Design, Synthesis, Characterization and Biological Evaluation of Para-Amino Salicylic Acid (PAS) Analogues: An Approach to Repurpose
Pharmaceutical Science-Medicinal chemistry
DOI:
https://doi.org/10.22376/ijlpr.2023.13.2.P67-P77Keywords:
Para-amino salicylic acid, antimicrobial activity, antioxidant activity, minimum inhibitory concentration (MIC), free radical scavenging activityAbstract
The ever-emerging microbial resistance has imposed great challenges for the medicinal chemist in designing newer chemical entities, which is a lengthy and time-consuming process. An alternate approach of repurposing older drugs can be undertaken to accelerate the discovery of some newer derivatives with lesser side effects. The work reported in the present paper is an extension of the idea of repurposing older drugs. The study aimed to synthesize a series of ester and amide derivatives (P1-P28) of Para-amino salicylic acid. The antimicrobial evaluation of all the synthesized derivatives was performed via the serial dilution method. The Gram-positive bacteria: Staphylococcus aureus and Bacillus subtilis and Gram-negative bacteria: Escherichia coli and Pseudomonas aeruginosa were used for the antibacterial activity, and Candida albicans were used for the antifungal activity. Ciprofloxacin (antibacterial) and Fluconazole (antifungal) were the standard drugs. The antioxidant evaluation (ester derivatives, P1-P19) was carried out by using the DPPH scavenging method and BHA (butylated hydroxy anisole) was used as the reference. The derivative 5-acetamido-2-(propyl carbamoyl) phenyl acetate (P22) was the most effective antibacterial agent, which may be attributed to the presence of 3-carbon aliphatic alkyl chain. At the same time, 4-methoxy phenyl-4-amino-2-hydroxy benzoate (P15) and 2-chloro phenyl-4-amino-2-hydroxy benzoate (P16) displayed effective antifungal activity. Ethyl-4-amino-2-hydroxy benzoate (P2) demonstrated the most potent free radical scavenging activity. Further, the spectroscopic characterization and physicochemical characterization of the synthesized derivatives have been carried out and were found to be in accord with the assigned structures.
References
Zhang T, Jiang Guanglu, Wen S, Huo F, Wang F, Huang H et al. para-aminosalicylic acid increases the susceptibility to isoniazid in clinical isolates of Mycobacterium tuberculosis Infect Drug Resist. 2019;12:825-9.
Hegde PV, Howe MD, Zimmerman MD, Boshoff HIM, Sharma S, Remache B et al. Synthesis and biological evaluation of orally active prodrugs and analogs of para-aminosalicylic acid (PAS). Eur J Med Chem. 2022;232:114201. doi: 10.1016/j.ejmech.2022.114201, PMID 35219151.
Ref 2, Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U et al.Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006;368(9547):1575-80. doi: 10.1016/S0140-6736(06)69573-1, PMID 17084757.
Pitchenik AE, Burr J, Laufer M, Miller G, Cacciatore R, Bigler WJ et al. Outbreaks of drug-resistant tuberculosis at AIDS Centre. Lancet. 1990;336(8712):440-1. doi: 10.1016/0140-6736(90)91987-l, PMID 1974967.
Lehmann J. para-aminosalicylic acid in the treatment of tuberculosis. Lancet. 1946;1(6384):15. doi: 10.1016/s0140-6736(46)91185-3, PMID 21008766.
Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother. 2015;59(9):5097-106. doi: 10.1128/AAC.00647-15, PMID 26033719.
Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis. 2000;4(9):796-806. PMID 10985648.
Boman G. Serum concentration and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. Eur J Clin Pharmacol. 1974;7(3):217-25. doi: 10.1007/BF00560384, PMID 4854257.
Mitnick C, Bayona J, Palacios E, Shin S, Furin J, Alcántara F, et al. Community-based therapy for multidrug-resistant tuberculosis in Lima, Peru. N Engl J Med. 2003;348(2):119-28. doi: 10.1056/NEJMoa022928, PMID 12519922.
Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov. 2013;12(5):388-404. doi: 10.1038/nrd4001, PMID 23629506.
Joshi R, Kumar S, Unnikrishnan M, Mukherjee T. Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: mechanistic aspects and antioxidant activity. Free Radic Res. 2005;39(11):1163-72. doi: 10.1080/10715760500177880, PMID 16298742.
Basit Wani AB, Singh J, Upadhyay N. Synthesis and characterization of transition metal complexes of para-aminosalicylic acid with evaluation of their antioxidant activities. Orient J Chem. 2017;33(3):1120-6. doi: 10.13005/ojc/330308.
Abulfathi AA, Donald PR, Adams K, Svensson EM, Diacon AH, Reuter H. The pharmacokinetics of para-aminosalicylic acid and its relationship to efficacy and intolerance. Br J Clin Pharmacol. 2020;86(11):2123-32. doi: 10.1111/bcp.14395, PMID 32470182.
Dhaneshwar SS, Chail M, Patil M, Naqvi S, Vadnerkar G. Colon-specific mutual amide prodrugs of 4-aminosalicylic acid for their mitigating effect on experimental colitis in rats. Eur J Med Chem. 2009;44(1):131-42. doi: 10.1016/j.ejmech.2008.03.035, PMID 18472188.
de Kock L, Sy SK, Rosenkranz B, Diacon AH, Prescott K, Hernandez KR et al. Pharmacokinetics of para-aminosalicylic acid in HIV-uninfected and HIV-coinfected tuberculosis patients receiving antiretroviral therapy, managed for multidrug-resistant and extensively drug-resistant tuberculosis. Antimicrob Agents Chemother. 2014;58(10):6242-50. doi: 10.1128/AAC.03073-14, PMID 25114132.
Goldberg AP, Chen M, Brunzell JD, Bierman EL, Porte D. Treatment of hypertriglyceridemia with para-aminosalicylic acid-C: A possible mechanism of action. Metabolism. 1978;27(11):1648-60. doi: 10.1016/0026-0495(78)90287-1, PMID 703606.
Sharma P, Kumar A, Sharma M. Synthesis and QSAR studies on 5-[2-(2-methylprop1-enyl)-1H benzimidazol-1yl]-4,6-diphenyl-pyrimidin-2-(5H)-thione derivatives as antibacterial agents. Eur J Med Chem. 2006;41(7):833-40. doi: 10.1016/j.ejmech.2006.03.022, PMID 16730396.
Kapoor A, Mishra DN, Narasimhan B. Synthesis, characterization, antibacterial, antifungal evaluation of linoleic acid derivatives. Pharm Lett. 2014;6(5):206-10.
Smith K, El-Hiti GA, Jayne AJ, Butters M. Acetylation of aromatic ethers using acetic anhydride over solid acid catalysts in a solvent-free system. Scope of the reaction for substituted ethers. Org Biomol Chem. 2003;1(9):1560-4. doi: 10.1039/b301260c, PMID 12926287.
Sarova D, Kapoor A, Narang R, Judge V, Narasimhan B. Dodecanoic acid derivatives: synthesis, antimicrobial evaluation and development of one-target and multi-target QSAR models. Med Chem Res. 2011;20(6):769-81. doi: 10.1007/s00044-010-9383-5.
Kapoor A, Mishra DN, Narasimhan B. Antibacterial and antifungal evaluation of synthesized 9,12-octadecadienoic acid derivatives. Pharm Lett. 2014;6(5):246-51.
Kapoor A, Khare N. Antioxidant evaluation of 2,4-thiazolidinedione and rhodanine derivatives. Pharm Lett. 2016;8(14):38-46.
Silverstein MR, Webster FX, In KDJ. Spectrometric identification of organic compounds. 7th ed. New York: John Wiley & Sons, Inc; 2005. p. 150-3.
Sharma P, Kumar A, Sharma M. Synthesis and QSAR studies on 5-[2-(2-methylprop1-enyl)-1H benzimidazol-1yl]-4,6-diphenyl-pyrimidin-2-(5H)-thione derivatives as antibacterial agents. Eur J Med Chem. 2006;41(7):833-40. doi: 10.1016/j.ejmech.2006.03.022, PMID 16730396.
Kapoor A, Dahiya SK. Design, synthesis and antimicrobial evaluation of para-benzoic acid derivatives. Pharm Lett. 2016;8(12):57-67.
Jayaroopa P, Vasanth Kumar G, Renuka N, Harish Nayaka MA, Ajay Kumar K. Evaluation of new pyrazole derivatives for their biological activity: structure-activity relationship. Int J PharmTech Res. 2013;5(1):264-70.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Archana Kapoor, Bharti Thaiya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

