Increasing Efficiency of Transdermal Drug Delivery Systems Using Some Novel Penetration Enhancement Techniques - A Critical Review
Pharmaceutical sciences- Pharmaceutical technology
DOI:
https://doi.org/10.22376/ijlpr.2023.13.6.P51-P77Keywords:
Transdermal delivery system, Nano-carriers, Microneedles, Wearable transdermal drug delivery, Sonophoresis, Penetrationenhancement techniqueAbstract
The transdermal route has drawn considerable attention and has emerged as a solid alternative to mimic the drawbacks of drugdelivery through the oral and parenteral routes. However, the effectiveness of TDDS is often limited by the skin's outermost layer, the stratumcorneum (SC), which acts as a barrier to drug diffusion. In addition, the drug molecule's molecular weight, hydrophilicity, and ionic nature canalso impact its transdermal delivery. Various methods have been developed to overcome these limitations to facilitate drug penetration acrossthe SC, including nano-carriers, wearable delivery systems, and combination-based approaches. The use of nano-carriers, such as dendrimers,liposomes, niosomes, and micro sponges, has shown promise in enhancing the efficacy of TDDS. Another emerging innovation for TDDS iswearable delivery systems, which offer non-invasive, convenient, and extended drug administration. Additionally, combination-based approaches,such as ultrasound and microneedle-based systems or ultrasound and electrical-based techniques, are also being investigated and are the centerof attraction in the research of TDDS approaches. This review summarizes a combination of all different novel penetration enhancementtechniques used to enhance the efficacy of transdermal drug delivery systems that were not precisely captured by other review articles. Most ofthe review articles emphasized these penetration enhancement techniques separately. However, a careful review of all the penetrationenhancement techniques in one article is missing. Thus, the purpose of this article is to comprehensively review and summarize the recentlyused penetration enhancement techniques along with the possible mechanism of action in a single article. Our primary aim is to collect relevantreviews and research articles by searching various databases to provide a comprehensive overview of the field. By providing a comprehensiveoverview of the available techniques, this review article will help students and researchers stay up-to-date with the latest developments in thefield of novel penetration enhancement techniques used to increase the efficiency of TDDS.
References
Mitragotri S. Breaking the skin barrier. Adv Drug Deliv Rev. 2004;56(5):555-6. doi: 10.1016/j.addr.2003.10.022, PMID 15019744.
Liao AH, Ho HC, Lin YC, Chen HK, Wang CH. Effects of Microbubble Size on Ultrasound-Induced Transdermal Delivery of High-Molecular-Weight Drugs. PLOS ONE. 2015;10(9):e0138500. doi: 10.1371/journal.pone.0138500, PMID 26390051.
Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11(3):393-407. doi: 10.1517/17425247.2014.875528, PMID 24392787.
Choi A, Gang H, Chun I, Gwak H. The effects of fatty acids in propylene glycol on the percutaneous absorption of alendronate across the excised hairless mouse skin. Int J Pharm. 2008;357(1-2):126-31. doi: 10.1016/j.ijpharm.2008.01.050, PMID 18329198.
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-8. doi: 10.1038/nbt.1504, PMID 18997767.
Gong S, Cheng W. One-dimensional nanomaterials for soft electronics. Adv Electron Mater. 2017;3(3):1600314. doi: 10.1002/aelm.201600314.
Liu YF, Huang P, Li YQ, Liu Q, Tao JK, Xiong DJ, et al. A biomimetic multifunctional electronic hair sensor. J Mater Chem A. 2019;7(4):1889-96. doi: 10.1039/C8TA10750E.
Li C, Zhang D, Deng C, Wang P, Hu Y, Bin Y, et al. High performance strain sensor based on buckypaper for full-range detection of human motions. Nanoscale. 2018;10(31):14966-75. doi: 10.1039/c8nr02196a, PMID 30047969.
Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: a Review. Adv Funct Mater. 2016;26(11):1678-98. doi: 10.1002/adfm.201504755.
Takei K, Honda W, Harada S, Arie T, Akita S. Toward flexible and wearable human-interactive health-monitoring devices. Adv Healthc Mater. 2015;4(4):487-500. doi: 10.1002/adhm.201400546, PMID 25425072.
Trung TQ, Lee NE. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv Mater. 2016;28(22):4338-72. doi: 10.1002/adma.201504244, PMID 26840387.
Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv Mater. 2016;28(22):4203-18. doi: 10.1002/adma.201504150, PMID 26779680.
Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng. 2016;2(1):1-9.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torre LS et al. Nano based drug delivery systems: recent developments and future prospects. J Nanotechnol. 2018; 16(71):1-33.
Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115-24. doi: 10.1038/nrd1304, PMID 15040576.
Chandrashekar NS, Shobha Rani RH. Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian J Pharm Sci. 2008;70(1):94-6. doi: 10.4103/0250-474X.40340, PMID 20390089.
Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and transdermal drug delivery: from simple options to smart technologies. Curr Drug Deliv. 2019;16(5):444-60. doi: 10.2174/1567201816666190201143457, PMID 30714524.
Rabiei M, Kashanian S, Samavati SS, Jamasb S, McInnes SJP. Nanomaterial and advanced technologies in transdermal drug delivery. J of Drug Tar. 2019:1-12.
Park D, Park H, Seo J, Lee S. Sonophoresis in transdermal drug deliveries. Ultrasonics. 2014;54(1):56-65. doi: 10.1016/j.ultras.2013.07.007, PMID 23899825.
Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application tothe transdermal delivery of macromoleculesand hydrophilic drugs. Expert Opin Drug Deliv. 2010;7(12):1415-32. doi: 10.1517/17425247.2010.538679, PMID 21118031.
Madison KC. Barrier function of the skin: ”la râison d’être” of the epidermis. J Invest Dermatol. 2003;121(2):231-41. doi: 10.1046/j.1523-1747.2003.12359.x, PMID 12880413.
Brenden CQS, Boon MT. Recent advances in ultrasound-based transdermal drug delivery. Int J of Nano Med. 2018;13:7749-63.
kumar A M, Lee J, Iida Y, Yasui K, Kozuka T, Tuziuti T, et al. Spatial distribution of acoustic cavitation bubbles at different ultrasoundfrequencies. Chem Phys Chem. 2010; 11(8):1680-4.
Tezel A, Sens A, Tuchscherer J, Mitragotri S. Synergistic effect of low-frequencyultrasound and surfactants on skinpermeability. J Pharm Sci. 2002;91(1):91-100. doi: 10.1002/jps.10000, PMID 11782900.
Kushner IV J, Kim D, So PT, Blankschtein D, Langer RS. Dual-channel two-photon microscopystudy of transdermal transport in skintreated with low-frequency ultrasoundand a chemical enhancer. J Investig Dermatol. 2007;127:2832-46.
Kushner J, Blankschtein D, Langer R. Evaluation of hydrophilic permeanttransport parameters in the localized andnon-localized transport regions of skintreated simultaneously with low-frequency ultrasound and sodium lauryl sulfate. J Pharm Sci. 2007;97(2):906-18.
Rao R, Nanda S. Sonophoresis: recent advancements and future trends. J Pharm Pharmacol. 2009;61(6):689-705. doi: 10.1211/jpp.61.06.0001, PMID 19505359.
Feiszthuber H, Bhatnagar S, Gyöngy M, Coussios CC. Cavitation- enhanced delivery of insulin in agar and porcine models of human skin. Phys Med Biol. 2015;60(6):2421-34. doi: 10.1088/0031-9155/60/6/2421, PMID 25716689.
Chiang B, Venugopal N, Edelhauser HF, Prausnitz MR. Distribution of particles, small molecules and polymeric formulation excipients in the suprachoroidal space after microneedle injection. Exp Eye Res. 2016;153:101-9. doi: 10.1016/j.exer.2016.10.011, PMID 27742547.
Raphael AP, Crichton ML, Falconer RJ, Meliga S, Chen X, Fernando GJ, et al. Formulations for microprojection/microneedle vaccine delivery: structure, strength and release profiles. J Control Release. 2016;225:40-52. doi: 10.1016/j.jconrel.2016.01.027, PMID 26795684.
Prausnitz MR, Gomaa Y, Li W. Microneedle patch drug delivery in the gut. Nat Med. 2019;25(10):1471-2. doi: 10.1038/s41591-019-0606-0, PMID 31591600.
Jung S, Lee H, Li S. A study on the effect of Spirulina-containing cosmetics using microneedle. Journal of the Korea Academia-Industrial Cooperation Society. 2017;18(6):269-76.
Du G, Hathout RM, Nasr M, Nejadnik MR, Tu J, Koning RI, et al. Intradermal vaccination with hollow microneedles: a comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control Release. 2017;266:109-18. doi: 10.1016/j.jconrel.2017.09.021, PMID 28943194.
Pires LR, Vinayakumar KB, Turos M, Miguel V, Gaspar J. A perspective on microneedle-based drug delivery and diagnostics in paediatrics. J Pers Med. 2019;9(4):49. doi: 10.3390/jpm9040049, PMID 31731656.
Brown S, Zambrana PN, Ge X, Bagdure D, Stinchcomb AL, Rao G, et al. Minimally invasive technique for measuring transdermal glucose with a fluorescent biosensor. Anal Bioanal Chem. 2018;410(27):7249-60. doi: 10.1007/s00216-018-1336-8, PMID 30171282.
Nagarkar R, Singh M, Nguyen HX, Jonnalagadda S. A review of recent advances in Microneedle technology for transdermal drug delivery. J Drug Deliv Sci Technol. 2020;59:101923. doi: 10.1016/j.jddst.2020.101923.
Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581-7. doi: 10.1016/j.addr.2003.10.023, PMID 15019747.
Indermun S, Luttge R, Choonara YE, Kumar P, Du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130-8. doi: 10.1016/j.jconrel.2014.04.052, PMID 24806483.
Park JH, Choi SO, Seo S, Choy YB, Prausnitz MR. A microneedle roller for transdermaldrug delivery. Eur J Pharm Biopharm. 2010;76(2):282-9. doi: 10.1016/j.ejpb.2010.07.001, PMID 20624460.
Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther. 2009;11(6):329-37. doi: 10.1089/dia.2008.0103, PMID 19459760.
Zhu Q, Zarnitsyn VG, Ye L, Wen Z, Gao Y, Pan L, et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci U S A. 2009;106(19):7968-73. doi: 10.1073/pnas.0812652106, PMID 19416832.
Lee K, Lee CY, Jung H. Dissolvingmicroneedles for transdermal drug administration prepared by stepwisecontrolled drawing of maltose. Biomaterials. 2011;32(11):3134-40. doi: 10.1016/j.biomaterials.2011.01.014, PMID 21292317.
Boks MA, Unger WW, Engels S, Ambrosini M, van Kooyk Y, Luttge R. Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int J Pharm. 2015;491(1-2):375-83. doi: 10.1016/j.ijpharm.2015.06.025, PMID 26116016.
McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA. 2003;100(24):13755-60. doi: 10.1073/pnas.2331316100.
Stahl J, Wohlert M, Kietzmann M. Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points. BMC Pharmacol Toxicol. 2012;13(1):5. doi: 10.1186/2050-6511-13-5, PMID 22947102.
Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004;97(3):503-11. doi: 10.1016/j.jconrel.2004.04.003, PMID 15212882.
Garland MJ, Migalska K, Tuan-Mahmood TM, Raghu Raj Singh TR, Majithija R, Caffarel-Salvador E, et al. Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. Int J Pharm. 2012;434(1-2):80-9. doi: 10.1016/j.ijpharm.2012.05.069, PMID 22669101.
Roxhed N, Samel B, Nordquist L, Griss P, Stemme G. Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Bio Med Eng. 2008;55(3):1063-71. doi: 10.1109/TBME.2007.906492, PMID 18334398.
Zhu Q, Zarnitsyn VG, Ye L, Wen Z, Gao Y, Pan L, et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci U S A. 2009;106(19):7968-73. doi: 10.1073/pnas.0812652106, PMID 19416832.
Morefield GL, Tammariello RF, Purcell BK, Worsham PL, Chapman J, Smith LA, et al. An alternative approach to combination vaccines: intradermal administration of isolated components for control of anthrax, botulism, plague and staphylococcal toxic shock. J Immune Based Ther Vaccines. 2008;6(1):5. doi: 10.1186/1476-8518-6-5, PMID 18768085.
Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D, et al. Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88-103. doi: 10.1016/j.ejpb.2018.05.017, PMID 29800617.
Ma X, Peng W, Su W, Yi Z, Chen G, Chen X, et al. Delicate assembly of ultrathin hydroxy apatite nanobelts with nanoneedles directed by dissolved cellulose. Inorg Chem. 2018;57(8):4516-23. doi: 10.1021/acs.inorgchem.8b00275, PMID 29613774.
Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922-5. doi: 10.1021/js980042+, PMID 9687334.
Kigasawa K, Kajimoto K, Nakamura T, Hama S, Kanamura K, Harashima H, et al. Noninvasive and efficienttransdermal delivery of CpG-oligodeoxynucleotide for cancerimmunotherapy. J Control Release. 2011;150(3):256-65. doi: 10.1016/j.jconrel.2011.01.018, PMID 21256903.
Herr NR, Kile BM, Carelli RM, Wightman RM. Electro osmotic flow and its contributionto iontophoretic delivery. Anal Chem. 2008;80(22):8635-41. doi: 10.1021/ac801547a, PMID 18947198.
Dubey S, Kalia YN. Non-invasive iontophoretic delivery of enzymatically active ribonuclease A (13.6 kDa) across intact porcine and human skins. J Control Release. 2010;145(3):203-9. doi: 10.1016/j.jconrel.2010.04.020, PMID 20423719.
Eriksson F, Tötterman T, Maltais AK, Pisa P, Yachnin J. DNA vaccine coding for the rhesusprostate specific antigen delivered byintradermal electroporation in patients with relapsed prostate cancer. Vaccine. 2013;31(37):3843-8. doi: 10.1016/j.vaccine.2013.06.063, PMID 23831327.
Denet AR, Vanbever R, Préat V. Skinelectroporation. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56(5):659-74. doi: 10.1016/j.addr.2003.10.027, PMID 15019751.
Sammeta SM, Vaka SR, Murthy SN. Transcutaneous electroporation mediated delivery of doxepin-HPCD complex: a sustained release approach for treatment of post herpetic neuralgia. J Control Release. 2010;142(3):361-7. doi: 10.1016/j.jconrel.2009.10.036, PMID 19922748.
Zorec B, Becker S, Reberšek M, Miklavčič D, Pavšelj N. Skin electroporation for transdermal drugdelivery: the influence of the order ofdifferent square wave electric pulses. Int J Pharm. 2013;457(1):214-23. doi: 10.1016/j.ijpharm.2013.09.020, PMID 24076397.
Pliquett UF, Gusbeth CA, Weaver JC. Non-linearity of molecular transportthrough human skin due to electricstimulus. J Control Release. 2000;68(3):373-86. doi: 10.1016/s0168-3659(00)00271-6, PMID 10974391.
Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438-70. doi: 10.3390/pharmaceutics7040438, PMID 26506371.
Ritesh K, Anil P. Modified transdermal technologies: breaking the barriers of drug permeation via the skin. Tro J Pha Res. 2007;6(1):633-44.
Chen B, Wei J, Iliescu C. Sonophoretic enhanced microneedles array (SEMA)- improving the efficiency of transdermal drug delivery. Sens Actuators B. 2010;145(1):54-60. doi: 10.1016/j.snb.2009.11.013.
Yoon J, Park D, Son T, Seo J, Nelson JS, Jung B. A physicalmethod to enhance transdermal deliveryof a tissue optical clearing agent:combination of microneedling andsonophoresis. Lasers Surg Med. 2010;42(5):412-7. doi: 10.1002/lsm.20930, PMID 20583247.
Han T, Das DB. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J Pharm Sci. 2013;102(10):3614-22. doi: 10.1002/jps.23662, PMID 23873449.
Nayak A, Babla H, Han T, Das DB. Lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel delivery by combined microneedle and ultrasound. Drug Deliv. 2016;23(2):658-69. doi: 10.3109/10717544.2014.935985, PMID 25034877.
Petchsangsai M, Rojanarata T, Opanasopit P, Ngawhirunpat T. The Combination of microneedles with electroporation and sonophoresis to enhance hydrophilic macromolecule skin penetration. Biol Pharm Bull. 2014;37(8):1373-82. doi: 10.1248/bpb.b14-00321, PMID 24931312.
Singh ND, Banga AK. Controlleddelivery of ropinirole hydrochloridethrough skin using modulatediontophoresis and microneedles. J Drug Target. 2013;21(4):354-66. doi: 10.3109/1061186X.2012.757768, PMID 23311703.
Pawar KR, Smith F, Kolli CS, Babu RJ. Effect of lipophilicity on microneedle-mediated iontophoretic transdermaldelivery across human skin in vitro. J Pharm Sci. 2013;102(10):3784-91. doi: 10.1002/jps.23694, PMID 23955316.
Vemulapalli V, Yang Y, Friden PM, Banga AK. Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. J Pharm Pharmacol. 2008;60(1):27-33. doi: 10.1211/jpp.60.1.0004, PMID 18088502.
Wu XM, Todo H, Sugibayashi K. Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis. J Control Release. 2007;118(2):189-95. doi: 10.1016/j.jconrel.2006.12.017, PMID 17270306.
Chen H, Zhu H, Zheng J, Mou D, Wan J, Zhang J et al. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin micro channels for enhancing transdermal delivery of insulin. J Control Release. 2009;139(1):63-72. doi: 10.1016/j.jconrel.2009.05.031, PMID 19481577.
Kolli CS, Xiao J, Parsons DL, Babu RJ. Microneedle assisted iontophoretic transdermal delivery of prochlorperazine edisylate. Drug Dev Ind Pharm. 2012;38(5):571-6. doi: 10.3109/03639045.2011.617753, PMID 21980925.
Kumar V, Banga AK. Modulated iontophoretic delivery of small and largemolecules through micro channels. Int J Pharm. 2012;434(1):106-14.
Pathan I, Setty C. Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res. 2009;8(2):173-9. doi: 10.4314/tjpr.v8i2.44527.
Nounou MI, El-Khordagui LK, Khalafallah NA, Khalil SA. Liposomal formulation for dermal and transdermal drug delivery: past, present and future. Recent Pat Drug Deliv Formul. 2008;2(1):9-18. doi: 10.2174/187221108783331375, PMID 19075893.
Escobar-Chavez J, Diaz-Torres R, Rodriguez-Cruz IM, Domnguez-Delgado CL, Sampere-Morales RS, Angeles-Anguiano E et al. Nanocarriers for transdermal drug delivery. Res Rep Transdermal Drug Deliv. 2012:3-17. doi: 10.2147/RRTD.S32621.
Wikipedia. Liposome [internet]. The Wikimedia Foundation; Updated December 31 2022.
Manosroi A, Kongkaneramit L, Manosroi J. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm. 2004;270(1-2):279-86. doi: 10.1016/j.ijpharm.2003.10.031, PMID 14726142.
Maestrelli F, González-Rodríguez ML, Rabasco AM, Mura P. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen–cyclodextrin complexes aimed for transdermal delivery. Int J Pharm. 2006;312(1-2):53-60. doi: 10.1016/j.ijpharm.2005.12.047, PMID 16469460.
Foldvari M. Topical patch for liposomal drug delivery system. United States Patent US. 1998;5(718):914.
Sharma VK, Mishra DN, Sharma AK, Keservani RK, Dadarwal SC. Development and optimization of vitamin E acetate loaded liposomes. Pharmacol Online. 2010;2:677-91.
Hosny KM, Aldawsari HM. Avanafil liposomes as transdermal drug delivery for erectile dysfunction treatment: preparation, characterization, and in vitro, ex vivo and in vivo studies. Tro J Pha Res. 2015;14(4):559-65.
Gupta V, Barupal AK, Ramteke S. Formulation development and in vitro characterization of proliposomes for topical delivery of aceclofenac. Ind J Pharm Sci. 2008;70(6):768-75. doi: 10.4103/0250-474X.49119, PMID 21369438.
Adhyapak AA, Desai BG. Formulation and evaluation of liposomal transdermal patch for targeted drug delivery of tamoxifen citrate for breast cancer. Indian j health sci. 2016;9(1):40. doi: 10.4103/2349-5006.183677.
Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release. 2005;103(1):123-36. doi: 10.1016/j.jconrel.2004.11.020, PMID 15710506.
Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pharm. 2004;270(1-2):119-25. doi: 10.1016/j.ijpharm.2003.10.006, PMID 14726128.
Knepp VM, Szoka Jr FC, Guy RH. Controlled drug release from a novel liposomal delivery system. II. Transdermal delivery characteristics. J Control Release. 1990;12(1):25-30. doi: 10.1016/0168-3659(90)90179-W.
Palac Z, Engesland A, Flaten GE, Škalko-Basnet N, Filipović-Grčić J, Vanić Ž. Liposomes for (trans)dermal drug delivery: the skin-PVPA as a novel in vitro stratum corneum model in formulation development. J Liposome Res. 2014;24(4):313-22. doi: 10.3109/08982104.2014.899368, PMID 24646434.
Shaik HR. Padman bhushanam. Transdermal delivery of ketoconazole via liposomal carrier system. Int J Pharm Ind Res. 2012;2:212-7.
Jeong WY, Kim S, Lee SY, Lee H, Han DW, Yang SY, et al. Transdermal delivery of minoxidil using HA-PLGA nanoparticles for the treatment in alopecia. Biomater Res. 2019;23(1):16. doi: 10.1186/s40824-019-0164-z, PMID 31695925.
Ogiso T, Iwaki M, Paku T. Effect of various enhancers on transdermal penetration of indomethacin and urea, and relationship between penetration parameters and enhancement factors. J Pharm Sci. 1995;84(4):482-8. doi: 10.1002/jps.2600840418, PMID 7629741.
Lopes LB, Collett JH, Bentley MV. Topical delivery of cyclosporin A: an in vitro study using monoolein as a penetration enhancer. Eur J Pharm Biopharm. 2005;60(1):25-30. doi: 10.1016/j.ejpb.2004.12.003, PMID 15848052.
Wang Y, Su W, Li Q, Li C, Wang H, Li Y, et al. Preparation and evaluation of lidocaine hydrochloride-loaded TAT-conjugated polymeric liposomes for transdermal delivery. Int J Pharm. 2013;441(1-2):748-56. doi: 10.1016/j.ijpharm.2012.10.019, PMID 23089577.
Rita M, Lorena T. Niosomal drug delivery for transdermal targeting. Res Rep Transdermal Drug Deliv. 2015;4:23-33.
Khoee S, Yaghoobian M. Niosomes: a novel approach in modern drug delivery systems. Nanostruct Drug Deliv. 2017:207-37.
Akhtar N, Arkvanshi S, Bhattacharya SS, Verma A, Pathak K. Preparation and evaluation of a buflomedil hydrochloride niosomal patch for transdermal delivery. J Liposome Res. 2015;25(3):191-201. doi: 10.3109/08982104.2014.974058, PMID 25357198.
Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(1-2):1-8. doi: 10.1016/j.ijpharm.2009.04.020, PMID 19394413.
El-Badry M, Fetih G, Fathalla D, Shakeel F. Transdermal delivery of meloxicam using niosomal hydrogels: in vitro and pharmacodynamic evaluation. Pharm Dev Technol. 2015;20(7):820-6. doi: 10.3109/10837450.2014.926919, PMID 24909736.
El-Menshawe SF, Hussein AK. Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery. Pharm Dev Technol. 2013;18(4):779-86. doi: 10.3109/10837450.2011.598166, PMID 21913880.
Manosroi A, Chankhampan C, Manosroi W, Manosroi J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur J Pharm Sci. 2013;48(3):474-83. doi: 10.1016/j.ejps.2012.12.010, PMID 23266464.
Manosroi A, Khanrin P, Lohcharoenkal W, Werner RG, Götz F, Manosroi W, et al. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int J Pharm. 2010;392(1-2):304-10. doi: 10.1016/j.ijpharm.2010.03.064, PMID 20381599.
Zhang Y, Zhang K, Wu Z, Guo T, Ye B, Lu M, et al. Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake. Int J Pharm. 2015;478(1):138-46. doi: 10.1016/j.ijpharm.2014.11.018, PMID 25448576.
El-Ridy MS, Yehia SA, Mohsen AM, El-Awdan SA, Darwish AB. Formulation of Niosomal gel for enhanced transdermal lornoxicam delivery: in-vitro and in-vivo evaluation. Curr Drug Deliv. 2018;15(1):122-33. doi: 10.2174/1567201814666170224141548, PMID 28240177.
Patel KK, Kumar P, Thakkar HP. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech. 2012;13(4):1502-10. doi: 10.1208/s12249-012-9871-7, PMID 23104306.
Lu B, Huang Y, Chen Z, Ye J, Xu H, Chen W et al. Niosomal nanocarriers for enhanced skin delivery of quercetin with functions of anti-tyrosinase and antioxidant. Molecules. 2019;24(12):2322. doi: 10.3390/molecules24122322, PMID 31238562.
Tavano L, de Cindio B, Picci N, Ioele G, Muzzalupo R. Drug compartmentalization as strategy to improve the physico-chemical properties of diclofenac sodium loaded niosomes for topical applications. Biomed Microdevices. 2014;16(6):851-8. doi: 10.1007/s10544-014-9889-6, PMID 25129111.
Keservani RK, Sharma AK, Ramteke S. Novel vesicular approach for topical delivery of Baclofen via niosomes. Lat Am J Pharm. 2010;29(8):1364-70.
Auda SH, Fathalla D, Fetih G, El-Badry M, Shakeel F. Niosomes as transdermal drug delivery system for celecoxib: in vitro and in vivo studies. Polym Bull. 2016;73(5):1229-45. doi: 10.1007/s00289-015-1544-8.
Kong M, Park H, Feng C, Hou L, Cheng X, Chen X. Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy. Carbohydr Polym. 2013;94(1):634-41. doi: 10.1016/j.carbpol.2013.01.091, PMID 23544584.
Wichayapreechar P, Anuchapreeda S, Phongpradist R, Rungseevijitprapa W, Ampasavate C. Dermal targeting of Centella asiatica extract using hyaluronic acid surface modified niosomes. J Liposome Res. 2020;30(2):197-207. doi: 10.1080/08982104.2019.1614952, PMID 31060402.
Mohawed OA, El-Ashmoony MM, Elgazayerly ON. Niosome-encapsulated clomipramine for transdermal controlled delivery. Int J Pharm Pharm Sci. 2014;6(9):567-75.
Fang JY, Hong CT, Chiu WT, Wang YY. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm. 2001;219(1-2):61-72. doi: 10.1016/s0378-5173(01)00627-5, PMID 11337166.
Alsarra IA, Bosela AA, Ahmed SM, Mahrous GM. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur J Pharm Biopharm. 2005;59(3):485-90. doi: 10.1016/j.ejpb.2004.09.006, PMID 15760729.
Zidan AS, Hosny KM, Ahmed OA, Fahmy UA. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Deliv. 2016;23(5):1536-49. doi: 10.3109/10717544.2014.980896, PMID 25386740.
Yasam VR, Jakki SL, Natarajan J, Venkatachalam S, Kuppusamy G, Sood S, et al. A novel vesicular transdermal delivery of nifedipine–preparation, characterization and in vitro/in-vivo evaluation. Drug Deliv. 2016;23(2):619-30. doi: 10.3109/10717544.2014.931484, PMID 25005581.
Singh U, Dar M, Hashmi A. Dendrimers: synthetic strategies, properties and applications. Orient J Chem. 2014;30(3):911-22. doi: 10.13005/ojc/300301.
Yang J, Hu J, He B, Cheng Y. Transdermal delivery of therapeutic agents using dendrimers (US20140018435A1): a patent evaluation. Expert Opin Ther Pat. 2015;25(10):1209-14. doi: 10.1517/13543776.2015.1044974, PMID 26150049.
Gorzkiewicz M, Janaszewska A, Ficker M, Svenningsen SW, Christensen JB, Klajnert-Maculewicz B. Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids Surf B Biointerfaces. 2019;181:959-62. doi: 10.1016/j.colsurfb.2019.06.056, PMID 31382346.
Hegde AR, Rewatkar PV, Manikkath J, Tupally K, Parekh HS, Mutalik S. Peptide dendrimer-conjugates of ketoprofen: synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery. Eur J Pharm Sci. 2017;102:237-49. doi: 10.1016/j.ejps.2017.03.009, PMID 28285173.
Koç FE, Şenel M. Solubility enhancement of non-steroidal anti-inflammatory drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers. Int J Pharm. 2013;451(1-2):18-22. doi: 10.1016/j.ijpharm.2013.04.062, PMID 23628406.
Huang B, Dong WJ, Yang GY, Wang W, Ji CH, Zhou FN. Dendrimer coupled sonophoresis mediated transdermal drug-delivery system for diclofenac. Drug Des Dev Ther. 2015;9:3867-76. doi: 10.2147/DDDT.S75702, PMID 26229447.
De Luca S, Seal P, Ouyang D, Parekh HS, Kannam SK, Smith SC. Dynamical interactions of 5-fluorouracil drug with dendritic peptide vectors: the impact of dendrimer generation, charge, counterions, and structured water. J Phys Chem B. 2016;120(25):5732-43. doi: 10.1021/acs.jpcb.6b00533, PMID 27267604.
Borowska K, Wołowiec S, Głowniak K, Sieniawska E, Radej S. Transdermal delivery of 8-methoxypsoralene mediated by polyamidoamine dendrimer G2. 5 and G3. 5- in vitro and in vivo study. Int J Pharm. 2012;436(1-2):764-70. doi: 10.1016/j.ijpharm.2012.07.067, PMID 22884834.
Wang Z, Itoh Y, Hosaka Y, Kobayashi I, Nakano Y, Maeda I, et al. Mechanism of enhancement effect of dendrimer on transdermal drug permeation through polyhydroxy alkanoate matrix. J Biosci Bioeng. 2003;96(6):537-40. doi: 10.1016/S1389-1723(04)70146-2, PMID 16233570.
Thomas TP, Choi SK, Li MH, Kotlyar A, Baker JR. Design of riboflavin-presenting PAMAM dendrimers as a new Nano platform for cancer-targeted delivery. Bioorg Med Chem Lett. 2010;20(17):5191-4. doi: 10.1016/j.bmcl.2010.07.005, PMID 20659800.
Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon. 2019;5(3):e01343. doi: 10.1016/j.heliyon.2019.e01343, PMID 30957038.
Kitaoka M, Wakabayashi R, Kamiya N, Goto M. Solid-in-oil nanodispersions for transdermal drug delivery systems. Biotechnol J. 2016;11(11):1375-85. doi: 10.1002/biot.201600081, PMID 27529824.
Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech. 2007;8(4):E104. doi: 10.1208/pt0804104, PMID 18181525.
Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm. 2001;228(1-2):161-70. doi: 10.1016/s0378-5173(01)00827-4, PMID 11576778.
Baboota S, Shakeel F, Ahuja A, Ali J, Shafiq S. Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta Pharm. 2007;57(3):315-32. doi: 10.2478/v10007-007-0025-5, PMID 17878111.
Shakeel F, Ramadan W, Ahmed MA. Investigation of true nanoemulsions for transdermal potential of indomethacin: characterization, rheological characteristics, and ex vivo skin permeation studies. J Drug Tar. 2009;17(6):435-41.
Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces. 2010;75(1):356-62. doi: 10.1016/j.colsurfb.2009.09.010, PMID 19783127.
Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of micro emulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98(3):427-36. doi: 10.1016/j.jconrel.2004.06.001, PMID 15312998.
Alvarez-Figueroa MJ, Blanco-Méndez J. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from micro emulsions. Int J Pharm. 2001;215(1-2):57-65. doi: 10.1016/s0378-5173(00)00674-8, PMID 11250092.
Boltri L, Morel S, Trotta M, Gasco MR. In vitro transdermal permeation of nifedipine from thickened micro emulsions. J Pharm Belg. 1994;49(4):315-20. PMID 7965581.
Kreilgaard M, Pedersen EJ, Jaroszewski JW. NMR characterisation and transdermal drug delivery potential of micro emulsion systems. J Control Release. 2000;69(3):421-33. doi: 10.1016/s0168-3659(00)00325-4, PMID 11102682.
Kumar D, Aqil M, Rizwan M, Sultana Y, Ali M. Investigation of a nanoemulsion as vehicle for transdermal delivery of amlodipine. Pharmazie. 2009;64(2):80-5. PMID 19320278.
Piao H, Kamiya N, Hirata A, Fujii T, Goto M. A novel solid-in-oil nanosuspension for transdermal delivery of diclofenac sodium. Pharm Res. 2008;25(4):896-901. doi: 10.1007/s11095-007-9445-7, PMID 17896098.
Khandavilli S, Panchagnula R. Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Dermatol. 2007;127(1):154-62. doi: 10.1038/sj.jid.5700485, PMID 16858422.
Tahara Y, Honda S, Kamiya N, Piao H, Hirata A, Hayakawa E et al. A solid-in-oil nanodispersion for transcutaneous protein delivery. J Control Release. 2008;131(1):14-8. doi: 10.1016/j.jconrel.2008.07.015, PMID 18687370.
Kitaoka M, Imamura K, Hirakawa Y, Tahara Y, Kamiya N, Goto M. Sucrose laurate-enhanced transcutaneous immunization with a solid-in-oil nanodispersion. Med Chem Commun. 2014;5(1):20-4. doi: 10.1039/C3MD00164D.
Tahara Y, Namatsu K, Kamiya N, Hagimori M, Kamiya S, Arakawa M, et al. Transcutaneous immunization by a solid-in-oil nanodispersion. Chem Commun (Camb). 2010;46(48):9200-2. doi: 10.1039/c0cc03600e, PMID 21031190.
Hirakawa Y, Wakabayashi R, Naritomi A, Sakuragi M, Kamiya N, Goto M. Transcutaneous immunization against cancer using solid-in-oil nanodispersions. Med Chem Commun. 2015;6(7):1387-92. doi: 10.1039/C5MD00168D.
Kitaoka M, Shin Y, Kamiya N, Kawabe Y, Kamihira M, Goto M. Transcutaneous peptide immunotherapy of Japanese Cedar pollinosis using solid-in-oil nanodispersion technology. AAPS PharmSciTech. 2015;16(6):1418-24. doi: 10.1208/s12249-015-0333-x, PMID 25986596.
Jagatap SC, Karale AA, Ambekar AW. Microsponge: A novel topical drug delivery system. J Drug Deliv Research. 2014;3(4):1-9.
Kaity S, Maiti S, Ghosh AK, Pal D, Ghosh A, Banerjee S. Microsponges: A novel strategy for drug delivery system. J Adv Pharm Technol Res. 2010;1(3):283-90. doi: 10.4103/0110-5558.72416, PMID 22247859.
Kadhim ZM, Mahmood HS, Alaayedi M, Ghareeb MM. Formulation of flurbiprofen as microsponge drug delivery system. Int J Pharmacol Res. 2020;12(3):748-53.
Wester RC, Patel R, Nacht S, Leyden J, Melendres J, Maibach H. Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy. J Am Acad Dermatol. 1991;24(5 Pt 1):720-6. doi: 10.1016/0190-9622(91)70109-f, PMID 1869643.
Zaki Rizkalla CM, latif Aziz R, Soliman II. In vitro and in vivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery. AAPS PharmSciTech. 2011;12(3):989-1001. doi: 10.1208/s12249-011-9663-5, PMID 21800216.
Pawar AP, Gholap AP, Kuchekar AB, Bothiraja C, Mali AJ. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J Drug Deliv. 2015;2015:261068. doi: 10.1155/2015/261068, PMID 25789176.
Amrutiya N, Bajaj A, Madan M. Development of microsponges for topical delivery of Mupirocin. AAPS PharmSciTech. 2009;10(2):402-9. doi: 10.1208/s12249-009-9220-7, PMID 19381834.
D’souza JI, Masvekar RR, Pattekari PP, Pudi SR, More HN. Microspongic delivery of fluconazole for topical application st Indo-Japanese International Conference on Advances in Pharmaceutical Research and Technology. Japan. p. 2005.1.
Saboji JK, Manvi FV, Gadad AP, Patel BD. Formulation and evaluation of ketoconazole microsponge gel by quassi emulsion solvent diffusion. J Cell Tissue Res. 2011;11(1):2691-6.
Bothiraja C, Gholap AD, Shaikh KS, Pawar AP. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther Deliv. 2014;5(7):781-94. doi: 10.4155/tde.14.43, PMID 25287385.
Maiti S, Kaity S, Ray S, Sa B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm. 2011;61(3):257-70. doi: 10.2478/v10007-011-0022-6, PMID 21945905.
Rajurkar VG, Tambe AB, Deshmukh VK. Topical anti-inflammatory gels of naproxen entrapped in Eudragit based microsponge delivery system. J Adv Chem Eng. 2015;5(2):2-6.
Dineshmohan S, Gupta VRM. Transdermal delivery of fluconazole microsponges: preparation and in vitro characterization. J Drug Deliv Ther. 2016;6(6):7-15. doi: 10.22270/jddt.v6i6.1334.
Nief RA, Hussein AA. Preparation and evaluation of meloxicam microsponges as transdermal delivery system. Iraqi J Pharm Sci. 2014;23(2):62-74.
Wang M, Lai X, Shao L, Li L. Evaluation of immune responses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine. 2018;13:4445-59. doi: 10.2147/IJN.S170745, PMID 30122919.
Dragicevic N, Maibach H. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv Drug Deliv Rev. 2018;127:58-84. doi: 10.1016/j.addr.2018.02.003, PMID 29425769.
Kurmi BD, Tekchandani P, Paliwal R, Paliwal SR. Transdermal drug delivery: opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers. Curr Drug Metab. 2017;18(5):481-95. doi: 10.2174/1389200218666170222150555, PMID 28228076.
Amjadi M, Sheykhansari S, Nelson BJ, Sitti M. Recent advances in wearable transdermal delivery systems. Adv Mater. 2018;30(7):1704530. doi: 10.1002/adma.201704530, PMID 29315905.
Wu C, Jiang P, Li W, Guo H, Wang J, Chen J, et al. Self powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions. Adv Funct Mater. 2020;30(3):1907378. doi: 10.1002/adfm.201907378.
Di J, Yao S, Ye Y, Cui Z, Yu J, Ghosh TK, et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano. 2015;9(9):9407-15. doi: 10.1021/acsnano.5b03975, PMID 26258579.
Moghadam MN, Kolesov V, Vogel A, Klok HA, Pioletti DP. Controlled release from a mechanically stimulated thermosensitive self-heating composite hydrogel. Biomaterials. 2014;35(1):450-5. doi: 10.1016/j.biomaterials.2013.09.065, PMID 24112806.
Servant A, Leon V, Jasim D, Methven L, Limousin P, Fernandez-Pacheco EV, et al. Graphene based electro responsive scaffolds as polymeric implants for on demand drug delivery. Adv Healthc Mater. 2014;3(8):1334-43. doi: 10.1002/adhm.201400016, PMID 24799416.
Mazzotta A, Carlotti M, Mattoli V. Conformable on-skin devices for thermoelectro-tactile stimulation: materials, design, and fabrication. Mater. AdV. 2021;2:1787-820.
Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee JE, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol. 2014;9(5):397-404. doi: 10.1038/nnano.2014.38, PMID 24681776.
Bagherifard S, Tamayol A, Mostafalu P, Akbari M, Comotto M, Annabi N, et al. Dermal patch with integrated flexible heater for on demand drug delivery. Adv Healthc Mater. 2016;5(1):175-84. doi: 10.1002/adhm.201500357, PMID 26501166.
Song Y, Min J, Gao W. Wearable and implantable electronics: moving toward precision therapy. ACS Nano. 2019;13(11):12280-6. doi: 10.1021/acsnano.9b08323, PMID 31725255.
Cho HJ, Chung M, Shim MS. Engineered photo-responsive materials for near-infrared triggered drug delivery. J Ind Eng Chem. 2015;31:15-25. doi: 10.1016/j.jiec.2015.07.016.
Hardy JG, Larrañeta E, Donnelly RF, McGoldrick N, Migalska K, McCrudden MT et al. Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm. 2016;13(3):907-14. doi: 10.1021/acs.molpharmaceut.5b00807, PMID 26795883.
Wang X, Wang C, Zhang Q, Cheng Y. Near infrared light-responsive and injectable supra molecular hydrogels for on-demand drug delivery. Chem Commun (Camb). 2016;52(5):978-81. doi: 10.1039/c5cc08391e, PMID 26588349.
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991-1003. doi: 10.1038/nmat3776, PMID 24150417.
Ling D, Park W, Park SJ, Lu Y, Kim KS, Hackett MJ, et al. Multifunctional tumor pH-sensitive self assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc. 2014;136(15):5647-55. doi: 10.1021/ja4108287, PMID 24689550.
Ping Y, Guo J, Ejima H, Chen X, Richardson JJ, Sun H, et al. pH-responsive capsules engineered from metal phenolic networks for anticancer drug delivery. Small. 2015;11(17):2032-6. doi: 10.1002/smll.201403343, PMID 25556334.
You JO, Almeda D, Ye GJ, Auguste DT. Bioresponsive matrices in drug delivery. J Biol Eng. 2010;4(15):15. doi: 10.1186/1754-1611-4-15, PMID 21114841.
Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. NPJ Flex Electron. 2021;5(1):9. doi: 10.1038/s41528-021-00107-x.
Lou Z, Wang L, Jiang K, Wei Z, Shen G. Reviews of wearable healthcare systems: materials, devices and system integration. Mater Sci Eng R Rep. 2020;140:100523. doi: 10.1016/j.mser.2019.100523.
Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. Device assisted transdermal drug delivery. Adv Drug Deliv Rev. 2018;127:35-45. doi: 10.1016/j.addr.2017.08.009, PMID 28867296.
Lewy H. Wearable technologies – future challenges for implementation in healthcare services. Healthc Technol Lett. 2015;2(1):2-5. doi: 10.1049/htl.2014.0104, PMID 26609396.
Tang Y, Li X, Lv H, Wang W, Zhi C, Li H. Integration designs toward new generation wearable energy supply sensor systems for real-time health monitoring: A mini review. InfoMat. 2020;2(6):1109-30. doi: 10.1002/inf2.12102.
Kim YC, Ludovice PJ, Prausnitz MR. Transdermal delivery enhanced by magainin pore-forming peptide. J Control Release. 2007;122(3):375-83. doi: 10.1016/j.jconrel.2007.05.031, PMID 17628164.
Naseem A, Varsha S, Mohammad Y, Riaz K. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomed Eng Biomed Tech. 2020:1-30.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Abikesh Prasada Kumar Mahapatra, Neelkant Prasad, Niranjan Panda, Basudev Paul, Abhiram Rout

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

