Pharmaceutical Co-Crystallization: Strategies for Co-Crystal Design

Pharmaceutics

Authors

  • Preeti Devi Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak Haryana
  • Vikas Budhwar Department of Pharmacology, Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra, Haryana
  • Saloni Kakkar Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak Haryana
  • Ashwani Kumar Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar-249404, Uttarakhand, India

DOI:

https://doi.org/10.22376/ijlpr.2023.13.6.P87-P105

Keywords:

Cocrystallization, Design strategies, supramolecular synthone, Solubility, Complexation, Spectrophotometric Analysis, Midodrine hydrochloride, Noradrenaline, stability constant., Bioavailability, preparation methods

Abstract

Pharmaceutical co-crystal belongs to a subtype of crystal in which one component is an active pharmaceutical ingredient (API) and the other is coformer (generally regarded as safe GRAS). In the crystal lattice, the two components are hydrogen-bonded in a fixed stoichiometric ratio. Co-crystallization is a cheap and simple alternative to the presently available techniques of solubility enhancement and has gained much interest from the formulators during the recent few years. Because co-crystals can enhance the physiochemical properties of pharmaceuticals without affecting their therapeutic effect, the area of pharmaceutical co-crystals has reached a tipping point. Besides increasing solubility, some more applications of co-crystals have also been identified to enhance physicochemical properties like permeability, bioavailability, stability, tablet ability, etc. Co-crystals have been extensively studied in the literature, and there is a tremendous amount of literature on co-crystals. However, an exhaustive review of coformer selection and co-crystal regulation must be included. An effort has been made in the review to fill this void. The current study focuses on how co-crystallization can enhance the pharmaceutical characteristics of different drugs, besides giving an overview of the historical background and landmarks in discovering co-crystals. In this review paper, we have discussed the rational design of co-crystals and the selection of conformers for the synthesis of multi-component co-crystals, methods like H-bonding, PKa value, Synthonic engineering, Cambridge structural database, Hansen solubility parameter (HSP), etc as well as the IPR related details all across the world. There is an attempt to include reported works on co-crystals, which helps understand the concept. This review paper discusses pharmaceutical regulatory bodies in the US and Europe released guidelines that are highly useful for pharmaceutical product registration in these regions. Here, we also examine various commercially available pharmaceutical drug products. It also briefly predicts the future perspective of co-crystallization.

References

Kale DP, Zode SS, Bansal AK. Challenges in translational development of pharmaceutical cocrystals. J Pharm Sci. 2017 Feb 1;106(2):457-70. doi 10.1016/j.xphs.2016.10.021, PMID 27914793.

Byrn SR. Solid state chemistry of drugs. 1982.

Bernstein J. Polymorphism − A Perspective. Cryst Growth Des. 2011 Mar 2;11(3):632-50. doi: 10.1021/cg1013335.

Aitipamula S, Chow PS, Tan RBH. Polymorphism in cocrystals: a review and assessment of its significance. CrystEngComm. 2014;16(17):3451-65. doi 10.1039/c3ce42008f.

Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev. 2000 Sep 15;4(5):413-7. doi: 10.1021/op000023y.

Wouters J, Quéré L, editors. Pharmaceutical salts and co-crystals. Royal Society of Chemistry; 2011 Nov 4.

Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, salts, and cocrystals: what's in a name? Cryst Growth Des. 2012 May 2;12(5):2147-52. doi: 10.1021/cg3002948.

Wöhler F. Untersuchungen über das Chinon. Ann Chem Pharm. 1844;51(2):145-63. doi: 10.1002/jlac.18440510202.

Stahly GP. A survey of cocrystals was reported before 2000. Cryst Growth Des. 2009 Oct 7;9(10):4212-29. doi: 10.1021/cg900873t.

Sakurai T. On the refinement of the crystal structures of phylloquinone and monoclinic quinhydrone. Acta Crystallogr B Struct Sci. 1968 Mar 15;24(3):403-12. doi 10.1107/S0567740868002451.

Aakeroy CB, Aakeroy A, Sinha AS. Co-crystals: Introduction and Scope. Co-crystals: Preparation, Characterization and Applications. 2018 Jul 13;24:1.

Pfeiffer P. Organische Molekülverbindungen. F. Enke; 1927.

Sreekanth BR, Vishweshwar P, Vyas K. Supramolecular synthon polymorphism in 2: 1 co-crystal of 4-hydroxybenzoic acid and 2, 3, 5, 6-tetramethylpyrazine. Chemical communications. 2007(23):2375-7.

Pepinsky R. Crystal engineering-new concept in crystallography. In physical review 1955 Jan 1 (Vol. 100, No. 3, pp. 971-971). One Physics Ellipse, College Pk, Md20740-3844. American Physical Society.

Schmidt GMJ. Photodimerization in the solid state. Pure Appl Chem. 1971 Jan 1;27(4):647-78. doi: 10.1351/pac197127040647.

Desiraju GR, Gavezzotti A. From molecular to crystal structure; polynuclear aromatic hydrocarbons. J Chem Soc Chem Commun. 1989;10(10):621-3. doi: 10.1039/c39890000621.

Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res. 1990 Apr 1;23(4):120-6. doi: 10.1021/ar00172a005.

Desiraju GR. Crystal and co-crystal. CrystEngComm. 2003;5(82):466-7. doi: 10.1039/b313552g.

Dunitz JD. Crystal and co-crystal: a second opinion. CrystEngComm. 2003;5(91):506-. doi: 10.1039/b315687g.

Aakeröy CB, Salmon DJ. We are building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm. 2005 Jul 4;7(72):439-48. doi: 10.1039/b505883j.

Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: new solid phase modification approaches for formulating APIs. Pharmaceutics. 2018 Jan 25;10(1):18. doi: 10.3390/pharmaceutics10010018, PMID 29370068.

Childs SL, Stahly GP, Park A. The salt− cocrystal continuum: the influence of crystal structure on ionization state. Mol Pharm. 2007 Jun 4;4(3):323-38. doi: 10.1021/mp0601345, PMID 17461597.

Bond AD. What is a co-crystal? CrystEngComm. 2007;9(9):833-4. doi: 10.1039/b708112j.

Stahl PH, Wermuth CG. Handbook of pharmaceutical salts: properties, selection and use. Chem Int. 2002;24:21.

Jones W, Motherwell WDS, Trask AV. Pharmaceutical cocrystals: an emerging approach to physical property enhancement. MRS Bull. 2006 Nov;31(11):875-9. doi: 10.1557/mrs2006.206.

Aakeröy CB, Fasulo ME, Desper J. Cocrystal or salt: does it matter? Mol Pharm. 2007 Jun 4;4(3):317-22. doi: 10.1021/mp060126o, PMID 17497799.

Segura JL, Martín N. New concepts in tetrathiafulvalene chemistry. Angewandte Chemie International Edition. 2001 Apr 17;40(8):1372-409.

Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di-and tricarboxylic acids with 4, 4′-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm. 2005 Aug 17;7(90):551-62. doi: 10.1039/b509162d.

Kelley SP, Narita A, Holbrey JD, Green KD, Reichert WM, Rogers RD. Understanding the effects of ionicity in salts, solvates, co-crystals, ionic co-crystals, and ionic liquids, rather than nomenclature, is critical to understanding their behavior. Crystal growth & design. 2013 Mar 6;13(3):965-75.

Benmore CJ. Advanced X-ray analytical methods to understand structure, properties, and risk. In: InDiscovering and developing molecules with optimal drug-like properties. New York: Springer; 2015. p. 263-83. doi: 10.1007/978-1-4939-1399-2_9.

Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015 Oct 15;20(10):18759-76. doi: 10.3390/molecules201018759, PMID 26501244.

Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun (Camb). 2016;52(4):640-55. doi: 10.1039/c5cc08216a, PMID 26565650.

Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun (Camb). 2016;52(54):8342-60. doi: 10.1039/c6cc02943d, PMID 27278109.

Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm. 2007 Jun 4;4(3):301-9. doi: 10.1021/mp070001z, PMID 17477544.

Karimi-Jafari M, Padrela L, Walker GM, Croker DM. Creating Cocrystals: a Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Cryst Growth Des. 2018;18(10):6370-87. doi: 10.1021/acs.cgd.8b00933.

Kumar A, Kumar S, Nanda A. A review of regulatory status and recent patents of pharmaceutical co-crystals. Adv Pharm Bull. 2018 Aug;8(3):355-63. doi: 10.15171/apb.2018.042, PMID 30276131.

Gadade DD, Pekamwar SS. Pharmaceutical cocrystals: regulatory and strategic aspects, design and development. Adv Pharm Bull. 2016 Dec;6(4):479-94. doi: 10.15171/apb.2016.062, PMID 28101455.

Patil SP, Modi SR, Bansal AK. Generation of 1: 1 carbamazepine: nicotinamide cocrystals by spray drying. Eur J Pharm Sci. 2014 Oct 1;62:251-7. doi: 10.1016/j.ejps.2014.06.001, PMID 24931188.

Rehder S, Christensen NP, Rantanen J, Rades T, Leopold CS. High-shear granulation as a manufacturing method for cocrystal granules. Eur J Pharm Biopharm. 2013 Nov 1;85(3 Pt B):1019-30. doi: 10.1016/j.ejpb.2013.04.022, PMID 23685353.

Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Crystallization and simultaneous agglomeration using hot melt extrusion. Pharm Res. 2010 Dec;27(12):2725-33. doi: 10.1007/s11095-010-0273-9, PMID 20872053.

Daurio D, Medina C, Saw R, Nagapudi K, Alvarez-Núñez F. The application of twin screw extrusion in manufacturing cocrystals is part I: four case studies. Pharmaceutics. 2011 Aug 31;3(3):582-600. doi: 10.3390/pharmaceutics3030582, PMID 24310598.

Yu ZQ, Chow PS, Tan RBH. Design space for polymorphic co-crystallization: incorporating process model uncertainty and operational variability. Cryst Growth Des. 2014 Aug 6;14(8):3949-57. doi: 10.1021/cg500547m.

am Ende DJ, Anderson SR, Salan JS. Development and scale-up of cocrystals using resonant acoustic mixing. Org Process Res Dev. 2014 Feb 21;18(2):331-41. doi: 10.1021/op4003399.

Wood PA, Feeder N, Furlow M, Galek PTA, Groom CR, Pidcock E. Knowledge-based approaches to co-crystal design. CrystEngComm. 2014;16(26):5839-48. doi: 10.1039/c4ce00316k.

Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem. 1991 Jun;95(12):4601-10. doi: 10.1021/j100165a007.

Aakeröy CB, Wijethunga TK, Desper J. Molecular electrostatic potential dependent selectivity of hydrogen bonding. New J Chem. 2015;39(2):822-8. doi: 10.1039/C4NJ01324G.

Bernstein J, Davis RE, Shimoni L, Chang NL. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed Engl. 1995 Aug 18;34(15):1555-73. doi: 10.1002/anie.199515551.

Desiraju GR. Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl. 1995 Nov 17;34(21):2311-27. doi: 10.1002/anie.199523111.

Hamilton WC, Ibers JA. Hydrogen bonding in solids. New York: WA Benjamin, Inc; 1968 Dec 5;23(12):956-7.

Raheem Thayyil AR, Juturu T, Nayak S, Kamath S. Pharmaceutical co-crystallization: regulatory aspects, design, characterization, and applications. Adv Pharm Bull. 2020 Jun;10(2):203-12. doi: 10.34172/apb.2020.024, PMID 32373488.

Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2016 Apr 1;72(2):171-9.

Galek PT, Pidcock E, Wood PA, Bruno IJ, Groom CR. One in half a million: a solid form informatics study of a pharmaceutical crystal structure. CrystEngComm. 2012;14(7):2391-403.

Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci. 2006 Mar 1;95(3):499-516. doi: 10.1002/jps.20578, PMID 16444755.

Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chem Commun (Camb). 2016;52(57):8772-86. doi: 10.1039/c6cc01289b, PMID 27302311.

Childs SL, Wood PA, Rodríguez-Hornedo N, Reddy LS, Hardcastle KI. Analysis of 50 crystal structures containing carbamazepine using the materials module of mercury CSD. Cryst Growth Des. 2009 Apr 1;9(4):1869-88. doi: 10.1021/cg801056c.

Planavila A, Rodríguez-Calvo R, de Arriba AF, Sánchez RM, Laguna JC, Merlos M et al. Inhibition of cardiac hypertrophy by triflusal (4-trifluoromethyl derivative of salicylate) and its active metabolite. Mol Pharmacol. 2006 Apr 1;69(4):1174-81. doi: 10.1124/mol.105.016345, PMID 16421291.

Aitipamula S, Mapp LK, Wong ABH, Chow PS, Tan RBH. Novel pharmaceutical cocrystals of triflusal: crystal engineering and physicochemical characterization. CrystEngComm. 2015;17(48):9323-35. doi: 10.1039/C5CE01756D.

Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G et al. The halogen bond. Chem Rev. 2016 Feb 24;116(4):2478-601. doi: 10.1021/acs.chemrev.5b00484, PMID 26812185.

Aakeröy CB, Schultheiss N, Desper J, Moore C. Attempted assembly of discrete coordination complexes into 1-D chains using halogen bonding or halogen⋯ interactions. CrystEngComm. 2007;9(5):421-6. doi: 10.1039/B700286F.

Aakeröy CB, Spartz CL. Halogen bonding in supramolecular synthesis. Top Curr Chem. 2015;358:155-82. doi: 10.1007/128_2014_567, PMID 25467531.

Pedireddi VR, Reddy DS, Goud BS, Craig DC, Rae AD, Desiraju GR. The nature of halogen⋯ interactions and the crystal structure of 1, 3, 5, 7-tetraiodoadamantane. J Chem Soc Perkin Trans 2. 1994;11(11):2353-60. doi: 10.1039/p29940002353.

Aitipamula S, Vangala VR, Chow PS, Tan RBH. Cocrystal hydrate of an antifungal drug, griseofulvin, with promising physicochemical properties. Cryst Growth Des. 2012 Dec 5;12(12):5858-63. doi: 10.1021/cg3012124.

Ueto T, Takata N, Muroyama N, Nedu A, Sasaki A, Tanida S et al. Polymorphs and a hydrate of furosemide–nicotinamide 1: 1 cocrystal. Cryst Growth Des. 2012 Jan 1;12(1):485-94. doi: 10.1021/cg2013232.

Fábián L. Cambridge structural database analysis of molecular complementarity in cocrystals. Cryst Growth Des. 2009 Mar 4;9(3):1436-43. doi: 10.1021/cg800861m.

Karki S, Friščić T, Fábián L, Jones W. New solid forms of artemisinin obtained through cocrystallization. CrystEngComm. 2010;12(12):4038-41. doi: 10.1039/c0ce00428f.

Arora KK, Tayade NG, Suryanarayanan R. Unintended water-mediated cocrystal formation in carbamazepine and aspirin tablets. Mol Pharm. 2011 Jun 6;8(3):982-9. doi: 10.1021/mp200043u, PMID 21548636.

Maheshwari C, Jayasankar A, Khan NA, Amidon GE, Rodríguez-Hornedo N. Factors influencing the spontaneous formation of pharmaceutical cocrystals by simply mixing solid reactants. CrystEngComm. 2009;11(3):493-500. doi: 10.1039/B812264D.

Ibrahim AY, Forbes RT, Blagden N. Spontaneous crystal growth of co-crystals: the contribution of particle size reduction and convection mixing of the co-formers. CrystEngComm. 2011;13(4):1141-52. doi: 10.1039/C004371K.

Correia Vioglio PC, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev. 2017 Aug 1;117:86-110. doi: 10.1016/j.addr.2017.07.001, PMID 28687273.

Zhou L, Dodd S, Capacci-Daniel C, Garad S, Panicucci R, Sethuraman V. Co-crystal formation based on structural matching. Eur J Pharm Sci. 2016 Jun 10;88:191-201. doi: 10.1016/j.ejps.2016.02.017, PMID 26948852.

Braga D, Grepioni F, Maini L. The growing world of crystal forms. Chem Commun (Camb). 2010;46(34):6232-42. doi: 10.1039/c0cc01195a, PMID 20623084.

Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced drug delivery reviews. 2007 Jul 30;59(7):617-30.

Chadwick K, Davey R, Cross W. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. CrystEngComm. 2007;9(9):732-4. doi: 10.1039/b709411f.

Nguyen KL, Friščić T, Day GM, Gladden LF, Jones W. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nat Mater. 2007 Mar;6(3):206-9. doi: 10.1038/nmat1848, PMID 17322867.

Kuroda R, Higashiguchi K, Hasebe S, Imai Y, Kuroda R, Higashiguchi K et al. Crystal to crystal transformation in the solid state. CrystEngComm. 2004;6(76). doi: 10.1039/b408971e.

Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm. 2008;10(6):665-8. doi: 10.1039/b801713c.

Friščić T, Jones W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des. 2009 Mar 4;9(3):1621-37. doi: 10.1021/cg800764n.

Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008 Dec 1;5(6):905-20. doi: 10.1021/mp800092t, PMID 18954076.

Rodríguez-Hornedo N, Nehm SJ, Seefeldt KF, Pagan-Torres Y, Falkiewicz CJ. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm. 2006 Jun 5;3(3):362-7. doi: 10.1021/mp050099m, PMID 16749868.

Padrela L, Rodrigues MA, Velaga SP, Matos HA, de Azevedo EG. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci. 2009;38(1):9-17. doi: 10.1016/j.ejps.2009.05.010, PMID 19477273.

Yeo SD, Kiran E. Formation of polymer particles with supercritical fluids: A review. The Journal of Supercritical Fluids. 2005 Jul 1;34(3):287-308.

Neurohr C, Marchivie M, Lecomte S, Cartigny Y, Couvrat N, Sanselme M et al. Naproxen–nicotinamide cocrystals: racemic and conglomerate structures generated by CO2 antisolvent crystallization. Cryst Growth Des. 2015 Sep 2;15(9):4616-26. doi: 10.1021/acs.cgd.5b00876.

Ober CA, Gupta RB. Formation of itraconazole–succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech. 2012 Dec;13(4):1396-406. doi: 10.1208/s12249-012-9866-4, PMID 23054991.

Chen HH, Su CS. Recrystallizing primidone through supercritical antisolvent precipitation. Org Process Res Dev. 2016 May 20;20(5):878-87. doi: 10.1021/acs.oprd.5b00279.

Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid-enhanced atomization process. J Supercrit Fluids. 2010 Jun 1;53(1-3):156-64. doi: 10.1016/j.supflu.2010.01.010.

Padrela L, Rodrigues MA, Tiago J, Velaga SP, Matos HA, de Azevedo EG. Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique. J Supercrit Fluids. 2014 Feb 1;86:129-36. doi: 10.1016/j.supflu.2013.12.011.

Stevens JS, Byard SJ, Schroeder SLM. Characterization of proton transfer in co-crystals by X-ray photoelectron spectroscopy (XPS). Cryst Growth Des. 2010 Mar 3;10(3):1435-42. doi: 10.1021/cg901481q.

Stevens JS, Byard SJ, Schroeder SL. Salt or co-crystal? Determination of protonation state by X-ray photoelectron spectroscopy (XPS). J Pharm Sci. 2010 Nov 1;99(11):4453-7. doi: 10.1002/jps.22164, PMID 20845443.

Good DJ, Rodríguez-Hornedo N. Cocrystal eutectic constants and prediction of solubility behavior. Cryst Growth Des. 2010 Mar 3;10(3):1028-32. doi: 10.1021/cg901232h.

Mohammad MA, Alhalaweh A, Bashimam M, Al-Mardini MA, Velaga S. Utility of Hansen solubility parameters in the cocrystal screening. InJournal Pharm Pharmacol (JPP). 2010 (Vol. 62, No. 10-Spec issue, pp. 1360-1362).

Huang N, Rodríguez-Hornedo N. Effect of micellar solubilization on cocrystal solubility and stability. Cryst Growth Des. 2010 May 5;10(5):2050-3. doi: 10.1021/cg1002176.

Moore MD, Wildfong PLD. Aqueous solubility enhancement through the engineering of binary solid composites: pharmaceutical applications. J Pharm Innov. 2009 Mar;4(1):36-49. doi: 10.1007/s12247-009-9053-7.

Varma PN, Hemalatha M, Sai MJ, Lakshmi BD, Kavitha K, Bindu KH, Padmalatha K. Pharmaceutical Sciences.

Cannon AS, Warner JC. Noncovalent derivatization: green chemistry applications of crystal engineering. Cryst Growth Des. 2002 Jul 3;2(4):255-7. doi: 10.1021/cg0255218.

Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012 May 2;12(5):2147-52. doi: 10.1021/cg3002948.

Tiwary AK, Swarbreek, editors. Encyclopedia of pharmaceutical technology. 3rd ed. Vol. 2. New York, London: Informa Healthcare; 2007. Crystal habit changes and dosage form performance. p. 820.

Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian journal of pharmaceutical sciences. 2009 Jul;71(4):359.

Rasenack N, Müller BW. Properties of ibuprofen crystallized under various conditions: a comparative study. Drug Dev Ind Pharm. 2002 Jan 1;28(9):1077-89. doi: 10.1081/ddc-120014575, PMID 12455467.

Nie Q, Wang J, Wang Y, Bao Y. Effects of solvent and impurity on crystal habit modification of 11α-hydroxy-16α, 17α-medroxyprogesterone. Chin J Chem Eng. 2007;15(5):648-53. doi: 10.1016/S1004-9541(07)60140-2.

Cruz-Cabeza AJ. Acid–base crystalline complexes and the pKa rule. CrystEngComm. 2012;14(20):6362-5. doi: 10.1039/c2ce26055g.

Babu NJ, Reddy LS, Nangia A. Amide− n-oxide hetero-synthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine n-oxides. Mol Pharm. 2007 Jun 4;4(3):417-34. doi: 10.1021/mp070014c, PMID 17497888.

Etter MC, Reutzel SM. Hydrogen bond-directed cocrystallization and molecular recognition properties of acyclic imides. J Am Chem Soc. 1991 Mar;113(7):2586-98. doi: 10.1021/ja00007a037.

Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009 Jun 3;9(6):2950-67. doi: 10.1021/cg900129f, PMID 19503732.

Wacker JN, Ditter AS, Cary SK, Murray AV, Bertke JA, Seidler GT, Kozimor SA, Knope KE. Reactivity of a chloride decorated, mixed valent CeIII/IV38–Oxo cluster. Inorganic Chemistry. 2021 Dec 16;61(1):193-205.

Trask AV, Motherwell WD, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm. 2006 Aug 31;320(1-2):114-23. doi: 10.1016/j.ijpharm.2006.04.018, PMID 16769188.

Gras P, Baker A, Combes C, Rey C, Sarda S, Wright AJ, Smith ME, Hanna JV, Gervais C, Laurencin D, Bonhomme C. From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective. Acta biomaterialia. 2016 Feb 1;31:348-57.

Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernäs H, Hussain AS et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004 Jan 12;1(1):85-96. doi: 10.1021/mp034006h, PMID 15832504.

Jain S. Mechanical properties of powders for compaction and tableting: an overview. Pharm Sci Technol Today. 1999 Jan 1;2(1):20-31. doi: 10.1016/s1461-5347(98)00111-4, PMID 10234200.

Hiestand EN. Dispersion forces and plastic deformation in tablet bond. J Pharm Sci. 1985 Jul;74(7):768-70. doi: 10.1002/jps.2600740715, PMID 4032252.

Hiestand EN. Tablet bond. I. A theoretical model. Int J Pharm. 1991 Jan 31;67(3):217-29. doi: 10.1016/0378-5173(91)90205-3.

Hiestand EN, Smith DP. Tablet bond. II. Experimental check of the model. Int J Pharm. 1991 Jan 31;67(3):231-46. doi: 10.1016/0378-5173(91)90206-4.

Blagden N, Coles SJ, Berry DJ. Pharmaceutical co-crystals–are we there yet? CrystEngComm. 2014;16(26):5753-61. doi: 10.1039/C4CE00127C.

Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by co-crystallization. Cryst Growth Des. 2008 May 7;8(5):1575-9. doi: 10.1021/cg700843s.

Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 2011 Jun;12(2):693-704. doi: 10.1208/s12249-011-9603-4, PMID 21598082.

Rahman Z, Samy R, Sayeed VA, Khan MA. Physicochemical and mechanical properties of carbamazepine cocrystals with saccharin. Pharm Dev Technol. 2012 Aug 1;17(4):457-65. doi: 10.3109/10837450.2010.546412, PMID 21265708.

Blagden N, Berry DJ, Parkin A, Javed H, Ibrahim A, Gavan PT, et al. Current Directions in co-crystal growth. New J Chem. 2008;32(10):1659-72. doi: 10.1039/b803866j.

Desiraju GR. Crystal and co-crystal. CrystEngComm. 2003;5(82):466-7. doi: 10.1039/b313552g.

Dunitz JD. Crystal and co-crystal: a second opinion. CrystEngComm. 2003;5(91):506-. doi: 10.1039/b315687g.

Morissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV et al. High-throughput crystallization: polymorphs, salts, co-crystals, and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004 Feb 23;56(3):275-300. doi: 10.1016/j.addr.2003.10.020, PMID 14962582.

Buddhadev SS, Garala KC. Pharmaceutical cocrystals—a review. Multidisciplinary Digital Publishing Institute proceedings. 2021;62(1):14. doi: 10.3390/proceedings2020062014.

Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun (Camb). 2016;52(54):8342-60. doi: 10.1039/c6cc02943d, PMID 27278109.

Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011 Jul 6;11(7):2662-79. doi: 10.1021/cg200492w.

Mounika P, Raj SV, Divya G, Gowramma A, Vijayamma G, Rangampet A. Preparation and characterization of novel co-crystal forms of fexofenadine. Int J Innov Pharm Res. 2015;6(1):458-63.

Martin FA, Pop MM, Borodi G, Filip X, Kacso I. Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst Growth Des. 2013 Oct 2;13(10):4295-304. doi: 10.1021/cg400638g.

Chen Y, Li L, Yao J, Ma YY, Chen JM, Lu TB. Improving the solubility and bioavailability of apixaban via apixaban–oxalic acid cocrystal. Cryst Growth Des. 2016 May 4;16(5):2923-30. doi: 10.1021/acs.cgd.6b00266.

Bethune SJ, Schultheiss N, Henck JO. Improving the poor aqueous solubility of nutraceutical compound pterostilbene through cocrystal formation. Cryst Growth Des. 2011 Jul 6;11(7):2817-23. doi: 10.1021/cg1016092.

Wang JR, Yu X, Zhou C, Lin Y, Chen C, Pan G, et al. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with nicotinamide. Bioorg Med Chem Lett. 2015 Mar 1;25(5):1036-9. doi: 10.1016/j.bmcl.2015.01.022, PMID 25630224.

Sopyan I, Fudholi A, Muchtaridi M, Sari IP. Simvastatin-nicotinamide co-crystal: design, preparation and preliminary characterization. Trop J Pharm Res. 2017 Mar 6;16(2):297-303. doi: 10.4314/tjpr.v16i2.6.

Chadha R, Saini A, Arora P, Chanda S, Jain DV. Cocrystals of efavirenz with selected conformers: preparation and characterization. Int J Pharm Pharm Sci. 2012;4(2):244-50.

Panzade P, Shendarkar G, Shaikh S, Balmukund Rathi PB. Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Adv Pharm Bull. 2017 Sep;7(3):399-408. doi: 10.15171/apb.2017.048, PMID 29071222.

McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006 Aug;23(8):1888-97. doi: 10.1007/s11095-006-9032-3, PMID 16832611.

Basavoju S, Boström D, Velaga SP. Indomethacin–saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008 Mar;25(3):530-41. doi: 10.1007/s11095-007-9394-1, PMID 17703346.

Sarma B, Saikia B. Hydrogen bond synthon competition in the stabilization of theophylline cocrystals. CrystEngComm. 2014;16(22):4753-65.

Hickey MB, Peterson ML, Scoppettuolo LA, Morrisette SL, Vetter A, Guzmán H et al. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm. 2007 Aug 1;67(1):112-9. doi: 10.1016/j.ejpb.2006.12.016, PMID 17292592.

Oswald ID, Allan DR, McGregor PA, Motherwell WD, Parsons S, Pulham CR. The formation of paracetamol (acetaminophen) adducts with hydrogen-bond acceptors. Acta Crystallogr B. 2002 Dec 1;58(6):1057-66. doi: 10.1107/s0108768102015987, PMID 12456987.

Rajbhar P, Sahu AK, Gautam SS, Prasad RK, Singh V, Nair SK. Formulation and evaluation of clarithromycin co-crystal tablets dosage forms to enhance the bioavailability. J Pharm Innov. 2016 Jun 1;5;6(A):5.

Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci. 2011 Jun 1;100(6):2172-81. doi: 10.1002/jps.22434, PMID 21491441.

Huang Y, Zhang B, Gao Y, Zhang J, Shi L. Baicalein–nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J Pharm Sci. 2014 Aug 1;103(8):2330-7. doi: 10.1002/jps.24048, PMID 24903146.

Jadhav AR, Pore Y. Physicochemical and micrometric studies on fenofibrate Co-crystals. J PharmSciTech Mgmt. 2016;2(1):7-16.

Zhang H, Zhu Y, Qiao N, Chen Y, Gao L. Preparation and characterization of carbamazepine cocrystal in the polymer solution. Pharmaceutics. 2017 Dec 1;9(4):54. doi: 10.3390/pharmaceutics9040054, PMID 29194387.

Latif S, Abbas N, Hussain A, Arshad MS, Bukhari NI, Afzal H et al. Development of paracetamol-caffeine co-crystals to improve the compressional, formulation, and in vivo performance. Drug Dev Ind Pharm. 2018 Jul 3;44(7):1099-108. doi: 10.1080/03639045.2018.1435687, PMID 29385849.

Jubeen F, Liaqat A, Amjad F, Sultan M, Iqbal SZ, Sajid I et al. Synthesis of 5-fluorouracil cocrystals with novel organic acids as conformers and anticancer evaluation against HCT-116 colorectal cell lines. Cryst Growth Des. 2020 Feb 10;20(4):2406-14. doi: 10.1021/acs.cgd.9b01570.

Kumar S, Nanda A. Pharmaceutical cocrystals: an overview. Indian J Pharm Sci. 2018 Jan 15;79(6):858-71. doi: 10.4172/pharmaceutical-sciences.1000302.

Guidance for industry: regulatory classification of pharmaceutical co-crystals. Center for Drug Evaluation and Research, United States Food and Drug Administration [cited Jan 5, 2018]. Available from: https://www.fda.gov/downloads/Drugs/Guidances/UCM281764.pdf.

Guidance for industry: regulatory classification of pharmaceutical co-crystals. Center for Drug Evaluation and Research, United States Food and Drug Administration. 1st revision [cited Jan 5, 2018]. Available from: http://www.fda.gov/Drugs/GuidanceCompliance/Regulatoryinformation/Guidances/UCM516813.pdf.

Reflection paper on the use of cocrystals of active substances in medicinal products. Committee for Medicinal Products for Human Use. European Medicines Agency [cited Jan 5, 2018]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/07/WC500189927.pdf.

Izutsu KI, Koide T, Takata N, Ikeda Y, Ono M, Inoue M. et al. Characterization and quality control of pharmaceutical cocrystals. Chem Pharm Bull (Tokyo). 2016;64(10):1421-30. doi: 10.1248/cpb.c16-00233, PMID 27319284.

Datta S, Grant DJW. Crystal structures of drugs: advances in determination, prediction, and engineering. Nat Rev Drug Discov. 2004;3(1):42-57. doi: 10.1038/nrd1280, PMID 14708020, Google Scholar.

Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical Co-crystals Represent a New Path to Improved Medicines? Chem Commun (Camb). 2004;(17):1889-96. doi: 10.1039/b402150a, PMID 15340589, Google Scholar.

Mascitti V, Collman BM, inventors. Pfizer Inc, assignee. Dioxa-Bicyclo. United States patent US 8,080. 2011 Dec 20;3(2. 1) octane-2, 3, 4-triol derivatives:580.

Rajendran MAP, Allada R, Sajid SS. Co-crystals for generic pharmaceuticals: an outlook on solid oral dosage formulations. Recent Adv Drug Deliv Formul. 2021 Mar 1;15(1):15-36. doi: 10.2174/2667387815666210203151209, PMID 34602030.

Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci. 2006 Mar 1;95(3):499-516. doi: 10.1002/jps.20578, PMID 16444755.

National Center for Biotechnology Information. PubChem Patent Summary for US-10377758-B2, Co-crystals of ibrutinib with carboxylic acids; 2023 [cited Jan 13, 2023]. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-10377758-B2.

Kocherlakota C, Banda N. Novel co-crystal forms of agomelatine. WO Patent 2015;2017115284. Vol. A1.

Tan J, Shytle RD, inventors. Ionic cocrystal of lithium, lispro, for treating fragile X syndrome. United States patent US. 2018 Oct 16;10(098):909.

Kumar S, Kishore N, Vittal SM. Process for the preparation of dl-proline co-crystal of dapagliflozin. WO Patent 2017191539A1. Aurobindo Pharma Limited; 2016.

Nadgoud RK, Vasam S, Makireddy SR, Murki V, Ganorkar R, Jose J et al., inventors; Reddys Laboratories Ltd, assignee. Co-crystal of carfilzomib with maleic acid and process for preparing pure carfilzomib. United States patent US. 2019 May 28;10(301):353.

Lai C, Shi B, Strickley RG, inventors; Gilead Sciences Inc, assignee. Crystalline forms of tenofovir alafenamide. United States patent US. 2019 May 14;10(287):307.

Tsai GE, Wang CC, Hsieh TL, Syneurx International Taiwan Corp; 2018. Co-crystals of substituted glycine and uses thereof. U.S. Patent 9,877,942.

Salaman CR, Tesson N, inventors; Laboratorios del Dr Esteve SA, assignee. Co-crystals of tramadol and coxibs. United States patent US. 2013 Dec 3;8(598):152.

Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov Today. 2019 Mar 1;24(3):796-804. doi: 10.1016/j.drudis.2018.11.023, PMID 30521935.

Feng L, Karpinski PH, Sutton P, Liu Y, Hook DF, Hu B et al. LCZ696: a dual-acting sodium supramolecular complex. Tetrahedron Lett. 2012 Jan 18;53(3):275-6. doi: 10.1016/j.tetlet.2011.11.029.

Brittain HG. Pharmaceutical cocrystals: the coming wave of new drug substances. J Pharm Sci. 2013 Feb 1;102(2):311-7. doi: 10.1002/jps.23402, PMID 23192888.

Lexapro; 2002 [WWW document]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2002/21323lbl.pdf (accessed 30 9, 21).

Harrison WT, Yathirajan HS, Bindya S, Anilkumar HG, Devaraju. Escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal. Acta Crystallogr C. 2007 Feb 15;63(2):o129-31. doi: 10.1107/s010827010605520x, PMID 17348096.

O' Nolan D, Perry ML, Zaworotko MJ. Chloral hydrate polymorphs and cocrystal revisited: solving two cold pharmaceutical cases. Cryst Growth Des. 2016 Apr 6;16(4):2211-7. doi: 10.1021/acs.cgd.6b00032.

We are using co-crystals to produce alternative generic products | Teva API. Available from: https://www.teva-api.com/knowledge-center/using-co-crystals-to-produce-alternative-generic-products/ (accessed 2 10, 21); 2020 [WWW document].

Approval of Suglat tablets, kotobuki Pharmaceuticals. Available from: https://www.astellas.com/system/files/news/2018-12/181221_2_Eg_2.pdf (accessed 2 10, 21); 2014 [WWW document].

Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts. 2018;8(4):305-20. doi: 10.15171/bi.2018.33, PMID 30397585.

Duggirala NK, LaCasse SM, Zaworotko MJ, Krzyzaniak JF, Arora KK. Pharmaceutical cocrystals: formulation approaches to develop robust drug products. Cryst Growth Des. 2020;20(2):617-26. doi: 10.1021/acs.cgd.9b00946.

Vasoya JM, Shah AV, Serajuddin ATM. Investigation of possible solubility and dissolution advantages of cocrystals, I: Aqueous solubility and dissolution rates of ketoconazole and its cocrystals as functions of pH. ADMET DMPK. 2019 Apr 5;7(2):106-30. doi: 10.5599/admet.661, PMID 35350544.

Published

2023-11-01

How to Cite

Devi, P., Budhwar, V., Kakkar, S., & Kumar, A. (2023). Pharmaceutical Co-Crystallization: Strategies for Co-Crystal Design: Pharmaceutics. International Journal of Life Science and Pharma Research, 13(6), P87-P105. https://doi.org/10.22376/ijlpr.2023.13.6.P87-P105

Issue

Section

Review Articles