Recent Advancements in Transdermal Drug Delivery System: A Review
Pharmaceutical Science-Pharmaceutics
DOI:
https://doi.org/10.22376/ijlpr.2023.13.3.P24-P39Keywords:
Transdermal Delivery System, Skin, Transdermal Patch, Methods, Penetration enhancers, Market growth of TDDS.Abstract
Other non-invasive administration methods have recently become an alternative to the more conventional method of ingesting medications, which involves using a needle. The Transdermal Drug Delivery System (TDDS) is the most attractive method among them because of its low rejection rate, appreciable simplicity of administration, and superior convenience for patients. TDDS may find applications not only in the pharmaceutical industry but also in the sectors of skincare and cosmetics. This technique focuses mainly on delivering the medication in a particular area. As a result, it could reduce the formation of a local concentration of the drug and nonspecific transport to tissues that the agent does not precisely target. However, because the physicochemical characteristics of the skin translate to several obstacles and restrictions in transdermal distribution, a significant number of research is required to overcome these bottlenecks. In this study, the many different kinds of available TDDS approaches have been addressed, as well as a critical assessment of their benefits and limits, characterization methods, newly added drugs, and potential. In addition, the present study analyzes the potential of these techniques. The advancement of research into these other technologies has shown the TDDS's high level of efficiency, which has the potential to find applications in a diverse variety of industries.
References
A review on transdermal patches. Available from: https://www.researchgate.net/publication/47740880_A_review_on_transdermal_patches [cited 25/1/2023].
Transdermal drug delivery systems. Available from: https://www.researchgate.net/publication/305584368_Transdermal_Drug_Delivery_Systems[cited 5/1/2023].
Subedi RK, Oh SY, Chun MK, Choi HK. Recent advances in transdermal drug delivery. Arch Pharm Res. 2010;33(3):339-51. doi: 10.1007/s12272-010-0301-7, PMID 20361297.
Transdermal drug delivery system: an overview. Available from: https://www.researchgate.net/publication/268384412_Transdermal_drug_delivery_system_An_overview [cited 25/1/2023].
A review on transdermal drug delivery system. Available from: https://bostonsciencepublishing.us/abstract/a-review-on-transdermal-drug-delivery-system [cited 25/1/2023].
Wokovich AM, Prodduturi S, Doub WH, Hussain AS, Buhse LF. Transdermal drug delivery system (TDDS) adhesion is a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm. 2006;64(1):1-8. doi: 10.1016/j.ejpb.2006.03.009, PMID 16797171.
Cilurzo F, Gennari CGM, Minghetti P. Adhesive properties: A critical issue in transdermal patch development. Expert Opin Drug Deliv. 2012;9(1):33-45. doi: 10.1517/17425247.2012.637107, PMID 22171789.
Rastogi V, Yadav P. Transdermal drug delivery system: an overview. Asian J Pharm. 2012;6(3):161-70. doi: 10.4103/0973-8398.104828.
Transdermal drug delivery system: an overview | PharmaTutor. Available from: https://www.pharmatutor.org/articles/overview-of-transdermal-drug-delivery [cited 25/1/2023].
Ruela ALM, Perissinato AG, Lino MEdS, Mudrik PS, Pereira GR. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci. 2016;52(3):527-44. doi: 10.1590/s1984-82502016000300018.
Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RHH. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol Physiol. 2015;28(1):42-55. doi: 10.1159/000360009, PMID 25196193.
Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101-14. doi: 10.1016/s0928-0987(01)00167-1, PMID 11500256.
Parkinson's Disease Foundation. Transcellular diffusion route through stratum corneum: results from finite element models | Ana Barbero – Academia.edu. Available from: https://www.academia.edu/6144626/Transcellular_route_of_diffusion_through_stratum_corneum_Results_from_finite_element_models [cited 25/1/2023].
Transcellular diffusion route through stratum corneum: results from finite element models | Ana Barbero – Academia.edu. Available from: https://www.academia.edu/6144612/Transcellular_route_of_diffusion_through_stratum_corneum_Results_from_finite_element_models [cited 25/1/2023].
Zhu H, Jung EC, Hui X, Maibach H. Proposed human stratum corneum water domain in chemical absorption. J Appl Toxicol. 2016;36(8):991-6. doi: 10.1002/jat.3208, PMID 26206725.
Jarvis CA, McGuigan C, Heard CM. In vitro Delivery of novel, highly potent anti-varicella zoster virus nucleoside analogues to their target site in the skin. Pharm Res. 2004;21(6):914-9. doi: 10.1023/b: Pham.0000029277.60760.43, PMID 15212153.
N’da, D.D. Prodrug strategies for enhancing the percutaneous absorption of drugs. Mol. 2014, Vol. 19, Pages 20780-807 19, 20780–20807.
Ramadan D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022;12(4):758-91. doi: 10.1007/s13346-021-00909-6, PMID 33474709.
Jain SK, Verma A, Jain A, Hurkat P. Transfollicular drug delivery: current perspectives. RRTD. 2016;1. doi: 10.2147/RRTD.S75809.
Formulation and evaluation of transdermal drug delivery system of carvedilol | Dinesh jain – Academia.edu. Available from: https://www.academia.edu/61906856/Formulation_and_evaluation_of_transdermal_drug_delivery_system_of_carvedilol [cited 25/1/2023].
Aqil M, Ali A. Monolithic matrix type transdermal drug delivery systems of pinacidil monohydrate: in vitro characterization. Eur J Pharm Biopharm. 2002;54(2):161-4. doi: 10.1016/s0939-6411(02)00059-0, PMID 12191687.
Aqil M, Sultana Y, Ali A, Dubey K, Najmi AK, Pillai KK. Transdermal drug delivery systems of a beta blocker: design, in vitro, and in vivo characterization. Drug Deliv. 2004;11(1):27-31. doi: 10.1080/10717540490265225, PMID 15168788.
Singh J, Tripathi KP, Sakya TR. Effect of penetration enhancers on the in vitro transport of ephedrine through rat skin and human epidermis from matrix-based transdermal formulations. Drug Dev Ind Pharm. 1993;19(13):1623-8. doi: 10.3109/03639049309069331.
Lavon I, Kost J. Ultrasound and transdermal drug delivery. Drug Discov Today. 2004;9(15):670-6. doi: 10.1016/S1359-6446(04)03170-8, PMID 15279850.
Medical applications of controlled release. Med. Appl. J Control Release. 2019. doi: 10.1201/9780429276620/Medical-Applications-Controlled-Release-Robert-Langer-Donald-Wise.
Transdermal Delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers | Xiaomin Wang – Academia.edu. Available from: https://www.academia.edu/17765724/Transdermal_delivery_of_nonsteroidal_anti_inflammatory_drugs_mediated_by_polyamidoamine_PAMAM_dendrimers [cited 25/1/2023].
Krishna R, Pandit JK. Carboxymethylcellulose-sodium based transdermal drug delivery system for propranolol. J Pharm Pharmacol. 1996;48(4):367-70. doi: 10.1111/j.2042-7158.1996.tb05934.x, PMID 8794984.
Transdermal DRUG Delivery SYSTEM-A NOVEL DRUG Delivery SYSTEM AND ITS Market SCOPE AND OPPORTUNITIES 1 www.ijpbs.net Pharmaceutics | Request PDF. Available from: https://www.researchgate.net/publication/277014167_Transdermal_Drug_Delivery_System-A_Novel_Drug_Delivery_System_And_Its_Market_Scope_And_Opportunities_1_wwwijpbsnet_Pharmaceutics [cited 25/1/2023].
Cho CW, Choi JS, Yang KH, Shin SC. Enhanced transdermal controlled Delivery of glimepiride from the ethylene-vinyl acetate matrix. Drug Deliv. 2009;16(6):320-30. doi: 10.1080/10717540903031084, PMID 19606946.
Transdermal drug delivery systems: a mini-review. | IJAR Indexing -. Academia.edu. Available from: https://www.academia.edu/es/36899442/Transdermal_Drug_Delivery_Systems_A_Mini_Review [cited 25/1/2023].
Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal HMN. Microneedles in smart drug delivery. Adv Wound Care. 2021;10(4):204-19. doi: 10.1089/wound.2019.1122, PMID 32320365.
Ma Z, Li B, Peng J, Gao D. Recent development of drug delivery systems through microfluidics: from synthesis to evaluation. Pharmaceutics. 2022;14(2). doi: 10.3390/pharmaceutics14020434, PMID 35214166.
Bae YH, Park K. Advanced drug delivery 2020 and beyond: perspectives on the future. Adv Drug Deliv Rev. 2020;158:4-16. doi: 10.1016/j.addr.2020.06.018, PMID 32592727.
Ashwini C, Vaishali K, Digambar N, IJRPC. Role of nutraceuticals in various diseases: a comprehensive review. Vol. 3(2); 2013.
Helal NA, Eassa HA, Amer AM, Eltokhy MA, Edafiogho I, Nounou MI. Nutraceuticals' novel formulations: the good, the bad, the unknown and patents involved. Recent Pat Drug Deliv Formul. 2019;13(2):105-56. doi: 10.2174/1872211313666190503112040, PMID 31577201.
Finley JW. The nutraceutical revolution: emerging vision or broken dream? Understanding scientific and regulatory concerns. Clinical Research and Regulatory Affairs. 2016;33(1):1-3. doi: 10.3109/10601333.2016.1117096.
G. S. Nutraceuticals and their health benefits. Int J Pure App Biosci. 2017;5(4):1151-5. doi: 10.18782/2320-7051.5407.
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 2014 52. 2015;5(2):123-7. doi: 10.1007/s13205-014-0214-0, PMID 28324579.
iMedPub. Insight Medical Publishing. Available from: https://www.ijddr.in/drug-development/preparation-and-optimization-of-nanoemulsions-for-targeting-drugdelivery.php?aid=5740 [cited 25/1/2023].
Hu B, Ting Y, Zeng X, Huang Q. Bioactive peptides/chitosan nanoparticles enhance the cellular antioxidant activity of (-)-epigallocatechin-3-gallate. J Agric Food Chem. 2013;61(4):875-81. doi: 10.1021/jf304821k, PMID 23293838.
Yi J, Lam TI, Yokoyama W, Cheng LW, Zhong F. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocoll. 2015;43:31-40. doi: 10.1016/j.foodhyd.2014.04.028.
Luo X, Zhou Y, Bai L, Liu F, Deng Y, McClements DJ. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel micro fluidization: physical and chemical stability. J Colloid Interface Sci. 2017;490:328-35. doi: 10.1016/j.jcis.2016.11.057, PMID 27914331.
Niu Y, Xia Q, Gu M, Yu L (Lucy). Interpenetrating network gels composed of gelatin and soluble dietary fibres from tomato peels. Food Hydrocoll. 2019;89:95-9. doi: 10.1016/j.foodhyd.2018.10.028.
Das S, Halder A, Mandal S, Mazumder MAJ, Bera T, Mukherjee A et al. Andrographolide engineered gold nanoparticle to overcome drug-resistant visceral leishmaniasis. Artif Cells Nanomed Biotechnol. 2018;46(sup1):751-62. doi: 10.1080/21691401.2018.1435549, PMID 29421940.
Roy P, Das S, Bera T, Mondol S, Mukherjee A. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomedicine. 2010;5:1113-21. doi: 10.2147/IJN.S14787, PMID 21270962.
Barry BW. Reflections on transdermal drug delivery. Pharm Sci Technol Today. 1999;2(2):41-3. doi: 10.1016/s1461-5347(99)00125-x, PMID 10234203.
Skin penetration enhancers. Semantic Scholar. Available from: https://www.semanticscholar.org/paper/Skin-penetration-enhancers.-Lane/d1e3a049cff8e888fa60706919c8e799074f460d [cited 25/1/2023].
Physical Chemical analysis of Percutaneous Absorption Process from Creams and Ointments | Semantic scholar. Available from: https://www.semanticscholar.org/paper/Physical-Chemical-analysis-of-Percutaneous-Process-Higuchi/31eb970b593f48493bdf5e4a883c7777b4e75fdb [cited 25/1/2023].
Transdermal iontophoresis revisited | Vinod Nair – Academia.edu. Available from: https://www.academia.edu/26452740/Transdermal_iontophoresis_revisited [cited 25/1/2023].
Sylvestre JP, Díaz-Marín C, Delgado-Charro MB, Guy RH. Iontophoresis of dexamethasone phosphate: competition with chloride ions. J Control Release. 2008;131(1):41-6. doi: 10.1016/j.jconrel.2008.07.002, PMID 18662729.
Joshi B, Joshi A. Ultrasound-based drug delivery systems. Bioelectron. Med Devices From Mater. to Devices - Fabr. Appl. Reliab. 2019:241-60. doi: 10.1016/B978-0-08-102420-1.00014-5.
Vanbever R, Lecouturier N, Préat V. Transdermal delivery of metoprolol by electroporation. Pharm Res. 1994;11(11):1657-62. doi: 10.1023/a:1018930425591, PMID 7870686.
Jadoul A, Bouwstra J, Préat V. Effects of iontophoresis and electroporation on the stratum corneum. Review of the biophysical studies. Adv Drug Deliv Rev. 1999;35(1):89-105. doi: 10.1016/s0169-409x(98)00065-9, PMID 10837691.
Prausnitz MR. A practical assessment of transdermal drug delivery by skin electroporation. Adv Drug Deliv Rev. 1999;35(1):61-76. doi: 10.1016/s0169-409x(98)00063-5, PMID 10837689.
Lombry C, Dujardin N, Préat V. Transdermal delivery of macromolecules using skin electroporation. Pharm Res. 2000;17(1):32-7. doi: 10.1023/a:1007510323344, PMID 10714605.
Vanbever R, Préat V. In vivo efficacy and safety of skin electroporation. Adv Drug Deliv Rev. 1999;35(1):77-88. doi: 10.1016/s0169-409x(98)00064-7, PMID 10837690.
Prausnitz MR, Bose VG, Langer R, Weaver JC. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci U S A. 1993;90(22):10504-8. doi: 10.1073/pnas.90.22.10504, PMID 8248137.
Vanbever R, Langers G, Montmayeur S, Préat V. Transdermal delivery of fentanyl: rapid onset of analgesia using skin electroporation. J Control Release. 1998;50(1-3):225-35. doi: 10.1016/s0168-3659(97)00147-8, PMID 9685889.
Wang S, Kara M, Krishnan TR. Transdermal Delivery of cyclosporin-A using electroporation. J Control Release. 1998;50(1-3):61-70. doi: 10.1016/s0168-3659(97)00117-x, PMID 9685873.
Gallo SA, Sen A, Hensen ML, Hui SW. Time-dependent ultrastructural changes to porcine stratum corneum following an electric pulse. Biophys J. 1999;76(5):2824-32. doi: 10.1016/S0006-3495(99)77436-9, PMID 10233098.
Transdermal drug delivery. 2nd ed, (Drugs and the Pharmaceutical Sciences) - PDF Free Download. Available from: https://epdf.tips/transdermal-drug-delivery-second-edition-drugs-and-the-pharmaceutical-sciences.html [cited 25/1/2023].
Prasad R, Koul V. Polymeric gels: vehicles for enhanced drug delivery across the skin; 2018. p. 343-75. doi: 10.1007/978-981-10-6086-1_9.
Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and prospects. Adv Drug Deliv Rev. 2008;60(10):1218-23. doi: 10.1016/j.addr.2008.03.006, PMID 18450318.
Merino G, Kalia YN, Guy RH. Ultrasound‐enhanced transdermal transport. J Pharm Sci. 2003;92(6):1125-37. doi: 10.1002/jps.10369, PMID 12761802.
Bommannan D, Menon GK, Okuyama H, Elias PM, Guy RH. Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. | Sigma-Aldrich. Pharm Res. 1992;9(8):1043-7. doi: 10.1023/a:1015806528336, PMID 1409375.
Murthy SN, Hiremath SRR. Physical and chemical permeation enhancers in transdermal Delivery of terbutaline sulphate. AAPS PharmSciTech. 2001;2(1):E-TN1. doi: 10.1208/pt0201_tn1, PMID 14727885.
Imam SS, Aqil M. Penetration-enhancement strategies for dermal and transdermal drug delivery: an overview of recent research studies and patents. Percutaneous Penetration Enhanc. Drug Penetration Into/Through Ski. Methodol gen considerations 337-53 2017. doi: 10.1007/978-3-662-53270-6_20.
Chemical penetration enhancers: for transdermal drug delivery systems | Semantic scholar. Available from: https://www.semanticscholar.org/paper/CHEMICAL-PENETRATION-ENHANCERS%3A-FOR-TRANSDERMAL-Raut-Nemade/08af40e7fde5b43d422a8a5596592d8a5a8ac216 [cited 25/1/2023].
Effect of chemical enhancers on in vitro release of salbutamol sulphate from transdermal patches | Uttam Budhathoki – Academia.edu. Available from: https://www.academia.edu/6834693/Effect_Of_Chemical_Enhancers_On_In_Vitro_Release_Of_Salbutamol_Sulphate_From_Transdermal_Patches [Cited 25/1/2023].
Zurdo Schroeder IZ, Franke P, Schaefer UF, Lehr CM. Delivery of ethinylestradiol from film-forming polymeric solutions across human epidermis in vitro and in vivo in pigs. J Control Release. 2007;118(2):196-203. doi: 10.1016/j.jconrel.2006.12.013, PMID 17289207.
Babu RJ, Pandit JK. Effect of penetration enhancers on the transdermal Delivery of Bupranolol through rat skin. Drug Deliv. 2005;12(3):165-9. doi: 10.1080/10717540590931936, PMID 16025846.
Ogiso T, Iwaki M, Paku T. Effect of various enhancers on transdermal penetration of indomethacin and urea, and the relationship between penetration parameters and enhancement factors. J Pharm Sci. 1995;84(4):482-8. doi: 10.1002/jps.2600840418, PMID 7629741.
Parikh DK, Ghosh TK. Feasibility of transdermal Delivery of fluoxetine. AAPS PharmSciTech. 2005;6(2):E144-9. doi: 10.1208/pt060222, PMID 16353971.
Nokhodchi A, Shokri J, Dashbolaghi A, Hassan-Zadeh D, Ghafourian T, Barzegar-Jalali M. The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int J Pharm. 2003;250(2):359-69. doi: 10.1016/s0378-5173(02)00554-9, PMID 12527163.
Research on transdermal drug delivery system. Available from: https://www.researchgate.net/publication/215896395_Research_On_Transdermal_Drug_Delivery_System [cited 25/1/2023].
El-Kattan AF, Asbill CS, Kim N, Michniak BB. Effect of formulation variables on the percutaneous permeation of ketoprofen from gel formulations. Drug Deliv. 2000;7(3):147-53. doi: 10.1080/10717540050120188, PMID 10989915.
Al-Khamis KI, Davis SS, Hadgraft J. Microviscosity and drug release from topical gel formulations. Pharm. Res. An Off. J. Am. Assoc. Pharm Res. 1986;3(4):214-7. doi: 10.1023/A:1016386613239, PMID 24271584.
Top transdermal AND drug AND delivery companies | VentureRadar. Available from: https://www.ventureradar.com/keywords/transdermal And Drug And Delivery [cited 25/1/2023].
Kumar R, Philip A. Modified transdermal technologies: breaking the barriers of drug permeation via the skin. Trop J Pharm Res. 2007;6(1). doi: 10.4314/tjpr.v6i1.14641.
Kim KT, Moon Y, Jang Y, Lee KT, Lee C, Jun Y et al. Molecular mechanisms of atlastin-mediated ER membrane fusion revealed by a FRET-based single-vesicle fusion assay. Sci Rep. 2017;7(1):8700. doi: 10.1038/s41598-017-09162-9, PMID 28821793.
Abstract – Europe PMC. Available from: https://europepmc.org/article/MED/28181840 [cited 25/1/2023].
Jampilek J, Brychtova K. Azone analogues: classification, design, and transdermal penetration principles. Med Res Rev. 2012;32(5):907-47. doi: 10.1002/med.20227, PMID 22886628.
Hussein GM, Elhaj BM, Saad Ali H. A multifaceted review journal in pharmacy Concepts, Current Status, and Approaches in transdermal Drug Delivery System Technologies. Syst Rev Pharm. 2021;12:411-8.
Transdermal DRUG Delivery SYSTEM: an overview | Request PDF. Available from: https://www.researchgate.net/publication/341233897_Transdermal_Drug_Delivery_System_An_Overview [cited 25/1/2023].
Lalan MS, Patel VN, Misra A. DRUG DELIVERY: RECENT. Applications of Polymers in Drug Delivery (INC, 2021).
Transdermal skin patches market size | 2022 - 27 | Industry Share. Growth.
Lewis S, Pandey S, Udupa N. Design and evaluation of matrix type and membrane controlled transdermal delivery systems of nicotine suitable for use in smoking cessation. Indian J Pharm Sci. 2006;68(2):179-84. doi: 10.4103/0250-474X.25711.
Naik A, Pechtold LARM, Potts RO, Guy RH. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J Control Release. 1995;37(3):299-306. doi: 10.1016/0168-3659(95)00088-7.
Wade A, Weller PJ, Academy of Pharmaceutical Sciences, Pharmaceutical Society of Great Britain. Handbook of pharmaceutical excipients. Vol. 651; 1994.
Florence AT. Targeted and controlled drug delivery: novel carrier systems. International Journal of Pharmaceutics. 2003;267(1-2):157. doi: 10.1016/S0378-5173(03)00356-9.
Bauerová K, Matušová D, Kassai Z. Chemical enhancers for transdermal drug transport. Eur J Drug Metab Pharmacokinet. 2001;26(1-2):85-94. doi: 10.1007/BF03190381, PMID 11554439.
Cho Y. Enhancement of percutaneous absorption of ketoprofen: effect of vehicles and adhesive matrix. International Journal of Pharmaceutics. 1998;169(1):95-104. doi: 10.1016/S0378-5173(98)00115-X.
Talukdar MM. In vivo evaluation of xanthan gum as a potential excipient for oral controlled-release matrix tablet formulation. International Journal of Pharmaceutics. 1998;169(1):105-13. doi: 10.1016/S0378-5173(98)00112-4.
Kurihara-Bergstrom T, Knutson K, DeNoble LJ, Goates CY. Percutaneous absorption enhancement of an ionic molecule by ethanol-water systems in human skin. Pharm Res. 1990;7(7):762-6. doi: 10.1023/a:1015879925147, PMID 2395806.
Elhissi AMA, O'Neill MAA, Roberts SA, Taylor KMG. A calorimetric study of dimyristoyl phosphatidylcholine phase transitions and steroid–liposome interactions for liposomes prepared by thin film and pro-liposome methods. Int J Pharm. 2006;320(1-2):124-30. doi: 10.1016/j.ijpharm.2006.04.015, PMID 16765001.
Transdermal drug delivery system market; 2023. MarketsandMarkets. Available from: https://www.marketsandmarkets.com/Market-Reports/transdermal-drug-delivery-system-market-203190114.html [cited 25/1/2023].
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-8. doi: 10.1038/nbt.1504.
Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364(2):227-36. doi: 10.1016/j.ijpharm.2008.08.032, PMID 18805472.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Rajesh Jain, Dr.Manish Goswami, Dr.Sanjeev Kumar Mittal, Simran

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

