Potential of Sodium-Glucose Cotransporter Inhibitors as Agents for Prevention of Ischemic and Reperfusion Kidney Injury
Life Sciences-Health
DOI:
https://doi.org/10.22376/ijpbs/lpr.2022.12.6.SP23.L44-50Keywords:
Glucose-Lowering Agents, Sodium-Glucose Cotransporter, Cardiovascular System, KidneysAbstract
Sodium-glucose cotransporter 2 inhibitors are a relatively new class of glucose-lowering agents with significant advantages over other groups due to their good safety profile and protective effects on the cardiovascular system and kidneys. Today, the question of their ability to prevent and reduce the severity of acute kidney injury remains relevant. The primary objective of the study is to investigate the Potential of Sodium-Glucose Cotransporter Inhibitors as Agents for the Prevention of Ischemic and Reperfusion Kidney Injury. To gratify that objective, the experiment was performed on 80 Wistar line male rats. Acute kidney injury was simulated by reproducing a bilateral 40-minute renal ischemia-reperfusion. sodium-glucose cotransporter inhibitors were administered before surgery: dapagliflozin at doses of 0.5 mg/kg and 1 mg/kg, canagliflozin - 8.6 mg/kg and 25.7 mg/kg, empagliflozin - 1 mg/kg and 2 mg/kg. The renoprotective effects were evaluated after 72 hours based on the following parameters: serum creatinine and urea concentrations, glomerular filtration rate and fractional sodium excretion, as well as the level of renal microcirculation. Based on the results acquired, Preliminary administration of dapagliflozin, canagliflozin and empagliflozin led to a statistically significant decrease in the level of serum creatinine concentration and fractional sodium excretion, as well as an increase in the glomerular filtration rate, compared with the control group. The results demonstrated their dosedependent effect and ability to improve the parameters of renal microcirculation. Plus, the results of the study demonstrate a high dose-dependent renoprotective potential of sodium-glucose cotransporter 2 inhibitors (dapagliflozin, canagliflozin and empagliflozin) on a model of bilateral renal ischemia-reperfusion. The results of this study can greatly contribute to the respective field.
References
KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1-138.
Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119(18):2444-53. doi: 10.1161/CIRCULATIONAHA.108.800011, PMID 19398670.
Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949-64. doi: 10.1016/S0140-6736(19)32563-2, PMID 31777389.
Yang L, Xing G, Wang L, Wu Y, Li S, Xu G, et al. Acute kidney injury in China: a cross-sectional survey. Lancet. 2015;386(10002):1465-71. doi: 10.1016/S0140-6736(15)00344-X, PMID 26466051.
Shu S, Wang Y, Zheng M, Liu Z, Cai J, Tang C, et al. Hypoxia and hypoxia-inducible factors in kidney injury and repair. Cells. 2019;8(3):207. doi: 10.3390/cells8030207, PMID 30823476.
Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi: 10.1038/s41572-021-00284-z, PMID 34267223.
Shchurovskaya KV, Pobeda AS, Pokrovskii MV, Solovev NV, Kulikovskaya VA, Peresypkina AA et al. Protective effect of Asialized erythropoietin in modelling of retinal ischemia-reperfusion. J Res Med Dent Sci. 2021;9(8):286-90.
Semeleva EV, Blinova EV, Zaborovsky AV, Gromova IA, Shukurov AS, Blinov DS et al. Metal-containing taurine compounds protect rat’s brain in reperfusion-induced injury. Res Results Pharmacol. 2020;6(4):43-9. doi: 10.3897/rrpharmacology.6.59857.
Levkova EA, Pazhinsky AL, Lugovskoy SS, Peresypkina AA, Bashuk VV, Pazhinsky LV et al. Correction of retinal ischemic injuries by using non-selective imidazoline receptor agonists in the experiment. Res Results Pharmacol. 2019;5(4):7-17. doi: 10.3897/rrpharmacology.5.38498.
Naito H, Nojima T, Fujisaki N, Tsukahara K, Yamamoto H, Yamada T, et al. Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Med Surg. 2020;7(1):e501. doi: 10.1002/ams2.501, PMID 32431842.
Kim GA, Gan’shina TS, Kurza EV, Kurdyumov IN, Maslennikov DV, Mirzoian RS. New cerebrovascular agent with hypotensive activity. Res Results Pharmacol. 2019;5(2):71-7. doi: 10.3897/rrpharmacology.5.35392.
Voronkov AV, Pozdnyakov DI. Neuroprotective effect of L-carnitine. Focus on changing mitochondrial function. Res Results Pharmacol. 2020;6(4):29-42. doi: 10.3897/rrpharmacology.6.57419.
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524-51. doi: 10.1016/j.redox.2015.08.020, PMID 26484802.
Saadat-Gilani K, Zarbock A, Meersch M. Perioperative renoprotection: clinical implications. Anesth Analg. 2020;131(6):1667-78. doi: 10.1213/ANE.0000000000004995, PMID 33186156.
Golubev IV, Gureev VV, Korokin MV, Zatolokina MA, Avdeeva EV, Gureeva AV et al. Preclinical study of innovative peptides mimicking the tertiary structure of the α-helix B of erythropoietin. Res Results Pharmacol. 2020;6(2):85-96. doi: 10.3897/rrpharmacology.6.55385.
Belyaeva VS, Stepenko YuV, Lyubimov II, Kulikov AL, Tietze AA, Kochkarova IS et al., Kru-pen’kina LA, Nagikh AS, Pokrovskiy VM, Patrakhanov EA, Belashova AV, Lebedev PR, Gureeva AV Non-hematopoietic erythropoietin-derived peptides for atheroprotection and treatment of cardiovascular diseases. Research Results in Pharmacology. 2020;6(3): 75-86. https://doi.org/10.3897/rrpharmacology.6.58891.
Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol. 2015;35(1):96-107. doi: 10.1016/j.semnephrol.2015.01.010, PMID 25795503.
Elagin V, Bratchikov O, Zatolokina M. Correction of morphofunctional disorders with assessed erythropoietin and selective arginase II inhibitor KUD975 for ischemic kidney damage in the experiment. Res Results Pharmacol. 2018;4(4):29-40. doi: 10.3897/rrpharmacology.4.31846.
Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol. 2016;27(2):371-9. doi: 10.1681/ASN.2015030261, PMID 26561643.
Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M et al. Empagliflozin and progression of kidney disease in Type 2 diabetes. N Engl J Med. 2016;375(4):323-34. doi: 10.1056/NEJMoa1515920, PMID 27299675.
Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6(9):691-704. doi: 10.1016/S2213-8587(18)30141-4, PMID 29937267.
Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7(8):606-17. doi: 10.1016/S2213-8587(19)30180-9, PMID 31196815 [published correction appears in Lancet Diabetes Endocrinol. 2019 August;7(8):e20].
Gruzdeva AA, Khokhlov AL, Ilyin MV. Risk management strategy for preventing the reduced treatment effectiveness from the position of drug interactions and polypharmacy in patients with coronary heart disease. Res Results Pharmacol. 2020;6(4):85-92. doi: 10.3897/rrpharmacology.6.60164.
Kharina VI, Berezhnova TA. Evaluation of the effectiveness of pharmacotherapy for brain and heart diseases by monitoring the effects of drugs. Res Results Pharmacol. 2020;6(2):43-55. doi: 10.3897/rrpharmacology.6.52300.
Gilbert RE, Thorpe KE. Acute kidney injury with sodium‐glucose co‐transporter‐2 inhibitors: A meta-analysis of cardiovascular outcome trials. Diabetes Obes Metab. 2019;21(8):1996-2000. doi: 10.1111/dom.13754, PMID 31050116.
Zhao M, Sun S, Huang Z, Wang T, Tang H. Network meta-analysis of novel glucose-lowering drugs on risk of acute kidney injury. Clin J Am Soc Nephrol. 2020;16(1):70-8. doi: 10.2215/CJN.11220720, PMID 33376101.
FDA Drug Safety Communication: FDA strengthens kidney warnings for diabetes medicines canagliflozin (Invokana, Invokamet) and dapagliflozin (Farxiga, Xigduo XR) [safety announcement]. Silver Spring, (MD): U.S. Food and Drug Administration; 2016 June 14 [cited Sep 3 2021]. Available from: http://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-strengthens-kidney-warnings-diabetes-medicines-canagliflozin.
Hahn K, Ejaz AA, Kanbay M, Lanaspa MA, Johnson RJ. Acute kidney injury from SGLT2 inhibitors: potential mechanisms. Nat Rev Nephrol. 2016;12(12):711-2. doi: 10.1038/nrneph.2016.159, PMID 27847389.
Kostina DA, Pokrovskaya TG, Poltev VY. Renoprotective effect of carbamylated darbepoetin and udenafil in ischemia-reperfusion of rat kidney due to the effect of preconditioning and inhibition of nuclear factor kappa B. Res Results Pharmacol. 2021;7(1):1-19. doi: 10.3897/rrpharmacology.7.63059.
Liu M, Reddy NM, Higbee EM, Potteti HR, Noel S, Racusen L, et al. The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice. Kidney Int. 2014;85(1):134-41. doi: 10.1038/ki.2013.357, PMID 24088953.
Miao AF, Liang JX, Yao L, Han JL, Zhou LJ. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against renal ischemia/reperfusion injury by inhibiting inflammation. Ren Fail. 2021;43(1):803-10. doi: 10.1080/0886022X.2021.1915801, PMID 33966598.
Moore PK, Hsu RK, Liu KD. Management of acute kidney injury: core curriculum 2018. Am J Kidney Dis. 2018;72(1):136-48. doi: 10.1053/j.ajkd.2017.11.021, PMID 29478864.
Tuttle KR, Brosius FC 3rd, Cavender MA, Fioretto P, Fowler KJ, Heerspink HJL, et al. SGLT2 inhibition for CKD and cardiovascular disease in Type 2 diabetes: report of a scientific workshop sponsored by the National Kidney Foundation. Am J Kidney Dis. 2021;77(1):94-109. doi: 10.1053/j.ajkd.2020.08.003, PMID 33121838.
Ali BH, Al Salam S, Al Suleimani Y, Al Za’abi M, Abdelrahman AM, Ashique M et al. Effects of the SGLT-2 inhibitor canagliflozin on adenine-induced chronic kidney disease in rats. Cell Physiol Biochem. 2019;52(1):27-39. doi: 10.33594/000000003, PMID 30790503.
Abdel-Wahab AF, Bamagous GA, Al-Harizy RM, et al. Renal protective effect of SGLT2 inhibitor dapagliflozin alone and in combination with irbesartan in a rat model of diabetic nephropathy. Biomed Pharmacother. 2018;103:59-66. doi: 10.1016/j.biopha.2018.03.176, PMID 29635129 Cassis, P., Locatelli, M., Cerullo, D.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Vladimir Yu. Poltev, Mikhail V. Pokrovskii, Igor B. Kovalenko, Darya A. Kostina

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

