Advancing Carvedilol's Therapeutic Impact: A Study On Solid Dispersion Capsules for Improved Efficacy
Pharmaceutical sciences- Pharmaceutics
DOI:
https://doi.org/10.22376/ijlpr.2024.14.1.P1-P11Keywords:
Carrier, Carvedilol, Cyclodextrin, Dissolution, Solubility.Abstract
This study aimed primarily to improve and evaluate the dissolution rate of Carvedilol by employing a solid dispersiontechnique with β-Cyclodextrin as the carrier. Three distinct methods were utilized to create Carvedilol-containing soliddispersions: The Kneading method, Physical mixture, and Solvent evaporation method. These methods incorporated β-Cyclodextrin at varying drug-carrier ratios (1:1, 1:2, and 1:3). The initial phase encompassed pre-formulation assessments, includingthe establishment of a calibration curve, determination of lambda maximum, melting point determination, investigation of solubilityin different solvents, and evaluation of Carvedilol-polymer compatibility through FTIR analysis. Subsequent post-formulationanalyses included tests for weight variation, Carvedilol content, lock length, moisture permeation, disintegration time, in-vitrodissolution, and stability. The results of the pre-formulation tests were consistent with established references. FTIR analysisrevealed no interactions between the Carvedilol and the carrier. Carvedilol content, weight variation, and disintegration time testsmet the permissible limits outlined in IP standards. Both lock length and moisture permeation tests conformed to the criteria.However, due to Carvedilol's limited solubility, dissolution was inadequate. Among the in-vitro dissolution profiles, the "KN3"formulation, prepared using the Kneading method with a 1:3 ratio of Carvedilol to Carrier, employing β-Cyclodextrin as thecarrier, exhibited superior discharge at 94.671%, outperforming other preparation methods.
References
El Hoffy NM, Abdel Azim EAA, Hathout RM, Fouly MA, Elkheshen SA. Glaucoma: management and future perspectives for nanotechnology-based treatment modalities. Eur J Pharm Sci. 2021;158:105648. doi: 10.1016/j.ejps.2020.105648, PMID 33227347.
Ouyang J, Zhang Z, Deng B, Liu J, Wang L, Liu H, et al. Oral drug delivery platforms for biomedical applications. Mater Today. 2023;62:296-326. doi: 10.1016/j.mattod.2023.01.002.
Nambiar AG, Singh M, Mali AR, Serrano DR, Kumar R, Healy AM, et al. Continuous manufacturing and molecular modeling of pharmaceutical amorphous solid dispersions. AAPS PharmSciTech. 2022;23(7):249. doi: 10.1208/s12249-022-02408-4, PMID 36056225:249.
Tambe S, Jain D, Agarwal Y, Amin P. Hot-melt extrusion: highlighting recent advances in pharmaceutical applications. J Drug Deliv Sci Technol. 2021;63:102452. doi: 10.1016/j.jddst.2021.102452.
Sayed N, Khurana A, Godugu C. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol. 2019;53:101201. doi: 10.1016/j.jddst.2019.101201.
Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM. Electrospraying is a novel process for synthesizing particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci. 2021;290:102384. doi: 10.1016/j.cis.2021.102384, PMID 33706198.
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, et al. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv. 2020;17(10):1411-35. doi: 10.1080/17425247.2020.1796631, PMID 32683996.
Aiassa V, Garnero C, Longhi MR, Zoppi A. Cyclodextrin multicomponent complexes: pharmaceutical applications. Pharmaceutics. 2021;13(7):1099. doi: 10.3390/pharmaceutics13071099, PMID 34371790.
Abdul AH, Bala AG, Chintaginjala H, Manchikanti SP, Kamsali AK, Dasari RRD. Equator assessment of nanoparticles using the design-expert software. Int J Pharm Sci Nanotechnol (IJPSN). 2020;13(1):4766-72.
Toutain PL, Bousquet‐mélou A. Bioavailability and its assessment. J Vet Pharmacol Ther. 2004;27(6):455-66. doi: 10.1111/j.1365-2885.2004.00604.x, PMID 15601440.
Haranath C, Reddy JL, Ahad HA, Reshma T, Shubha BN. Aquasomes: A novel approach for the delivery of bioactive molecules. J Pharm. 2022;11:5325-30.
Kousar S, Abdul Ahad HA, Chinthaginjala H, Babafakruddin P, Lakunde J, Tarun K. Gas generating floating tablets: A quick literature review for the scholars. Asian J Res Chem. 2022;15(2):171-5. doi: 10.52711/0974-4150.2022.00029.
Ahad HA, Chinthaginjala H, Meharajunnisa B, Vandana N, Gudisipalli R, Nikhila P. Past work done on the matrix tablets: A quick reference for the research beginner in sustained-release dosage forms. Int J Pharm Investigation. 2023;13(3):367-72. doi: 10.5530/ijpi.13.3.047.
Ahad H, Kumar G, Chinthaginjala H, Tarun K, Reddy G. A competent Review of computer imitations of pharmacokinetic and pharmacodynamic arrangements. S Afr Pharm J. 2023;90(1):29-34.
Annepogu H, Ahad HA, Nayakanti D. Determining the best poloxamer carrier for thiocolchicoside solid dispersions. Turk J Pharm Sci. 2020;17(4):372-80. doi: 10.4274/tjps.galenos.2019.78800, PMID 32939132.
Jwalapuram R, Ahad HA, Haranath C, Thadipatri R, Varshitha C, Kumar YB. A desktop reference to the solubility enhancement of drugs with the aid of surfactants. Int J Life Sci Pharm Res. 2020;11(5):11-6.
Ahad HA, Chinthaginjala H, Tarun K, Reddy G, Adam AO, Ali A, et al. Hylocereus undatus fruit extraction on percent yield using Design-Expert software: a revelation for the enormousness of temperature and contact time. Egypt Pharm J. 2023;22(1):49. doi: 10.4103/epj.epj_97_22.
Newman A, Zografi G. Considerations in the development of physically stable high drug load API-polymer amorphous solid dispersions in the glassy state. J Pharm Sci. 2023;112(1):8-18. doi: 10.1016/j.xphs.2022.08.007, PMID 35948156.
Ahad HA, Chinthaginjala H, Rahamtulla S, Pallavi BP, Shashanka C, Prathyusha J. A comprehensive report on solid dispersions by factorial design; 2021.
Villanueva C, Torres F, Sarin SK, Shah HA, Tripathi D, Brujats A, et al. Carvedilol reduces the risk of decompensation and mortality in patients with compensated cirrhosis in a competing-risk meta-analysis. J Hepatol. 2022;77(4):1014-25. doi: 10.1016/j.jhep.2022.05.021, PMID 35661713.
Benkel T, Zimmermann M, Zeiner J, Bravo S, Merten N, Lim VJY, et al. How carvedilol activates β2-adrenoceptors. Nat Commun. 2022;13(1):7109. doi: 10.1038/s41467-022-34765-w, PMID 36402762.
Annepogu H, Ahad HA. Unique solid dispersions by microwave fusion technique with etoricoxib and thiocolchicoside: in vivo evaluation and comparison with marketed formulation. app. 2022;10(2):104-13. doi: 10.13189/app.2022.100204.
Ahad HA. Appraising best polyethylene glycol carrier for thiocolchicoside solid dispersions. J Pharm Chem Biol Sci. 2018:355-64.
Annepogu H, Ahad HA, Nayakanti D. Journal of Pharmaceutical and Scientific Innovation. Determining the Best Poloxamer Carrier for Thiocolchicoside Solid Dispersions. Turk J Pharm Sci. 2020 Aug;17(4):372-80. doi: 10.4274/tjps.galenos.2019.78800, PMID 32939132.
Harsha SS, Ahad HA, Haranath C, Dasari RR, Gowthami M, Varam NJ, et al. Exfoliation technique of composing and depictions of clopidogrel bisulphate afloat microspheres. J Evol Med Dent Sci. 2020;9(14):1156-60. doi: 10.14260/jemds/2020/251.
Krstić M, Manić L, Martić N, Vasiljević D, Mračević SĐ, Vukmirović S, et al. Binary polymeric amorphous carvedilol solid dispersions: in vitro and in vivo characterization. Eur J Pharm Sci. 2020;150:105343. doi: 10.1016/j.ejps.2020.105343, PMID 32376386.
Paudel A, Geppi M, Van den Mooter GVD. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci. 2014;103(9):2635-62. doi: 10.1002/jps.23966, PMID 24715618.
Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ibuki R, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J Control Release. 2006;112(1):51-6. doi: 10.1016/j.jconrel.2006.01.020, PMID 16545477.
Annepogu H, Ahad HA, Nayakanti D, Ahad HA. Valuing the best poloxamer carrier for thiocolchicoside solid dispersions. Turk J Pharm Sci. 2020 Aug;17(4):372-80. doi: 10.4274/tjps.galenos.2019.78800.
Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355-77. doi: 10.1002/jps.23031, PMID 22213468.
Shravani Y, Ahad HA, Haranath C, gari Poojitha B, Rahamathulla S, Rupasree A. Past decade work done on cubosomes using factorial design: A fast track information for researchers. Int J Life Sci Pharm Res. 2021;11(1):124-35.
Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999 Oct;88(10):1058-66. doi: 10.1021/js980403l, PMID 10514356.
Kalia A, Poddar M. Solid dispersions: an approach towards enhancing dissolution rate. Int J Pharm Pharm Sci. 2011;3(4):9-19.
Dewan I, Hossain MA, Islam SA. Formulation and evaluation of solid dispersions of carvedilol, a poorly water soluble drug by using different polymers. Int J Res Pharm Chem. 2012;2:585-93.
Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727. doi: 10.5402/2012/195727, PMID 22830056.
Shamma RN, Basha M. Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 2013;237:406-14. doi: 10.1016/j.powtec.2012.12.038.
Yamsani VV, Gannu R, Kolli C, Rao ME, Yamsani MR. Development and in vitro evaluation of buccoadhesive carvedilol tablets. Acta Pharm. 2007 Jun 1;57(2):185-97. doi: 10.2478/v10007-007-0015-7, PMID 17507315.
Beattie K, Phadke G, Novakovic J. Carvedilol. Profiles Drug Subst Excipients Relat Methodol. 2013;38:113-57. doi: 10.1016/B978-0-12-407691-4.00004-6.
Arun Raj R, Harindran J. Formulation and evaluation of carvedilol solid dispersion tablets for solubility enhancement. Eur J Biomed PharmSci. 2017;4(2):337-48.
Kajale AD, Gadewar CK, Kothari PP. Formulation and evaluation of floating microencapsules of diltiazem hydrochloride by hot melt granulation method. Res J Pharm Technol. 2020;13(1):227-32. doi: 10.5958/0974-360X.2020.00046.3.
Arregui JR, Kovvasu SP, Kunamaneni P, Betageri GV. Carvedilol solid dispersion for enhanced oral bioavailability using rat model. J app pharm sci. 2019;9(12):42-50. doi: 10.7324/JAPS.2019.91207.
Halder S, Ahmed F, Shuma ML, Azad MAK, Kabir ER. Impact of drying on dissolution behavior of carvedilol-loaded sustained release solid dispersion: development and characterization. Heliyon. 2020;6(9):e05026. doi: 10.1016/j.heliyon.2020.e05026, PMID 33005811.
Thomas NL, Windle AH. A theory of case II diffusion. Polymer. 1982 Apr 1;23(4):529-42. doi: 10.1016/0032-3861(82)90093-3.
Naser YA, Tekko IA, Vora LK, Peng K, Anjani QK, Greer B et al. Hydrogel-forming microarray patches with solid dispersion reservoirs for transdermal long-acting microdepot delivery of a hydrophobic drug. J Control Release. 2023 Apr 1;356:416-33. doi: 10.1016/j.jconrel.2023.03.003, PMID 36878320.
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Release mechanisms of amorphous solid dispersions: role of drug-polymer phase separation and morphology. J Pharm Sci. 2023 Jan 1;112(1):304-17. doi: 10.1016/j.xphs.2022.10.021, PMID 36306863.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Pavan Kumar, Subhash PG, Hindustan Abdul Ahad, Pawan Dhamala, Suprith D
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.