Antiquorum Sensing Activity of Methanolic Seed (Nutmeg) Extract of Myristica Fragrans Against a Gram-Positive Bacterium

Pharmaceutical Science-Pharmaceutical Biotechnology

Authors

  • M Bhavana Department of Biotechnology, Vikrama Simhapuri University, Nellore-524320
  • Kodali Vidya Prabhakar Assistant Professor, Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India https://orcid.org/0000-0001-5438-1054

DOI:

https://doi.org/10.22376/ijlpr.2023.13.2.P51-P59

Keywords:

B. subtilis, Motility, M. fragrans, Nutmeg, Quorum sensing

Abstract

The increase in multidrug-resistant pathogens has created new anti-pathogenic and anti-virulence compounds. This is because of the behavioural changes bacteria acquire, such as increased antibiotic resistance and virulence capacity. This social behaviour is maintained through a signalling transduction pathway called Quorum sensing. The present study aims to evaluate the inhibition of quorum sensing in Bacillus subtilis with Myristica fragrans seed extract. The seed of M. fragrans is called nutmeg. Methanolic nutmeg extract was used to test the anti-quorum sensing activity of B. subtilis. Total flavonoid and phenolic concentrations of nutmeg were estimated. 10 μg/ml, 30 μg/ml, 50 μg/ml, 70 μg/ml and 90 μg/ml concentrations of nutmeg extract were used to check against bacterial motilities and biofilm formations. Inhibition of biofilm formation was observed under a fluorescence microscope, and inhibition of swimming and swarming motilities were observed on 0.3 % and 0.5 % agar plates, respectively. These observations suggest that the seed of M. fragrans showed anti-quorum sensing activity against B. subtilis. This research work helps to study and isolate natural quorum-sensing inhibitors from medicinal plants. These inhibitors can synthesize novel anti-pathogenic or anti-virulence drugs that combat bacterial infections by interrupting with quorum-sensing controlled phenotypes and decreasing bacterial virulence. 

References

Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest. 2003;112(9):1300-7. doi: 10.1172/JCI20074, PMID 14597754.

Asfour HZ. Anti-quorum sensing natural compounds. J Microsc Ultrastruct. 2018;6(1):1-10. doi: 10.4103/JMAU.JMAU_10_18, PMID 30023261.

Koh CL, Sam CK, Yin WF, Tan LY, Krishnan T, Chong YM et al. Plant-derived Natural Products as Sources of Anti-Quorum sensing compounds. Sensors (Basel). 2013;13(5):6217-28. doi: 10.3390/s130506217, PMID 23669710.

Flindt MLH. Pulmonary disease due to inhalation of derivatives of Bacillus subtilis containing proteolytic enzyme. Lancet. 1969;1(7607):1177-81. doi: 10.1016/s0140-6736(69)92165-5, PMID 4181838.

Reller LB. Endocarditis caused by Bacillus subtilis. Am J Clin Pathol. 1973;60(5):714-8. doi: 10.1093/ajcp/60.5.714, PMID 4201628.

Agbogidi OM, Azagbaekwe OP. Health and nutritional benefits of nutmeg (Mysticafragranshoutt.). Sci Agric. 2013;1(2):40-4.

Ibrahim MA, Cantrell CL, Jeliazkova EA, Astatkie T, Zheljazkov VD. Utilization of Nutmeg (Myristica fragrans Houtt.) Seed Hydrodistillation Time to Produce Essential Oil Fractions with Varied Compositions and Pharmacological Effects. Molecules. 2020;25(3):565. doi: 10.3390/molecules25030565, PMID 32012955.

Balakrishnan S, Sivaji I, Kandasamy S, Duraisamy S, Kumar NS, Gurusubramanian G. Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates. Environ Sci Pollut Res Int. 2017;24(17):14758-69. doi: 10.1007/s11356-017-9065-7, PMID 28470497.

Nagano I. Myristica fragrans: an Exploration of the Narcotic Spice. Vernal Equinox. 2008;16(1):15-24.

Sonavane G, Sarveiya V, Kasture V, Kasture SB. Behavioural actions of Myristica fragrans Seeds. Indian J Pharmacol. 2001;33(6):417-24.

Kalamara M, Spacapan M, Mandic-Mulec IM, Stanley-Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol. 2018;110(6):863-78. doi: 10.1111/mmi.14127, PMID 30218468.

Ramluckan K, Moodley KG, Bux F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the Soxhlet extraction method. Fuel. 2014;116:103-8. doi: 10.1016/j.fuel.2013.07.118.

Wong Y, Ahmad-Mudzaqqir M, Wan-Nurdiyana W. Extraction of Essential Oil from Cinnamon (Cinnamomum zeylanicum). Orient J Chem. 2014;30(1):37-47. doi: 10.13005/ojc/300105.

Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med. 2011;8(1):1-10. doi: 10.4314/ajtcam.v8i1.60483, PMID 22238476.

Chang C-C, Yang M-H, Wen H-M, Chern J-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal. 2002;10(3):178-82. doi: 10.38212/2224-6614.2748.

Lu X, Wang J, Al-Qadiri HM, Ross CF, Powers JR, Tang J et al. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011;129(2):637-44. doi: 10.1016/j.foodchem.2011.04.105, PMID 30634280.

Erdönmez D, Rad AY, Aksöz N. Anti-quorum sensing potential of antioxidant quercetin and resveratrol. Braz arch biol technol. 2018;61. doi: 10.1590/1678-4324-2017160756.

Issac Abraham SVPI, Palani A, Ramaswamy BR, Shunmugiah KP, Arumugam VR. Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res. 2011;42(8):658-68. doi: 10.1016/j.arcmed.2011.12.002, PMID 22222491.

Sankar Ganesh P, Ravishankar Rai V. Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J Tradit Complement Med. 2018;8(1):170-7. doi: 10.1016/j.jtcme.2017.05.008. PMID 29322006.

Bhavana M, VidyaPrabhakar K. Antibiofilm activity of the methanolic extract of nutmeg oil against Bacillus subtilis. Asian Pac J Health Sci. 2022;9(4):6-12. ;doi: 10.21276.

Veening JW, Smits WK, Kuipers OP. Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol. 2008;62:193-210. doi: 10.1146/annurev.micro.62.081307.163002, PMID 18537474.

Dubnau D, Losick R. Bistability in bacteria. Mol Microbiol. 2006;61(3):564-72. doi: 10.1111/j.1365-2958.2006.05249.x, PMID 16879639.

Macnab RM, Aizawa SI. Bacterial motility and the bacterial flagellar motor. Annu Rev Biophys Bioeng. 1984;13:51-83. doi: 10.1146/annurev.bb.13.060184.000411, PMID 6378075.

Berg HC. Swarming motility: it better be wet. Curr Biol. 2005;15(15):R599-600. doi: 10.1016/j.cub.2005.07.042, PMID 16085482.

Pearson MM. Methods for studying Swarming and Swimming Motility. Methods Mol Biol. 2019:15-25. doi: 10.1007/978-1-4939-9601-8_3.

Ghelardi E, Salvetti S, Ceragioli M, Gueye SA, Celandroni F, Senesi S. Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Appl Environ Microbiol. 2012;78(18):6540-4. doi: 10.1128/AEM.01341-12, PMID 22773650.

Manson MD. Bacterial motility and chemotaxis. Adv Microb Physiol. 1992;33:277-346. doi: 10.1016/S0065-2911(08)60219-2.

Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol. 2003;57:249-73. doi: 10.1146/annurev.micro.57.030502.091014, PMID 14527279.

Fraser GM, Hughes C. Swarming motility. Curr Opin Microbiol. 1999;2(6):630-5. doi: 10.1016/s1369-5274(99)00033-8, PMID 10607626.

Kinsinger RF, Shirk MC, Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol. 2003;185(18):5627-31. doi: 10.1128/JB.185.18.5627-5631.2003, PMID 12949115.

Calvio C, Celandroni F, Ghelardi E, Amati G, Salvetti S, Ceciliani F et al. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J Bacteriol. 2005;187(15):5356-66. doi: 10.1128/JB.187.15.5356-5366.2005, PMID 16030230.

Ryan-Payseur BK, Freitag NE. Bacillus subtilis biofilms: a matter of individual choice. mBio. 2018;9(6):e02339-18. doi: 10.1128/mBio.02339-18, PMID 30482826.

Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 2021;19(9):600-14. doi: 10.1038/s41579-021-00540-9, PMID 33824496.

Published

2023-03-01

How to Cite

Bhavana, M., & Vidya Prabhakar, K. . (2023). Antiquorum Sensing Activity of Methanolic Seed (Nutmeg) Extract of Myristica Fragrans Against a Gram-Positive Bacterium: Pharmaceutical Science-Pharmaceutical Biotechnology. International Journal of Life Science and Pharma Research, 13(2), P51-P59. https://doi.org/10.22376/ijlpr.2023.13.2.P51-P59

Issue

Section

Research Articles