Eco-Friendly Synthesis of Pyrrolo[1,2-A] Quinoline Derivatives and Evaluating Their Effects On Hypertension, Inflammation, And Docking Studies

Pharmaceutical sciences- Chemistry

Authors

  • Pramod Patil Department of Chemistry, Rani Channamma University, Belagavi, Karnataka, India- 591156.
  • Basavaraj Padmashal Department of Chemistry, Rani Channamma University, Belagavi, Karnataka, India- 591156.
  • Vijayakumar Uppar Honeychem Pharma Research Pvt. LTD., Peenya Industrial Estate, Bangalore, Karnataka, India- 560058.
  • Pavankumar H Department of Chemistry, KLE’s P.C. Jabin Science College, Hubballi-580031, Karnataka, India

DOI:

https://doi.org/10.22376/ijlpr.2023.13.6.P127-P140

Keywords:

Anti-inflammatory, Chronic inflammation, Coxibs, Rofecoxib, Eco-friendly method, Gastrointestinal.

Abstract

Chronic inflammation diseases are a major cause of death worldwide, including heart diseases, kidney diseases, and liverdiseases. Researchers are working on developing effective anti-inflammatory drugs. COX-2 inhibitors like coxibs were developed toreduce gastrointestinal side effects but were later withdrawn due to cardiovascular events. The need for safer coxibs and a betterunderstanding of COX-1 and COX-2 in cardiovascular diseases and stroke is necessary. Chronic inflammation can last for months oryears, and its effects vary depending on the underlying cause and the body's ability to repair damage. On the other hand, hypertension isa major cause of global mortality, mortality for 12.8% of annual deaths. The number of adults with hypertension has almost doubled to1.28 billion, with the greatest increase in low- and middle-income countries, particularly sub-Saharan Africa, where 120 million people mayhave hypertension. This poses a significant challenge for the region in therapeutic development. In this study, by an eco-friendly method,we have synthesized pyrrolo[1,2-a]quinoline derivatives for anti-inflammatory activity along with its molecular docking and antihypertension activity. Green chemistry in organic synthesis has become a major focus in recent decades, to develop more environmentallyfriendly methods. Green chemistry has a significant focus in organic synthesis over the past few decades. Two key principles are "safersolvents" and "energy efficiency” reducing hazardous solvents, and minimizing energy consumption. The synthesis of pyrrolo[1,2-a]quinoline derivatives was obtained by a one-pot reaction in which 4-methylquinoline was treated with substituent phenacyl bromidesand two different alkynes respectively, in the presence of TEA (triethylamine) with the addition of a minimal amount of acetonitrile as asolvent. The moieties 2a, 3b, and 3a showed the highest inhibitory capacity against reference standard ibuprofen in anti-inflammatoryactivity, along with their molecular docking study of these compounds displayed better (-3.5) to good (-9.2) docking score within thebinding pocket towards crystal structure derivative. Derivative 3b has shown significant inhibition at 100 µg in anti-hypertensive activity.

References

Spargo P. Green chemistry, an introductory text by Mike Lancaster. Cambridge: Royal Society of Chemistry, ISBN 0-85404-620-8; 2002. p. 310.

Macquarrie DJ, Clark JH, editors. Handbook of green chemistry and technology. Blackwell Science; 2002.

Haswell SJ, Kingston HM. Microwave-enhanced chemistry: fundamentals, sample preparation, and applications. American Chemical Society; 1997.

Spargo P. Microwaves in organic synthesis Loupy A, editor. Vol. 159. Weinheim: Wiley-VCH Press; 2002. p. 499.

Hayes BL. Microwave synthesis: chemistry at the speed of light. Chem Corporation; 2002.

Tierney J, Lidström P, editors. Microwave assisted organic synthesis. John Wiley & Sons; 2009.

Kappe CO, Stadler A, Dallinger D. Microwaves in organic and medicinal chemistry. John Wiley & Sons; 2012.

Larhed M, Olofsson K, editors. Microwave methods in organic synthesis. Springer; 2006.

Kappe CO. Controlled microwave heating in modern organic synthesis. AngewChemInt Ed Engl. 2004;43(46):6250-84. doi: 10.1002/anie.200400655, PMID 15558676.

De la Hoz A, Díaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. ChemSoc Rev. 2005;34(2):164-78. doi: 10.1039/b411438h, PMID 15672180.

De la Hoz A, Díaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. ChemSoc Rev. 2005;34(2):164-78. doi: 10.1039/b411438h, PMID 15672180.

Loupy A, de la Hoz A, editors. Microwaves in organic synthesis. John Wiley & Sons; 2013. p. 26.

Kuhnert N. Microwave‐assisted reactions in organic synthesis—are there any nonthermal microwave effects? AngewChemInt Ed Engl. 2002;41(11):1863-6. doi: 10.1002/1521-3773(20020603)41:11<1863::aid-anie1863>3.0.co;2-l, PMID 19750616.

Dallinger D, Kappe CO. Microwave-assisted synthesis in water as solvent. Chem Rev. 2007;107(6):2563-91. doi: 10.1021/cr0509410, PMID 17451275.

Mont N, Fernández‐Megido L, Teixidó J, Kappe CO, Borrell JI. A Diversity-Oriented, Microwave-Assisted Synthesis of 4-oxo and 4-chloropyrido[2,3- d]pyrimidin-7(8 H)-ones. QSAR Comb Sci. 2004;23(10):836-49. doi: 10.1002/qsar.200420033.

Stadler A, Kappe CO. The effect of microwave irradiation on carbodiimide-mediated esterifications on solid support. Tetrahedron. 2001;57(18):3915-20. doi: 10.1016/S0040-4020(01)00260-5.

Benakki H, Colacino E, André C, Guenoun F, Martinez J, Lamaty F. Microwave-assisted multi-step synthesis of novel pyrrolo-[3, 2-c] quinoline derivatives. Tetrahedron. 2008;64(25):5949-55. doi: 10.1016/j.tet.2008.04.034.

Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L et al. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986;27(3):279-82. doi: 10.1016/S0040-4039(00)83996-9.

Giguere RJ, Bray TL, Duncan SM, Majetich G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett. 1986;27(41):4945-8. doi: 10.1016/S0040-4039(00)85103-5.

Gabriel C, Gabriel S, H. Grant E, H. Grant E, S. J. Halstead B, Michael P. Mingos D. Dielectric parameters relevant to microwave dielectric heating. ChemSoc Rev. 1998;27(3):213-24. doi: 10.1039/a827213z.

Georgescu E, Georgescu F, Dumitrascu F, Draghici C, Nicolescu A, Marinescu D et al. Microwave-assisted multicomponent synthesis of benzo[f]pyrrolo [1,2-a]quinoline derivatives. Rev RoumChim. 2020;65(1):91-102. doi: 10.33224/rrch/2020.65.1.11.

Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517(7534):293-301. doi: 10.1038/nature14189, PMID 25592534.

Isailovic N, Daigo K, Mantovani A, Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. 2015;60:1-11. doi: 10.1016/j.jaut.2015.04.006, PMID 25998834.

Pedraza‐Alva G, Pérez‐Martínez L, Valdez‐Hernández L, Meza‐Sosa KF, Ando‐Kuri M. Negative regulation of the inflammasome: keeping inflammation under control. Immunol Rev. 2015;265(1):231-57. doi: 10.1111/imr.12294, PMID 25879297.

Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González‐Gallego J. A review of the molecular aspects of melatonin’s anti‐inflammatory actions: recent insights and new perspectives. J Pineal Res. 2013;54(1):1-14. doi: 10.1111/j.1600-079X.2012.01014.x, PMID 22725668.

Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules. 2016;21(10):1321. doi: 10.3390/molecules21101321, PMID 27706084.

Muchowski JM, Unger SH, Ackrell J, Cheung P, Cooper GF, Cook J et al. Synthesis and antiinflammatory and analgesic activity of 5-aroyl-1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1-carboxylic acids and related compounds. J Med Chem. 1985;28(8):1037-49. doi: 10.1021/jm00146a011, PMID 4020827.

Welstead Jr WJ, Moran HW, Stauffer HF, Turnbull LB, Sancilio LF. Antiinflammatory agents. 1. Synthesis and antiinflammatory activity of 2-amino-3-benzoylphenylacetic acid. J Med Chem. 1979;22(9):1074-9. doi: 10.1021/jm00195a012, PMID 490552.

Walsh DA, Moran HW, Shamblee DA, Uwaydah IM, Welstead Jr WJ, Sancilio LF et al. Anti-inflammatory agents. 3. Synthesis and pharmacological evaluation of 2-amino-3-benzoylphenylacetic acid and analogs. J Med Chem. 1984;11:1379-88.

Ruiz J, López M, Milà J, Lozoya E, Lozano JJ, Pouplana R. QSAR and conformational analysis of the antiinflammatory agent amfenac and analogues. J Comput Aided Mol Des. 1993;7(2):183-98. doi: 10.1007/BF00126444, PMID 8320556.

Walsh DA, Moran HW, Shamblee DA, Welstead Jr WJ, Nolan JC, Sancilio LF et al. Anti-inflammatory agents. 4. Syntheses and biological evaluation of potential pro-drugs of 2-amino-3-benzoylbenzeneacetic acid and 2-amino-3-(4-chlorobenzoyl) benzeneacetic acid. J Med Chem. 1999;33(18):2296-304.

Uppar V, Chandrashekharappa S, Mohan MK, Basarikattia AI, Rachotimath BB, Chougala M et al. Synthesis and characterization of indolizine and 5,6-benzo-fused indolizine derivatives with their pharmacological applications. Chem Data Coll. 2020;29:100524. doi: 10.1016/j.cdc.2020.100524.

Glamkowski EJ, Reitano PA, Woodward DL. Synthesis and evaluation of 3-substituted 1-[4-(2-indol-3-ylethyl)piperazinyl]ureas as potential antihypertensive agents. J Pharm Sci. 1978;67(12):1773-4. doi: 10.1002/jps.2600671240, PMID 722502.

Ludden CT, Scriabine A, Ulm EH, Morgan G, Fisher MH, Ruyle WV. Antihypertensive activity of some novel pyridinylidenearylurea derivatives in spontaneously hypertensive rats. Experientia. 1979;35(6):799-801. doi: 10.1007/BF01968258, PMID 467597.

Tilley JW, Levitan P, Kierstead RW, Cohen M. Antihypertensive (2-aminoethyl)thiourea derivatives. 1. J Med Chem. 1980;23(12):1387-92. doi: 10.1021/jm00186a019, PMID 7452693.

Vajragupta O, Pathomsakul A, Matayatsuk C, Ruangreangyingyod L, Wongkrajang Y, Foye WO. Synthesis and antihypertensive activity of N-(alkyl/alkenyl/aryl)-N-heterocyclic ureas and thioureas. J Pharm Sci. 1996;85(3):258-61. doi: 10.1021/js930295x, PMID 8699324.

Sandeep C, Padmashali B, Kulkarni RS, Mallikarjuna SM, Siddesh MB, Nagesh HK et al. Synthesis of substituted 5-acetyl-3-benzoylindolizine-1-carboxylate from substituted 2-acetyl pyridinium bromides, Heterocycl. Lett. 2014;4:371-6.

Sandeep C, Padmashali B, Venugopala KN, Kulkarni RS, Venugopala R, Odhav B. Synthesis and Characterization of Ethyl 7-Acetyl-2-substituted 3-(substituted benzoyl)indolizine-1-carboxylates for in vitro Anticancer Activity. Asian J Chem. 2016;28(5):1043-8. doi: 10.14233/ajchem.2016.19582.

Venugopala KN, Uppar V, Chandrashekharappa S, Abdallah HH, Pillay M, Deb PK et al. Cytotoxicity and Antimycobacterial Properties of Pyrrolo[1,2-a]quinoline Derivatives: Molecular Target Identification and Molecular Docking Studies. Antibiotics (Basel). 2020;9(5):233. doi: 10.3390/antibiotics9050233, PMID 32392709.

Uppar V, Basarikatti AI, Padmashali B, Chandrashekharappa S, Chougala M, Mudnakudu-Nagaraju KK et al. Synthesis, anti-bacterial and Antioxidant Properties of ethyl 7-amino-3-benzoyl-2-methylindolizine-1-carboxylate derivatives. AIP Conf Proc. 2020, (Vol. 2274, No. 1, p. 050015). doi: 10.1063/5.0022905.

Dubé D, Blouin M, Brideau C, Chan CC, Desmarais S, Ethier D et al. Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746,530. Bioorg Med Chem Lett. 1998;8(10):1255-60. doi: 10.1016/s0960-894x(98)00201-7, PMID 9871745.

Testa ML, Lamartina L, Mingoia F. A new entry to the substituted pyrrolo[3,2-c]quinoline derivatives of biological interest by intramolecular heteroannulation of internal imines. Tetrahedron. 2004;60(28):5873-80. doi: 10.1016/j.tet.2004.05.047.

Martins C, Carreiras MC, León R, De Los Ríos C, Bartolini M, Andrisano V et al. Synthesis and biological assessment of diversely substituted furo[2,3-b]quinolin-4-amine and pyrrolo[2,3-b]quinolin-4-amine derivatives, as novel tacrine analogues. Eur J Med Chem. 2011;46(12):6119-30. doi: 10.1016/j.ejmech.2011.09.038, PMID 22000936.

Su B, Cai C, Deng M, Liang D, Wang L, Wang Q. Design, synthesis, antiviral activity, and SARs of 13a-substituted phenanthroindolizidine alkaloid derivatives. Bioorg Med Chem Lett. 2014;24(13):2881-4. doi: 10.1016/j.bmcl.2014.04.101, PMID 24835986.

Wang RF, Yang XW, Ma CM, Cai SQ, Li JN, Shoyama Y. A bioactive alkaloid from the flowers of Trolliuschinensis. Heterocycles-Sendai institute of heterocyclic chemistry. 2004;63(6):1443-8.

Maryanoff BE, Vaught JL, Shank RP, McComsey DF, Costanzo MJ, Nortey SO. Pyrroloisoquinoline antidepressants. 3. A focus on serotonin. J Med Chem. 1990;33(10):2793-7. doi: 10.1021/jm00172a018, PMID 2213832.

Martins C, Carreiras MC, León R, De Los Ríos C, Bartolini M, Andrisano V et al. Synthesis and biological assessment of diversely substituted furo[2,3-b]quinolin-4-amine and pyrrolo[2,3-b]quinolin-4-amine derivatives, as novel tacrine analogues. Eur J Med Chem. 2011;46(12):6119-30. doi: 10.1016/j.ejmech.2011.09.038, PMID 22000936.

Pandey AK, Kashyap PP, Kaur CD. Anti-inflammatory activity of novel Schiff bases by in vitro models. Bangladesh J Pharmacol. 2017;12(1):41-3. doi: 10.3329/bjp.v12i1.29675.

Narramore S, Stevenson CEM, Maxwell A, Lawson DM, Fishwick CWG. New insights into the binding mode of pyridine-3-carboxamide inhibitors of E. coli DNA gyrase. Bioorg Med Chem. 2019;27(16):3546-50. doi: 10.1016/j.bmc.2019.06.015, PMID 31257079.

Trott O, Olson AJ. AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. doi: 10.1002/jcc.21334, PMID 19499576.

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDockVina 1.2.0: New docking methods, expanded force field, and python bindings. J ChemInf Model. 2021;61(8):3891-8. doi: 10.1021/acs.jcim.1c00203, PMID 34278794.

Ochieng PJ, Sumaryada T, Okun D. Molecular docking and pharmacokinetic prediction of herbal derivatives as maltase-glucoamylase inhibitor. Asian J Pharm Clin Res. 2017;10(9):392-98. doi: 10.22159/ajpcr.2017.v10i9.19337.

BIOVIA DS. BIOVIA Discovery Studio academic research suite. [San Diego, Dassaultsystèmes]; 2021.

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33, PMID 21982300.

Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57-61. PMID 10660911.

Palomer A, Cabré F, Pascual J, Campos J, Trujillo MA, Entrena A et al. Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J Med Chem. 2002;45(7):1402-11. doi: 10.1021/jm010458r, PMID 11906281.

Kumara HK, Suhas R, SuyogaVardhan DM, Shobha M, Channe Gowda D. A correlation study of biological activity and molecular docking of Asp and Glu linked bis-hydrazones of quinazolinones. RSC Adv. 2018;8(19):10644-53. doi: 10.1039/c8ra00531a, PMID 35540474.

Jimsheena VK, Gowda LR. Colorimetric, high-throughput assay for screening angiotensin I-converting enzyme inhibitors. Anal Chem. 2009;81(22):9388-94. doi: 10.1021/ac901775h, PMID 19839596.

Hooper NM, Turner AJ. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J. 1987;241(3):625-33. doi: 10.1042/bj2410625, PMID 2439065.

Zhou YM, Wei Y, Yang J, Li HH, Liu MD, Huang NY. Synthesis and In Vitro Anti-Inflammatory Activity of Pyrrolo[1,2-A]pyrazines via Pd-Catalyzed Intermolecular Cyclization Reaction, Trans Tech Publications Ltd. AMR. 2014;830:115-8. doi: 10.4028/www.scientific.net/AMR.830.115.

Stavytskyi V, Antypenko O, Nosulenko I, Berest G, Voskoboinik O, Kovalenko S. Substituted 3-R-2,8-dioxo-7,8-dihydro-2H-pyrrolo[1,2-a][1,2,4] triazino [2,3-c]quinazoline-5a(6H)carboxylic Acids and their Salts – a Promising Class of Anti-inflammatory Agents. AntiinflammAntiallergy Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents). 2021;20(1):75-88. doi: 10.2174/1871523019666200505073232, PMID 32368980.

Omar YM, Abdu-Allah HHM, Abdel-Moty SG. Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as anti-inflammatory agents with dual inhibition of COX-2 and 15-LOX. Bioorg Chem. 2018;80:461-71. doi: 10.1016/j.bioorg.2018.06.036, PMID 29986191.

Sun XY, Wei CX, Chai KY, Piao HR, Quan ZS. Synthesis and anti‐inflammatory Activity Evaluation of Novel 7‐Alkoxy‐1‐amino‐4, 5‐dihydro [1, 2, 4] triazole [4, 3‐a] quinolines, Archiv der Pharmazie an International. J Pharm Med Chem. 2008;341(5):288-93.

Tilley JW, Ramuz H, Hefti F, Gerold M. Antihypertensive (2-aminoethyl)thiourea derivatives. 2. J Med Chem. 1980;23(12):1438-9. doi: 10.1021/jm00186a027, PMID 6779010.

Vajragupta O, Pathomsakul A, Matayatsuk C, Ruangreangyingyod L, Wongkrajang Y, Foye WO. Synthesis and antihypertensive activity of N-(alkyl/alkenyl/aryl)-N-heterocyclic ureas and thioureas. J Pharm Sci. 1996;85(3):258-61. doi: 10.1021/js930295x, PMID 8699324.

Campbell SF, Hardstone JD, Palmer MJ. 2,4-Diamino-6,7-dimethoxyquinoline derivatives as alpha 1-adrenoceptor antagonists and antihypertensive agents. J Med Chem. 1988;31(5):1031-5. doi: 10.1021/jm00400a025, PMID 2896245.

Ozaki K, Yamada Y, Oine T. Studies on 4 (1H)-quinazolinones. IV. Convenient Synth of. 1984;32(6), 2160-4:12-Methyl-6H-isoquino [2, 1-a] quinazolin-6-one and 6-Methyl-13H-quinazolino [3, 4-a] quinazolin-13-one. Chemical and pharmaceutical bulletin.

Ashwood VA, Cassidy F, Coldwell MC, Evans JM, Hamilton TC, Howlett DR et al. Synthesis and antihypertensive activity of 4-(substituted-carbonylamino)-2H-1-benzopyrans. J Med Chem. 1990;33(9):2667-72. doi: 10.1021/jm00171a051, PMID 2391705.

Laddha SS, Wadodkar SG, Meghal SK. Studies on some biologically active substituted 4 (3H)-quinazolinones. Part 1. Synth Char Anti-Inflamm-Antimicrob Act of. 2006;6, 8-disubstituted 2-phenyl-3-[substituted-benzothiazol-2-yl]-4 (3H)-quinazolinones, Arkivoc:1, 11, 1-20.

Wakitani K, Nanayama T, Masaki M, Matsushita M. Profile of JTE-522 as a human cyclooxygenase-2 inhibitor. Jpn J Pharmacol. 1998;78(3):365-71. doi: 10.1254/jjp.78.365, PMID 9869271.

Jessy EM, Sambanthan AT, Alex J, Sridevi CH, Srinivasan KK. Synthesis and biological evaluation of some novel quinazolones. Indian J Pharm Sci. 2007;69(3):476. doi: 10.4103/0250-474X.34571.

Singh GB, Nityanand S, Srimal RC, Rao VA, Jain PC, Dhawan BN. Antihypertensive and central nervous system depressant properties of 3-(γ-p-fluorobenzoyl propyl). Experientia. 1973, 1529-30;2(3), 4, 4a, 5:6-hexahydro-1 (H)-pyrazino (1, 2-a) quinoline hydrochloride (compound 69-183, centpyraquin).

Chen YL, Chen IL, Lu CM, Tzeng CC, Tsao LT, Wang JP. Synthesis and anti-inflammatory evaluation of 9-phenoxyacridine and 4-phenoxyfuro[2,3-b]quinoline derivatives. Part 2. Bioorg Med Chem. 2003;11(18):3921-7. doi: 10.1016/s0968-0896(03)00439-5, PMID 12927852.

Bawa S, Kumar S. Synthesis of Schiff’s bases of 8-methyl-tetrazolo [1, 5-a] quinoline as potential anti-inflammatory and antimicrobial agents. Indian J Chem. 2009;48B:142-5.

Khalifa NM, Al-Omar MA, AbdEl-Galil AA, Abd El-Reheem M. Anti-inflammatory and analgesic activities of some novel carboxamides derived from 2-phenyl quinoline candidates. Biomed Res. 2017;28(2):869-74.

Mohassab AM, Hassan HA, Abdelhamid D, Abdel-Aziz M, Dalby KN, Kaoud TS. Novel quinoline incorporating 1,2,4-triazole/oxime hybrids: Synthesis, molecular docking, anti-inflammatory, COX inhibition, ulceroginicity, and histopathological investigations. Bioorg Chem. 2017;75:242-59. doi: 10.1016/j.bioorg.2017.09.018, PMID 29032325.

Published

2023-11-01

How to Cite

Patil, P. ., Padmashal, B. ., Uppar, V. ., & H, P. (2023). Eco-Friendly Synthesis of Pyrrolo[1,2-A] Quinoline Derivatives and Evaluating Their Effects On Hypertension, Inflammation, And Docking Studies: Pharmaceutical sciences- Chemistry. International Journal of Life Science and Pharma Research, 13(6), P127-P140. https://doi.org/10.22376/ijlpr.2023.13.6.P127-P140

Issue

Section

Research Articles