Characterizing The Effect of Thermal Annealing Process on the Physical and Structural Properties of Polybutester Suture Fibers.

Life Sciences - Material Science

Authors

  • Afaf M. Ali Physics Department, Faculty of Science, Mansoura University, Egypt
  • Ali H Amin Deanship of Scientific Research, Umm Al-Qura University, KSA
  • Fatma M. Z Physics Department, Faculty of science, Umm Al- Qura University, KSA

DOI:

https://doi.org/10.22376/ijpbs/lpr.2022.12.5.L145-155

Keywords:

Crystallinity, Annealing Process, Refractive Indices, Orientations, Dielectric Constant

Abstract

In this work the effect of thermal annealing treatment on the different physical, optical and structural of surgical suture fibers were considered. Polybutester monofilaments suture fibers were thermally annealed at temperatures fluctuating from 50-130? for two different periods of 60 and 120 min. The thermal-treatment was supported using taut end settings. Multiple-beam Fizeau fringes in transmission and X-ray diffraction techniques were used to measure the physical and structural properties of the tested sutures. Such as refractive indices, birefringence, dielectric constant, polarizability, dielectric susceptibility and the crystallinity. From the obtained measured data , there was a noticeable increase in the physical properties and crystallinity throughout the annealing process for annealing time 120 min. which indicates that a new reorientation of Novafil suture molecules was performed, which will improve the mechanical properties of the sutures. This is a significant enhancement for these suture fibers to broaden their medical use and improve their clinical results. The new molecular reorientation of the Novafil surgical sutures was performed using the annealing process which demonstrates the polymer-chain relaxation during the thermal annealing process. Micro Interferograms were used to illustrate these findings.

References

Azimi B, Nourpanah P, Rabiee M, Arbab S, Rabiee M, Arbab S. Poly(ε-caprolactone) fiber: an overview. J Engineered Fibers Fabr. 2014;9(3):74-90.

Desire A, José N, Andrés P, Robert EC, Javier D. Physical and mechanical evaluation of five suture materials on three knot configurations: an in vitro study. Polymer. 2016;8(4).

Bernstein RM, Rassman WR, Rashid N. A new suture for hair transplantation: poliglecaprone 25. Dermatol Surg. 2001;27(1):5-11, PMID 11231232.

Somerville NJ. Wound closure manual U.S.A. 1st ed; 2005.

Hurrell S, Cameron RE. Polyglycolide: degradation and drug release. Part I: Changes in morphology during degradation. J Mater Sci Mater Med. 2001;12(9):811-6. doi: 10.1023/a:1017925019985, PMID 15348229.

El-Farahaty KA, El-Bakary MA, El-Sayed NM. The effect of different thermal treatment on the physical properties of PGA/PCL copolymer suture material. Microsc Res Tech. 2018;81(1):64-73. doi: 10.1002/jemt.22957, PMID 29027720.

Frumar M, Jedelský J, Frumarová B, Wágner T, Hrdlička M. Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J Non-Crystal Solids. 2003;326-327(1):399-404. doi: 10.1016/S0022-3093(03)00446-0.

Sokkar TZN, El-Farhaty KA, El-Bakary MA, Ali AM, Ahmed AA. The effect of short heat treatment on different properties of PET fiber using double beam interference microscopy. M. A. A. A. M. A. A. A. Microsc Res Tech. 2018;81(3):283-91. doi: 10.1002/jemt.22977.

Yassien KM, El-Bakary MA. Effect of gamma irradiation on the physical and structural properties of basalt fiber. Microsc Res Tech. 2019;82(6):643-50. doi: 10.1002/jemt.23210, PMID 30698301.

Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol. 2008;19(12):634-43. doi: 10.1016/j.tifs.2008.07.003.

Ali AM. The impact of processing conditions on the structural and optical properties of the as-spun polyamides fibers. Microsc Res Tech. 2019;82(11):1922-7. doi: 10.1002/jemt.23360, PMID 31407835.

Ali A, El-Dessouky H. An insight on the process–property relationships of melt spun polylactic acid fibers. Text Res J. 2019;89(23-24):4959-66. doi: 10.1177/0040517519845684.

Ali AM. The impact of the thermal annealing conditions on the structural properties of polylactic acid fibers. Microsc Res Tech. 2022;85(3):875-81. doi: 10.1002/jemt.23956, PMID 34612570.

Barakat N, Hamza AA. Interferometry of fibrous materials. Bristol, Hilger; 1990.

Ali AM. Some structural properties of dynamically drawn iPP fibers. Opt Photonics J. 2017;07(6):109-21. doi: 10.4236/opj.2017.76011.

Billinge, R. E. D. a. S.J. 2008. "Powder diffraction: theory and practice." Royal Society of Chemistry. 2nd ed.

Viswanath V, Maity S, Bochinski JR, Clarke LI, Gorga RE. Enhanced crystallinity of polymer nanofibers without loss of nanofibrous morphology via heterogeneous photothermal annealing. Macromolecules. 2016;49(24):9484-92. doi: 10.1021/acs.macromol.6b01655.

Bronzino JD. The biomedical engineering handbook; 1999.

Viswanath V, Maity S, Bochinski JR, Clarke LI, Gorga RE. Enhanced crystallinity of polymer nanofibers without loss of nanofibrous morphology via heterogeneous photothermal annealing. Macromolecules. 2016;49(24):9484-92. doi: 10.1021/acs.macromol.6b01655.

Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel). 2015;8(9):5744-94. doi: 10.3390/ma8095273, PMID 28793533.

Fouda IM, Seisa EA. The activation energy and some structural parameters of thermally treated polypropylene suture fibers. Int J Polym Mater. 2009;58(4):191-201. doi: 10.1080/00914030802639940.

Vikram SY, Devendra KS, Yashpal S, Dhubkarya DC. The effect of frequency and temperature on dielectric properties of pure poly vinylidene fluoride (PVDF) thin films. In: Proceedings of the international multiconference of engineers and computer scientists. Vol. 3; 2010. p. 1593.

Wolinski TR, Szaniawska K, Ertman S, Lesiak P, Domanski AW, Dabrowski R et al. Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres. Meas Sci Technol. 2006;17(5):985-91. doi: 10.1088/0957-0233/17/5/S08.

Chu CC 2013. Biotextiles as medical implants (A volume in Woodhead Publishing Series in Textiles Book).

Akgul FA, Akgul G, Yildirim N, Unalan HE, Turan R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater Chem Phys. 2014;147(3):987-95. doi: 10.1016/j.matchemphys.2014.06.047.

Patel HN, Garcia R, Schindler C, Dean D, Pogwizd SM, Singh R et al. Fibro-porous poliglecaprone/polycaprolactone conduits: synergistic effect of composition and in vitro degradation on mechanical properties. Polym Int. 2015;64(4):547-55. doi: 10.1002/pi.4834, PMID 25914444.

Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel). 2015;8(9):5744-94. doi: 10.3390/ma8095273, PMID 28793533 (Materials ) 8 (9).

Published

2022-08-12

How to Cite

M. Ali , A., H Amin , A., & M. Z, F. (2022). Characterizing The Effect of Thermal Annealing Process on the Physical and Structural Properties of Polybutester Suture Fibers.: Life Sciences - Material Science. International Journal of Life Science and Pharma Research, 12(5), L145-L155. https://doi.org/10.22376/ijpbs/lpr.2022.12.5.L145-155

Issue

Section

Research Articles