Rajput P. Surfactants in drug delivery: A comprehensive review. J Pharm Sci. 2020;109(5):2895-922. doi: 10.1016/j.xphs.2020.02.001.

Zaid AN, El-Sayed SA. Formulation and development of pediatric liquid dosage forms. J Pharm Investig. 2020;50(2):171-84. doi: 10.1007/s40005-019-00464-4.

Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20, doi: 10.1023/a:1016212804288, PMID 7617530.

Javadzadeh Y, Barzegar-Jalali M. Liquisolid technique as a new approach to enhancement of drug solubility and bioavailability. Asian J Pharm. 2010;4(2):85-94. https://Doi:10.4103/0973-8398.62894.

Vuddanda PR, Chakraborty M, Singh S. K, & Singh, S. J Pharm Pharm Sci. 2016. Liquisolid technique for dissolution rate enhancement of poorly water-soluble drugs: review article;19(5):557-74. https://Doi: 10.18433/J3QW2W.

Abdelbary GA, Fahmy RH. A review of the liquid-solid technology. Int J Pharm. 2015;478(1):44-64. https://Doi: 10.1016/j.ijpharm.2014.11.017.

El-Badry M, Fetih G, Abd El-Salam R, Ghorab M. Formulation and evaluation of sustained-release liquisolid tablets of raloxifene hydrochloride. J Drug Deliv Sci Technol. 2017;39:123-32. https://Doi: 10.1016/j.jddst.2017.03.013.

Pradhan R, Singh A, Singh S, Singh IP. Cosolvents in drug delivery systems. Int J Res Pharm Pharm Sci. 2016;1(2):20-7.

Sathish D, Gupta S, Bansal P. Surfactants: pharmaceutical and biomedical applications. J Adv Pharm Technol Res. 2017;8(2):19-27. Doi: doi. doi: 10.4103/japtr.JAPTR_107_16.

Elkomy MH, El Menshawe SF, El-Milligi MF. Liquisolid technique as a tool for improvement of ibuprofen dissolution rate. Int J Pharm. 2016;500(1-2):410-9. doi: 10.1016/j.ijpharm.2016.01.024.

Patil PM, Shinde VK, Pokharkar VB. Liquisolid compact: a novel technique to improve solubility and dissolution rate of poorly soluble drug amitriptyline hydrochloride. J Drug Deliv Sci Technol. 2019;49:465-74. doi: 10.1016/j.jddst.2018.11.020.

Khan S, et al. Liquisolid technique: a review. J Pharm Pharm Sci. 2012;15(2):223-35. doi: 10.18433/J3KW2D.

Javadzadeh Y, et al. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2007;341(1-2):26-34

DOI 89. doi: 10.1016/j.ijpharm.2007.04.034.

Vuddanda PR, et al. Development and evaluation of liquisolid compacts of naproxen for improved dissolution. Drug Dev Ind Pharm. 2010;36(10):1225-34. DOI : 90. doi: 10.3109/03639041003657294.

Aulton ME, Taylor K. Aulton's pharmaceutics: the design and manufacture of medicines. Elsevier Health Sciences; 2013.

Kassem MA, Abd El-Alim SH, El-Menshawe SF, et al. Liquisolid technique for improvement of the dissolution rate of risperidone. Eur J Pharm Biopharm. 2012;82(1):30-8. doi: 10.1016/j.ejpb.2012.05.003.

Jagtap RS, Pekamwar SS, Bothara KG. Development of lapatinib liquisolid compacts using microcrystalline cellulose as a carrier. Int J Pharm Investig. 2012;2(1):35-42. https://Doi: 10.4103/2230-973x.96988.

Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high-dose water-insoluble drug (carbamazepine). Int J Pharm. 2007;341(1-2):26-34. https://Doi: 10.1016/j.ijpharm.2007.03.001. doi: 10.1016/j.ijpharm.2007.03.034, PMID 17498898.

Gao P, Rush BD, Pfund WP. et al. Development of a Nano-liquisolid technique to improve the dissolution of poorly soluble drugs. Pharm Res. 2003;20(3):1-7. https://Doi: 10.1023/A:1022898425016.

Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. J Pharm Sci. 1972;61(5):676-8.

Spireas S; 2002. Liquisolid systems and methods of preparing same. US Patent 6,423,333. Vol. B1.

Elkordy AA, Tan C, Essa EA. Liquisolid technique to enhance drug dissolution and permeability: a review of patents from 2008 to 2018. Expert Opin Ther Pat. 2019;29(8):625-42. https://DOI: 10.1080/13543776.2019.1639781.

Laxmi BS, Reddy SR. Formulation and evaluation of liquisolid compacts of valsartan. Int J Pharm Sci Res. 2012;3(7):2195-8. https://DOI: 10.13040/IJPSR.0975-8232.3(7).2195-98.

Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27(1):48-9. https://Doi: 10.1111/j.2042-7158.1975.tb09101.x. doi: 10.1111/j.2042-7158.1975.tb09378.x, PMID 23765040.

Spireas S, Bolton J. Liquisolid systems: a review of recent research. Powder Technol. 1999;114(3):245-58. https://Doi: 10.1016/s0032-5910(00)00317-1.

Shokri J, Barzegar-Jalali M, Nokhodchi A. Liquisolid technique as a new approach to sustain propranolol hydrochloride release from tablet matrices. J Control Release. 2005;110(2):296-306.

Patel RB, Patel MM, Patel JK. Evaluation of the angle of repose of different grades of microcrystalline cellulose, lactose, and mannitol and comparison with bulk density and compressibility index. J Young Pharm. 2013;5(1):7-12. doi: 10.1016/j.jyp.2012.12.002.

Tsai PJ, Lin YF. The effects of particle shape and size on the angle of repose of granular materials. Powder Technol. 2018;332:224-31. This study investigates the effect of particle shape and size on the angle of repose of granular materials. doi: 10.1016/j.powtec.2018.04.020.

Yadav AV, Yadav VB. Powder flowability: an overview. Asian J Pharm. 2012;6(1):1-6. This review article provides an overview of various methods used to measure powder flowability, including the angle of repose. doi: 10.4103/0973-8398.92310.

Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;72(1):163-8. doi: 10.1016/S0009-2509(00)90235-6.

Ghadiri M, et al. Powder technology – handling and operations, process instrumentation, and working hazards. Kirk Othmer Encycl Chem Technol. ISBN: 978-0-470-54083-8. 2012:1-49.

United States Pharmacopeia (USP). 44-NF;39, General Chapters <616> Bulk Density and Tapped Density of Powders.

Hausner H. Friction conditions in a mass of metal powder. Int J Powder Metall. 1967;3(1):7-13.

Mohan AB, Abraham TE, Aravind R. Effect of particle size on the compressibility index and the angle of repose of lactose powders. Int J Pharm Pharm Sci. 2011;3(1):116-20. doi: 10.7897/2230-8407.03119.

Mohsin K, Aslani P. The effect of particle size on the flowability of powders. Powder Technol. 2010;198(2):219-27. doi: 10.1016/j.powtec.2009.11.005.

United States Pharmacopeia (USP). 44-NF;39, General Chapters <616> Bulk Density and Tapped Density of Powders.

Hausner H. Friction conditions in a mass of metal powder. Int J Powder Metall. 1967;3(1):7-13. doi: 10.1179/002072967790275117.

United States Pharmacopeia (USP) General Chapter <905> Uniformity of Dosage Units.

United States Pharmacopeia (USP) General Chapter <1217> Tablet Breaking Force.

United States Pharmacopeia (USP) General Chapter <1216> Tablet Friability.

United States Pharmacopeia (USP) General Chapter <711> Dissolution.

Indian pharmacopoeia; 2018.

Hussain A, Samad A, Singh SK, Ahsan MN. Modified liquisolid compacts using hydrophobic carriers for improved controlled release characteristics of a water-soluble drug. Chem Pharm Bull. 2010;58(2):211-7. doi: 10.1248/cpb.58.211.

Javadzadeh Y, Hamishehkar H. The liquisolid technique for drug delivery systems: an update. Drug Dev Ind Pharm. 2012;38(9):971-89. https://DOI: 10.3109/03639045.2011.644552.

Kulkarni PR, Yadav JD. Formulation and evaluation of sustained release floating liquisolid tablets of aceclofenac. Int J Res Pharm Sci. 2018;9;Special Issue 2:1-7. https://DOI: 10.26452/ijrps.v9iS.1406.

Published

2023-11-01

How to Cite

Kumar Yadav, A. ., Pandey, H. K. ., & Shiven, A. . (2023). Novel Approaches to Enhance Solubility Medicine: Pharmaceutical sciences- Industrial pharmacy. International Journal of Life Science and Pharma Research, 13(6), P217-P233. https://doi.org/10.22376/ijlpr.2023.13.6.P217-P233

Issue

Section

Review Articles