4-Aminoquinolines as Antimalarial Agents: Review of A Medicinal Chemistry Perspective
Pharmaceutical Science-Pharmaceutics
DOI:
https://doi.org/10.22376/ijlpr.2023.13.SP1.P83-P97Keywords:
Malaria, 4-Aminoquinoline, RTS, S Malaria Vaccine, ArtemisininAbstract
Abstract: Malaria is a potentially fatal parasitic disease brought on by five Plasmodium species, including Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi. The fast emergence of P. falciparum resistance to currently available treatments has increased health concerns in developing countries. The growth in resistance emphasizes the need for a novel, secure, and cost-effective antimalarial drug that can treat malaria resistant to multiple antimalarial drugs. Therefore, it has become crucial to create new therapeutic approaches to deal with the rise of parasites resistant to artemisinin. For the treatment of P. falciparum malaria in children living in areas with moderate to high transmission, as established by WHO, the malaria vaccine RTS, S has been authorized. The WHO recommends that governments consider this immunization against a human parasite when deciding the optimum subnational combination of measures for maximum impact. The current research synthesizes numerous 4-aminoquinoline derivatives successfully treating malaria and its diverse etiological species. Additionally crucial to the management and prevention of malaria are antibiotics. Effective and well-tolerated antimalarial medications include tetracycline and chloramphenicol, chloroquine, primaquine, pamaquine, and artemisinins are some of the drugs used to treat malaria; however, numerous new compounds have proven to be even more efficient. This review, based on literature reports, will give medicinal chemists ideas for new malaria drugs to develop. In addition, this review will help search for new antimalarial drug leads in the future.
References
Casteel DA. Antimalarial agents. In: Burger’s medicinal chemistry and drug discovery. 6th ed. Volume 5: Chemotherapeutic Agents. New York: A John Wiley & Sons, Inc. [publication]; 2003, 920-31.
Gogoi J, Chetia D, Kumawat MK, Rudrapal M. Synthesis and antimalarial activity evaluation of some mannich bases of tetraoxane-phenol conjugate. Indian J Pharm Educ Res. 2016;50(4):08-13. doi: 10.5530/ijper.50.1.2.
Kumawat MK, Singh B, Kumar A, Chetia D. A review article on ”Emergence of Drug Resistant Malaria & the Current Research Development”. Curr Trends Pharm Res. 2013;1(2):1-20.
Kumawat MK, Chetia D. Molecular docking studies of some novel 1,2,4,5-tetraoxane derivatives as antimalarial agents. World J Pharm Pharm Sci. 2015;4(10):890-908.
Kumawat MK, Chetia D. Synthesis, antimalarial activity evaluation and molecular docking studies of some novel dispiro-1,2,4,5-tetraoxanes. Bangladesh J Pharmacol. 2015;10(4):917-23. doi: 10.3329/bjp.v10i4.24532.
Kumawat MK, Chetia D. Molecular docking studies of some novel hybrid Tetraoxaquines & Dispirotetraoxanes as antimalarial agents. Int J Pharm Sci Res. 2016;7(3):1353-64.
Bairy PS, Das A, Nainwal LM, Mohanta TK, Kumawat MK, Mohapatra PK et al. Design, synthesis and anti-diabetic activity of some novel xanthone derivatives targeting α-glucosidase. Bangladesh J Pharmacol. 2016;11(2):308-18. doi: 10.3329/bjp.v11i2.25851.
Kumawat MK, Parida P, Chetia D. Synthesis, antimalarial activity evaluation and docking studies of some novel Tetraoxaquines. Med Chem Res. 2016;25(9):1993-2004. doi: 10.1007/s00044-016-1644-5.
Kumawat MK, Singh UP, Singh B, Prakash A, Chetia D. Synthesis and antimalarial Activity Evaluation of 3-(3-(7-chloroquinolin-4-ylamino)propyl)-1,3-thiazinan-4-one derivatives. Arab J Chem. 2016;9:S643-7. doi: 10.1016/j.arabjc.2011.07.007.
Kumawat MK. Review Paper on ”thiazole containing heterocycles with antimalarial activity”. Curr Drug Discov Technol (Bentham Science). 2018;15(3):196-200. doi: 10.2174/1570163814666170725114159, PMID 28745209.
Kumawat MK, Singh UP, Chetia D. Design and discovery of 3,6-Substituted-1,2,4,5-tetraoxanes as novel class of falcipain-2 inhibitor for antimalarial action. Pharm Chem J. 2019;53(9):822-30. doi: 10.1007/s11094-019-02085-x.
Kumawat MK, Chetia D. Synthesis, antimalarial activity evaluation and molecular docking studies of some new substituted spiro-1,2,4,5-tetraoxane derivatives. Pharm Chem J. 2021;55(8):814-20. doi: 10.1007/s11094-021-02500-2.
Sharma R, Kumar Kumawat M, Kumar Sharma G. In-silico Design and Molecular Docking studies of some novel 4-aminoquinoline-Monastrol hybrids for their antimalarial activity. Res J Pharm Technol. 2022;15(10):4589-93. doi: 10.52711/0974-360X.2022.00770.
White NJ. Plasmodium knowlesi: the fifth human malaria parasite. Clin Infect Dis. 2008;46(2):172-3. doi: 10.1086/524889, PMID 18171246.
Available from: http://www.rbm.who.int/what is malaria? Roll back malaria. Geneva: World Health Organization.
Available from: http://www.who.int assessed on 23.05.2022.
Jagannathan P, Kakuru A. Malaria in 2022: increasing challenges, cautious optimism. Nat Commun. 2022;13(1):2678. doi: 10.1038/s41467-022-30133-w, PMID 35562368.
Rietveld A, editor. Malaria elimination: A field manual for low and moderate endemic countries. WHO Global Malaria Programme; 2007.
https://www.cdc.gov/malaria/about/biology/assessed on 23.05.2022.
[cited 19.8.2022]Available from: http://www.nvbdcp.gov.in.
Robert A, Benoit-Vical F, Dechy-Cabaret O, Meunier B. From classical antimalarial drugs to new compounds based on the mechanism of action of artemisinin. Pure Appl Chem. 2001;73(7):1173-88. doi: 10.1351/pac200173071173.
O’Neill PM, Bray PG, Hawley SR, Ward SA, Park BK. 4-aminoquinolines: past, present and future: a chemical perspective. Pharmacol Ther. 1998;77(1):29-58. doi: 10.1016/s0163-7258(97)00084-3, PMID 9500158.
Bloland PB. Drug resistance in malaria. Geneva: WHO. World Health Organization/CDS/CSR/DRS/2001.4; 2001. p. 1-20.
Chiang PK, Bujnicki JM, Su X, Lanar DE. Malaria: therapy, genes and vaccines. Curr Mol Med. 2006;6(3):309-26. doi: 10.2174/156652406776894545, PMID 16712477.
Kalra R, Diwan A, Kumar J, Sharma S. Simultaneous estimation of artemether and curcumin by RP-HPLC method. Pharmacophore. 2016;7(3):141-51.
Singh B, Chetia D, Kumawat MK. Synthesis and in-vitro antimalarial Activity Evaluation of Some New 1,2-diaminopropane Side-Chain-Modified 4-aminoquinoline Mannich Bases. Pharm Chem J. 2021;55(7):724-31. doi: 10.1007/s11094-021-02484-z.
Kumawat MK, Singh UP, Singh B, Prakash A, Chetia D. Synthesis and antimalarial Activity Evaluation of 3-(3-(7-chloroquinolin-4-ylamino)propyl)-1,3-thiazinan-4-one derivatives. Arab J Chem. 2016;9:S643-7. doi: 10.1016/j.arabjc.2011.07.007.
Wenzel NI, Chavain N, Wang Y, Friebolin W, Maes L, Pradines B et al. Antimalarial versus cytotoxic properties of dual drugs derived from 4-aminoquinolines and mannich bases: interaction with DNA. J Med Chem. 2010;53(8):3214-26. doi: 10.1021/jm9018383, PMID 20329733.
Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB. Synthesis and antimalarial Activity of Side Chain Modified 4-aminoquinoline Derivatives. J Med Chem. 2007;50(2):394-8. doi: 10.1021/jm061002i, PMID 17228883.
Musonda CC, Little S, Yardley V, Chibale K. Application of Multicomponent Reactions to antimalarial Drug Discovery. Part 3: Discovery of aminoxazole-4-aminoquinolines with Potent antiplasmodial Activity in-vitro. Bioorg Med Chem Lett. 2007;17(17):4733-6. doi: 10.1016/j.bmcl.2007.06.070, PMID 17644333.
Freitag M, Kaiser M, Larsen T, Zohrabi-Kalantari V, Heidler P, Link A. Synthesis and antiplasmodial activity of new N-[3-(4-{3-[(7-chloroquinolin-4-yl)amino]propyl}piperazin-1-yl)propyl]carboxamides. Bioorg Med Chem. 2007;15(7):2782-8. doi: 10.1016/j.bmc.2006.12.034, PMID 17280835.
Delarue-Cochin S, Grellier P, Maes L, Mouray E, Sergheraert C, Melnyk P. Synthesis and antimalarial Activity of carbamate and amide Derivatives of 4-anilinoquinoline. Eur J Med Chem. 2007;20:1-11.
Miroshnikova OV, Hudson TH, Gerena L, Kyle DE, Lin AJ. Synthesis and antimalarial activity of new Isotebuquine analogues. J Med Chem. 2007;50(4):889-96. doi: 10.1021/jm061232x, PMID 17266295.
Ryckebusch A, Debreu-Fontaine MA, Mouray E, Grellier P, Sergheraert C, Melnyk P. Synthesis and antimalarial Evaluation of New N1-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)-piperazine derivatives. Bioorg Med Chem Lett. 2005;15(2):297-302. doi: 10.1016/j.bmcl.2004.10.080, PMID 15603943.
Sparatore A, Basilico N, Parapini S, Romeo S, Novelli F, Sparatore F et al. 4-aminoquinoline quinolizidinyl- and quinolizidinylalkyl-Derivatives with antimalarial Activity. Bioorg Med Chem. 2005;13(18):5338-45. doi: 10.1016/j.bmc.2005.06.047, PMID 16054368.
Madrid PB, Sherrill J, Liou AP, Weisman JL, DeRisi JL, Guy RK. Synthesis of Ring-Substituted 4-aminoquinolines and Evaluation of Their antimalarial Activities. Bioorg Med Chem Lett. 2005;15(4):1015-8. doi: 10.1016/j.bmcl.2004.12.037, PMID 15686903.
Madrid PB, Wilson NT, DeRisi JL, Guy RK. Parallel Synthesis and antimalarial Screening of a 4-aminoquinoline Library. J Comb Chem. 2004;6(3):437-42. doi: 10.1021/cc0340473, PMID 15132606.
O’Neill PM, Mukhtar A, Stocks PA, Randle LE, Hindley S, Ward SA et al. Isoquine and related amodiaquine analogues: a new generation of improved 4-aminoquinoline antimalarials. J Med Chem. 2003;46(23):4933-45. doi: 10.1021/jm030796n, PMID 14584944.
Delarue S, Girault S, Maes L, Debreu-Fontaine MA, Labaeïd M, Grellier P; et al. Synthesis and in-vitro and in-vivo antimalarial Activity of New 4-anilinoquinolines. J Med Chem. 2001;44(17):2827-33. doi: 10.1021/jm010842o, PMID 11495593.
Raynes KJ, Stocks PA, O’Neill PM, Park BK, Ward SA. New 4-aminoquinoline Mannich Base antimalarials. 1. Effect of an alkyl substituent in the 5 ́-position of the 4 ́-Hydroxyanilino side Chain. J Med Chem. 1999;42(15):2747-51. doi: 10.1021/jm9901374, PMID 10425085.
De D, Krogstad FM, Byers LD, Krogstad DJ. Structure-activity relationships for antiplasmodial activity among 7-Substituted-4-aminoquinolines. J Med Chem. 1998;41(25):4918-26. doi: 10.1021/jm980146x, PMID 9836608.
O’Neill PM, Willock DJ, Hawley SR, Bray PG, Storr RC, Ward SA et al. Synthesis, antimalarial activity, and molecular modelling of tebuquine analogues. J Med Chem. 1997;40(4):437-48. doi: 10.1021/jm960370r, PMID 9046333.
O’Neill PM, Hawley SR, Storr RC, Ward SA, Kevin Park BK. The effect of fluorine substitution on the antimalarial activity of tebuquine. Bioorg Med Chem Lett. 1996;6(4):391-2. doi: 10.1016/0960-894X(96)00040-6.
O’Neill PM, Harrison AC, Storr RC, Hawley SR, Ward SA, Park BK. The effect of fluorine substitution on the metabolism and antimalarial activity of amodiaquine. J Med Chem. 1994;37(9):1362-70. doi: 10.1021/jm00035a017, PMID 8176713.
Kesten SJ, Johnson J, Werbel LM. Synthesis and antimalarial Effects of 4-[(7-chloro-4-quinolinyl)-amino]-2-[(diethylamino)-methyl]-6alkylphenols and Their N’-oxides. J Med Chem. 1987;30(5):906-11. doi: 10.1021/jm00388a027, PMID 3553599.
Werbel LM, Cook PD, Elslager EF, Hung JH, Johnson JL, Kesten SJ et al. Synthesis, antimalarial Activity, and Quantitative Structure Activity Relationships of tebuquine and a Series of Related 5-[(7-chloro-4-quinolinyl)amino]-3-[(alkylamino)methyl][1,1′-biphenyl]-2-ols and N’-oxides. J Med Chem. 1986;29(6):924-39. doi: 10.1021/jm00156a009, PMID 3712383.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Mukesh Kumar Kumawat, Manoj Kumar Sharma, Narender Yadav, Bhupendra Singh
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.