Enhancement of Lipid and Biomass Production in Microalgae Scenedesmus abundans by Microwave Irradiation
Life Sciences-Biotechnology
DOI:
https://doi.org/10.22376/ijpbs/lpr.2022.12.5.L130-136.Keywords:
Scenedesmus Abundans, Biodiesel, Microalgae, Triacylglycerol, Microwave RadiationAbstract
Due to the rising depletion of fossil fuels and increased energy demands, human society is looking for clean sustainable energy. Commercially produced algal biodiesel is limited by the expense and difficulty of oil extraction and subsequent biodiesel conversion technologies. Microalgae with high oil content are only alternatives for decreasing fossil fuel supplies, but more work remains to be done to improve the lipid content of microalgae strains. In this study, strain improvement is done using microwave radiation in Scenedesmus abundans to increase the production of triacylglycerol, which is the main source of biodiesel. Microalgal cultures were exposed to varied microwave irradiation over different time periods. Under microwave irradiation, 20-25 mins reaction time seems suitable for the complete in situ transesterification reaction. Microwave heating transesterification has been shown to be more effective for adequate biodiesel yield compared to the conventional transesterification process. Maximum increase of 2.22-fold in biomass, and 2.5-fold in triacylglycerol was observed for microwave irradiation of 25 mins and 20 mins intervals respectively. The percentage of some monounsaturated fatty acids increased in gas chromatographic examination of neutral lipid fractions from total lipids of microwave irradiated samples, is considered as one of the preferable properties of biodiesel. According to our study findings, Scenedesmus abundans qualifies as the most efficient feedstock for biodiesel production, and microwave-assisted in situ transesterification reduces the requirement for a large amount of solvents, longer reaction times, and high reaction temperatures and pressures.
References
Leonard MD, Michaelides EE, Michaelides DN. Substitution of coal power plants with renewable energy sources – shift of the power demand and energy storage. Energy Convers Manag. 2018 May 15;164:27-35. doi: 10.1016/j.enconman.2018.02.083.
Akorede MF, Hizam H, Pouresmaeil E. Distributed energy resources and benefits to the environment. Renew Sustain Energy Rev. 2010 Feb 1;14(2):724-34. doi: 10.1016/j.rser.2009.10.025.
Homer-Dixon TF. On the threshold: environmental changes as causes of acute conflict. Int Sec. 1991;16(2):76-116. doi: 10.2307/2539061.
Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev. 2013 Mar 1;19:360-9. doi: 10.1016/j.rser.2012.11.030.
Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS. Microalgae-based biorefinery–from biofuels to natural products. Bioresour Technol. 2013 May 1;135:166-74. doi: 10.1016/j.biortech.2012.10.099, PMID 23206809.
Sharma YC, Singh V. Microalgal biodiesel: a possible solution for India’s energy security. Renew Sustain Energy Rev. 2017 Jan 1;67:72-88. doi: 10.1016/j.rser.2016.08.031.
Okullo SJ, Reynès F, Hofkes MW. Modeling peak oil and the geological constraints on oil production. Resour Energy Econ. 2015 May 1;40:36-56. doi: 10.1016/j.reseneeco.2015.01.002.
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012 Aug;488(7411):294-303. doi: 10.1038/nature11475, PMID 22895334.
Christopher LP, Hemanathan Kumar H, Zambare VP. Enzymatic biodiesel: challenges and opportunities. Appl Energy. 2014 Apr 15;119:497-520. doi: 10.1016/j.apenergy.2014.01.017.
Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci. 2005 Jan 1;31(5-6):466-87. doi: 10.1016/j.pecs.2005.09.001.
Tan KT, Lee KT, Mohamed AR, Bhatia S. Palm oil: addressing issues and towards sustainable development. Renew Sustain Energy Rev. 2009 Feb 1;13(2):420-7. doi: 10.1016/j.rser.2007.10.001.
Enamala MK, Enamala S, Chavali M, Donepudi J, Yadavalli R, Kolapalli B et al. Production of biofuels from microalgae – A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sustain Energy Rev. 2018 Oct 1;94:49-68. doi: 10.1016/j.rser.2018.05.012.
Demirbas A, Fatih Demirbas MF. Importance of algae oil as a source of biodiesel. Energy Convers Manag. 2011 Jan 1;52(1):163-70. doi: 10.1016/j.enconman.2010.06.055.
Rincon SM, Romero HM, Aframehr WM, Beyenal H. Biomass production in Chlorella vulgaris biofilm cultivated under mixotrophic growth conditions. Algal Res. 2017 Sep 1;26:153-60. doi: 10.1016/j.algal.2017.07.014.
Sahin MS, Khazi MI, Demirel Z, Dalay MC. Variation in growth, fucoxanthin, fatty acids profile and lipid content of marine diatoms Nitzschia sp. and Nanofrustulum shiloi in response to nitrogen and iron. Biocatal Agric Biotechnol. 2019 Jan 1;17:390-8. doi: 10.1016/j.bcab.2018.12.023.
Teo CL, Idris A. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production. Bioresour Technol. 2014 Nov 1;171:477-81. doi: 10.1016/j.biortech.2014.08.024, PMID 25201293.
Hac İsa M, Metin C, Ercan E, Alparslan Y. Effect of different cell disruption methods on lipid yield of Schizochytrium sp. J Americ Oil Chem Soc. 2022 Feb;99(2):129-39. doi: 10.1002/aocs.12551.
Saha SK, McHugh E, Hayes J, Moane S, Walsh D, Murray P. Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol. 2013 Jan 1;128:118-24. doi: 10.1016/j.biortech.2012.10.049, PMID 23196231.
Milano J, Ong HC, Masjuki HH, Silitonga AS, Chen WH, Kusumo F et al. Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Convers Manag. 2018 Feb 15;158:400-15. doi: 10.1016/j.enconman.2017.12.027.
Sivaramakrishnan R, Suresh S, Pugazhendhi A, Mercy Nisha Pauline JM, Incharoensakdi A. Response of Scenedesmus sp. to microwave treatment: enhancement of lipid, exopolysaccharide and biomass production. Bioresour Technol. 2020 Sep 1;312:123562. doi: 10.1016/j.biortech.2020.123562, PMID 32504948.
SundarRajan P, Gopinath KP, Arun J, GracePavithra K, Pavendan K, AdithyaJoseph A. An insight into carbon balance of product streams from hydrothermal liquefaction of Scenedesmus abundans biomass. Renew Energy. 2020 May 1;151:79-87. doi: 10.1016/j.renene.2019.11.011.
Mehta AK, Chakraborty S. A rapid, low-cost flocculation technology for enhanced microalgae harvesting. Bioresour Technol Rep. 2021 Dec 1;16:100856. doi: 10.1016/j.biteb.2021.100856.
Mamo TT, Mekonnen YS. Microwave-assisted biodiesel production from microalgae, Scenedesmus species, using goat bone–made nano-catalyst. Appl Biochem Biotechnol. 2020 Apr;190(4):1147-62. doi: 10.1007/s12010-019-03149-0, PMID 31712990.
Löfgren L, Forsberg GB, Ståhlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep. 2016 Jun 10;6(1):27688. doi: 10.1038/srep27688, PMID 27282822.
Dickson L, Bull ID, Gates PJ, Evershed RP. A simple modification of a silicic acid lipid fractionation protocol to eliminate free fatty acids from glycolipid and phospholipid fractions. J Microbiol Methods. 2009 Sep 1;78(3):249-54. doi: 10.1016/j.mimet.2009.05.014, PMID 19481119.
Soylu EN, Gönülol A. Morphological and 18S rRNA analysis of coccoid green algae isolated from lakes of Kızılırmak Delta. Turk J Biol. 2012 Apr 25;36(3):247-54. doi: 10.3906/biy-1001-19.
Cho DH, Ramanan R, Kim BH, Lee J, Kim S, Yoo C et al. Novel approach for the development of axenic microalgal cultures from environmental samples. J Phycol. 2013 Aug;49(4):802-10. doi: 10.1111/jpy.12091, PMID 27007211.
Yirgu Z, Leta S, Hussen A, Khan MM. Pretreatment and optimization of reducing sugar extraction from indigenous microalgae grown on brewery wastewater for bioethanol production. Biomass Conv Bioref. 2021 Aug 11:1-5. doi: 10.1007/s13399-021-01779-1.
Muhammad G, Alam MA, Mofijur M, Jahirul MI, Lv Y, Xiong W et al. Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew Sustain Energy Rev. 2021 Jan 1;135:110209. doi: 10.1016/j.rser.2020.110209.
Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R et al.. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels. 2013;6(1):1. doi: 10.1186/1754-6834-6-1. PMID 23298573.
Ajala EO, Ajala MA, Akinpelu GS, Akubude VC. Cultivation and processing of microalgae for its sustainability as a feedstock for biodiesel production. Nig J Technol Dev. 2021;18(4):322-43. doi: 10.4314/njtd.v18i4.8.
Braunwald T, Schwemmlein L, Graeff-Hönninger S, French WT, Hernandez R, Holmes WE et al. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol. 2013 Jul;97(14):6581-8. doi: 10.1007/s00253-013-5005-8, PMID 23728238.
Mercer P, Armenta RE. Developments in oil extraction from microalgae. Eur J Lipid Sci Technol. 2011 May;113(5):539-47. doi: 10.1002/ejlt.201000455.
Kapoore RV, Butler TO, Pandhal J, Vaidyanathan S. Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology. 2018 Mar;7(1):18. doi: 10.3390/biology7010018, PMID 29462888.
Raner KD, Strauss CR, Trainor RW, Thorn JS. A new microwave reactor for batchwise organic synthesis. J Org Chem. 1995 Apr;60(8):2456-60. doi: 10.1021/jo00113a028.
Elgarahy AM, Elwakeel KZ, Elshoubaky GA, Mohammad SH. Microwave-accelerated sorption of cationic dyes onto green marine algal biomass. Environ Sci Pollut Res Int. 2019 Aug;26(22):22704-22. doi: 10.1007/s11356-019-05417-2, PMID 31172437.
Vali Aftari R, Rezaei K, Mortazavi A, Bandani AR. The optimized concentration and purity of Spirulina platensis C‐phycocyanin: a comparative study on microwave‐assisted and ultrasound‐assisted extraction methods. J Food Process Preserv. 2015 Dec;39(6):3080-91. doi: 10.1111/jfpp.12573.
Salema AA, Ani FN. Microwave induced pyrolysis of oil palm biomass. Bioresour Technol. 2011 Feb 1;102(3):3388-95. doi: 10.1016/j.biortech.2010.09.115, PMID 20970995.
Yao S, Mettu S, Law SQK, Ashokkumar M, Martin GJO. The effect of high-intensity ultrasound on cell disruption and lipid extraction from high-solids viscous slurries of Nannochloropsis sp. biomass. Algal Res. 2018 Nov 1;35:341-8. doi: 10.1016/j.algal.2018.09.004.
Kendrick A, Ratledge C. Lipids of selected molds grown for production of n− 3 and n− 6 polyunsaturated fatty acids. Lipids. 1992 Jan;27(1):15-20. doi: 10.1007/BF02537052, PMID 1608297.
García Regueiro JA, Gibert J, Díaz I. Determination of neutral lipids from subcutaneous fat of cured ham by capillary gas chromatography and liquid chromatography. J Chromatogr A. 1994 Apr 29;667(1-2):225-33. doi: 10.1016/0021-9673(94)89071-4, PMID 8025629.
Kenyon CN. Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol. 1972 Feb;109(2):827-34. doi: 10.1128/jb.109.2.827-834.1972, PMID 4621688.
Guihéneuf F, Schmid M, Stengel DB. Lipids and fatty acids in algae: extraction, fractionation into lipid classes, and analysis by gas chromatography coupled with flame ionization detector (GC-FID). Methods Mol Biol. 2015;1308:(173-90). doi: 10.1007/978-1-4939-2684-8_11, PMID 26108506.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Bhanu Rajarajeswari Kapavarap, Sree Rama Chandra Karthik Kotikalapudi, Krishna Keerthika Oruganti, Sreedhar Bodiga, Vijaya Lakshmi Bodiga, Suryanarayana Veeravilli, Sudhakar Poda, Praveen Kumar Vemuri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

