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Abstract: Rutin is a flavonoid of the flavonol type found in many typical plants, such as buckwheat, passion flower, apple and
tea. Acrylamide (ACR) is a known industrial toxic chemical that produces neurotoxicity characterized by progressive neuronal
degeneration. Rats were randomly divided into Control, ACR, Pregabalin and Rutin treated groups. Male wistar rats were
treated with ACR (50 mg/kg/ i.p.) for 4 weeks which produce typical symptoms of neuropathy in rats. Pregabalin (10 mg/kg) and
Rutin (50 & 100 mg/kg) were administered orally for 4 weeks after one hour of ACR administration. ACR enhanced the
production of reactive oxygen species (ROS). Treatment with Rutin significantly improved neurological score. Rutinsignificantly
(p<0.001) attenuated acrylamide induced oxidative stress markers. The expression of Bcl-2 was up-regulated and TNF-q, IL-6
and Bax were down-regulated by rutin treatment. From our results, it can be concluded that rutinshowed an ameliorative effect
against ACR induced neurotoxicity in rats through its antioxidant, anti-inflammatory and antiapoptotic actions.
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1. INTRODUCTION

Neuropathic pain is linked up with multiple pathological
events like oxidative stress ', inflammation  and apoptosis. '
Current drugs available for the effective management of
neuropathic pain are tricyclic antidepressants, antiepileptic
drugs, cannabinoid receptor agonists and sodium channel
blockers but their usage is associated with many side effects *
which led to search for medicinal plants, nutraceuticals, and
phytochemicals. Rutin (3, 3', 4', 5, 7 -pentahydroxyflavone-3-
rhamnoglucoside) is a flavonoid of the flavonol type found in
many typical plants, such as buckwheat, passion flower, apple
and tea “ It is also an important dietary constituent of foods
and plant-based beverages °. Rutin  has several
pharmacological properties, including antiviral ¢, antibacterial
7, anti-inflammatory 8 antioxidant °, vasoprotective',
cardioprotective'', '? and neuroprotective activities 3, '%. The
present work is intended to study neuroprotective function
of rutin against ACR induced neurotoxicity and contemplates
to establish the possible mechanism of action. ACR is a
neurotoxic chemical and causes peripheral and central
neuropathy in humans and laboratory animals ". It is
considered as the important chemical contaminant formed
mostly in potato, cereal and bakery products by the heat
treatment '°.

2. MATERIALS AND METHODS
2.1 Materials

Rutin was purchased from Sisco Research laboratories.
Acrylamide was obtained from Merck, India. Antibodies of
tumor necrosis factor a (TNF-a), interleukin-6 (IL-6), Bax,
Bcl-2, and biotinylated anti rabbit were purchased from Santa
Cruz Biotechnology, Inc., USA. All other chemicals used
were of analytical grade.

2.2 Animals

Male rats of Wistar strain weighing 280-300 g were used for
the study. The rats were maintained under conditions of 12 h
light/dark cycle and had free access to food and water. Study
protocol was approved by the Institutional Animal Ethics
Committee (No.
1529/PO/Re/ | | /ICPCSEA./CHIPS/IAEC7/PRO-7/2019-20).

2.3  Experimental design

Rats were randomly divided into 5 groups (n=6 in each
group). Group | rats served as control and received the
vehicle normal saline only. Group Il, Ill and IV rats were
administered with ACR (50 mg/kg, i.p. thrice a week) for 4
weeks. After one hour of ACR or vehicle administration,
Groups Ill, IV and V rats received pregabalin (10 mg/kg,
orally/daily), rutin 50 & 100 mg/kg orally/daily respectively.
Rats were monitored on a regular basis for manifestation of
neuropathy. All rats were subjected to behavioral tests each
week except neurological score which was carried out on
28" day. Finally, rats were sacrificed by cervical dislocation,
the sciatic nerves (SN) were isolated and processed for
biochemical analysis 7.

2.4 Behavioral examination

2.4.1 Assessment of behavioral index (neurological
scores)

At the end of the treatment, the neurological scores were
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examined. Rats were placed in a clear plexiglass box and
were observed for 3 min, and a neurological score, from | to
4, was assigned; where |= normal, unaffected gait; 2= slightly
affected gait (foot splay, slight hind limb weakness and
spread); 3= moderately affected gait (foot splay, moderate
hind limb weakness, moderate limb spread during
ambulation,); and 4= severely affected gait (foot splay, severe
hind limb weakness, dragging hind limbs, inability to rear) .

2.4.2 Paw Cold Allodynia (Acetone drop test)

Cold chemical thermal sensitivity of the hind paw was
assessed using acetone drop method for assessing the
reactivity to non-noxious cold chemical stimuli. The rats
were placed on the top of a wire mesh grid, allowing access
to the hind paws. Acetone (100 pl) was sprayed on the
plantar surface of the left hind paw of the rat. Cold chemical
sensitive reaction with respect to licking, shaking or rubbing
the left hind paw was observed and recorded as a paw
withdrawal threshold. The cut-off time of 20 sec was
maintained '®.

2.4.3 Motor Coordination Test

Motor coordination was evaluated by a Rota-Rod as
described by Jones and Roberts (1968). Rats were placed for
2 min on the rotating rod. The time taken for the falling from
the roller, was recorded '°.

2.4.4 Biochemical Estimations

At the end of the study all the rats were sacrificed by cervical
dislocation and the sciatic nerve was isolated immediately
from the rats. The sciatic nerve was homogenized in
phosphate-buffered saline, pH 7.4, and the homogenates
were processed immediately for centrifugation at 1500 rpm,

at 4'C to obtain the supernatant for biochemical estimations
2

2.4.5 Estimation of superoxide dismutase (SOD)

SOD activity was estimated according to the method of
Misra and Fridovich (1972).In brief, the homogenate was
centrifuged at 10,000 rpm for the enzyme assay. 100pl of
sciatic nerve homogenate was added to 880 pl of carbonate
buffer (0.05M, p" -10.2, containing 0.ImM EDTA), and 20 yl
of 30 mM epinephrine (in 0.05% acetic acid) was added to
the mixture and the optical density values were measured at
480 nm for 4 min on an UV-Vis Spectrophotometer. One
unit of activity is expressed as the amount of enzyme that
inhibits the oxidation of epinephrine by 50% .

2.4.6 Assessment of Lipid Peroxidation (LPO)

LPO was assessed by measuring the formation of
thiobarbituric acid reactive substances (TBARS). The reaction
mixture contained 0.2 ml of sciatic nerve homogenate, 1.5 ml
of acetic acid (pH 3.5, 20 %), 1.5 ml of 08 %
thiobarbituricacid (0.8 % w/v) and 0.2 ml Sodium dodecyl
sulphate (SDS) (8 % wi/v). The mixture was heated to boiling
for 45 min and TBARS adducts were extracted into 3 ml of
[-butanol and its absorbance was measured at 532 nm and
quantified as malondialdehyde (MDA) equivalents using
,1,3,3-tetramethoxypropane as the standard 2'.
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2.4.7 Reduced Glutathione (GSH)

Reduced glutathione was measured according to the method
of Ellman (1959). Equal quantity of sciatic nerve homogenate
was mixed with 10% trichloro acetic acid and centrifuged to
separate proteins. To 0.0Iml of this supernatant, 2ml of
phosphate buffer (pH 8.4), 0.5 ml of 5, 5- dithio, bis (2-
nitrobenzoic acid) and 0.4 ml double-distilled water were
added. Mixture was vortexed and the absorbance was read
at 412 nm within 15 min. The concentration of reduced
glutathione was expressed as n mol/mg of protein 2.

2.4.8 Estimation of Total Calcium

0.5 ml of the sample was added to 4.5 ml of deproteinated
buffer in a glass centrifuge tube, and placed in a water bath
for 3 minutes. Tubes were centrifuged while they were still
hot, 0.5 ml of each supernatant and standard were
transferred into clean test tubes. For the reagent blank, 0.5
ml of blank solution was prepared by mixing 9 volumes of
deproteinization buffer with one volume of water. 5 ml of
working colouring reagent was added to each tube, mixed
well and then read at 570 nm .

2.4.9 Detection of TNF- a, IL-6, Bcl-2 and Bax
expression by Western blotting

Sciatic nerve from each experimental group was minced and
homogenized in an ice cold lysis buffer. Homogenates were
centrifuged at 4,000%g for 10 min to remove cellular debris.
The cytosolic fractions of the proteins were obtained by
collecting the supernatant and centrifuged at 16,000xg for 30
min at 4° C to maximize protein extraction. The membrane
fraction was obtained by treating the pellet with alysis buffer
supplemented with | % Triton-X followed by centrifugation
at 16,000xg. Protein concentrations were determined using
modified Lowry, 1951 method *. Proteins were denatured
with sodium dodecyl sulfate (SDS) sample buffer and epitopes
were exposed by boiling the protein samples at 100° C for 5
min. A 50 pg of protein was loaded and separated by
electrophoresis on 12 % (w/v) SDS-polyacrylamide gel
electrophoresis and proteins were transferred to a
nitrocellulose membrane. Immunoblotting was carried out by
incubating the membrane in blocking solution [5 % dry milk
in Tris—buffered saline— Tween 20 (TBST) buffer for | h] and
then with specific polyclonal antibodies, i.e., TNF-a, IL-6, Bcl-
2 and Bax (1:100, Santa Cruz Biotechnology, Inc., USA) for
12 h at 4° C. Membranes were washed three times with
TBST buffer and incubated with Horseradish Peroxidase-
conjugated secondary antibody (1:5,000, Santa Cruz
Biotechnology, Inc, USA) for | h at room temperature
followed by washing three times with TBST buffer. Bands
were visualized on the Odyssey infrared scanner
(Biosciences, USA) and quantitatively analyzed by
densitometry with Quantity one software (BioRad).

3. STATISTICAL ANALYSIS

Data were expressed as mean + SEM (n=6) and were
analyzed using one way analysis of variance (ANOVA)
followed by Dunnet’s T test for behavioral tests using Graph
pad prism 8.0. A value of P <0.05 was considered to be
statistically significant.

4, RESULTS
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4.1 Effect of Rutin on ACR induced alterations in
neurological score

Exposure to ACR (50 mg/kg, i.p) for 4 weeks led to
progressive gait abnormalities in rats as shown in Graph |.
ACR treated rats developed characteristic symptoms such as
foot splay, twisting of hind-limbs and difficulty in ambulation.
At the end of 4 weeks rutin treatment caused a significant
reduction in neurological scores (P<0.01) compared to ACR
administered rats indicating its protective effect. Pregabalin
treated rats also showed significant reduction in neurological
scores (P<0.001) compared to ACR administered rats.

4.2  Effect of Rutin on cold allodynia

The ACR administration resulted in a significant (P<0.001)
cold allodynia, which was significantly ameliorated (P<0.001)
by pregabalin and rutin (50 and 100 mg/kg) (Graph 2).

4.3  Effect of Rutin on Motor coordination test

Administration of rutin significantly attenuated (P<0.00/)
ACR induced decrease in motor performance in a dose-
dependent manner as assessed by time spent on rota rod.
Rats treated with rutin (50 and 100 mg/kg) and
Pregabalinshowed improvement in motor performance
(P<0.001) when compared to the control group (Graph 3).

4.4 Effect of Rutin on oxidative stress markers

SOD levels were found to be decreased significantly
(P<0.001) in the ACR group as compared with the control
group. Rutin 50 and 100 mg/kg treated groups significantly
(P<0.001) prevented the ACR induced decrease in SOD
levels when compared with ACR group (Graph 4). Lipid
peroxidation in the SN was determined by measuring MDA
content. ACR treated rats showed a significant (P<0.001)
increase in the level of MDA when compared to control rats.
Treatment with rutin at doses of 50 and 100 mg/kg
significantly reversed ACR induced increase in MDA levels in
SN (Graph 4). ACR treatment significantly decreased
(P<0.01) GSH content in SN. Rutin dose-dependently
restored the levels of GSH significantly (P<0.01) compared to
ACR treated rats (Graph 5). Effect of Rutin on Calcium
levels was found to be increased in the ACR group when
compared with the control group. However, rutin treatment
significantly (P<0.001) prevented the ACR induced increase in
calcium levels when compared with the ACR group and
values reached normal (Graph 5). Pregabalin 10 mg/kg group
showed the similar results comparable to the control group.

4.5 Effect of Rutin on the expressions of TNF- a, IL-6,
Bcl-2 and Bax

The expressions of proinflammatory cytokines TNF- a, IL-6,
antiapoptotic protein Bcl-2, and pro-apoptotic protein Bax were
evaluated to gather insights into inflammatory and apoptotic
signaling. ACR caused substantial increase in TNF- a and IL-6
expression (P<0.00/) compared with the control group.
Whereas rutin modulated the expressions of TNF- a and IL-6
(P<0.001) (Graph 6) near to normal. ACR treatment reduced
Bcl-2 expression compared with the control group, while
treatment of rutin markedly restored Bcl-2 expression
(P<0.001) (Graph 7). In contrast, Bax content in ACR treated
rats showed a significant increase as compared with the control
group. And this increase in Bax content was significantly
(P<0.001) ameliorated by rutin.
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Graph | Effect of Rutin on ACR induced alterations in neurological score
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5. DISCUSSION

The present study investigated the mechanism of the
neuroprotective effect of rutin against ACR induced
neuropathic pain. Acrylamide has been proved to induce a
central and peripheral neuropathy in laboratory animals
including rats and monkeys as well as in humans * % 2 %,
Furthermore, acrylamide induced neuropathy and neuronal
loss which leads to behavioral abnormalities in early
development 2 3% 3!, Acrylamide consumption impairs motor
coordination and motor control and reduces motor neurons’
ability to generate action potentials, it causes dysfunction of
limbs and abnormal behavior *>*. Neurologic score, Acetone
drop test, and motor coordination tests were performed to
measure the extent of impairment of motor functions and
abnormal behavior of rats. Dose dependently, rutin
ameliorated the neuropathological cascade in ACR induced
neuropathy, indicating its ameliorative potential. In-vitro and
in-vivo studies showed critical role of oxidative stress in ACR-
induced neurotoxicity ** %. Glutathione (GSH), a
nonenzymatic antioxidant, has an important role in the
detoxification of ACR *. ACR administration reduced GSH
content and induced lipid peroxidation in various brain
regions in animal models ¥. SOD has a key role in inhibiting
inflammatory response, which is closely correlated with
attenuation of hyperalgesia® Alteration in the calcium
homeostasis, release of pro-inflammatory mediators (TNF-a
and MPO) and generation of reactive oxygen species lead to
neuronal damage and neuropathic pain Neuronal Ca*
homeostasis/restoration was reported to ameliorate indices
of hyperalgesia in models of chemotherapeutic agents
induced neuropathy ** and painful diabetic neuropathy “*" 4,
In the present study rutin restored SOD and GSH levels and
attenuated the elevation of calcium and MDA levels indicating
its protective role which in part may be due to its antioxidant
potential. Online with the present study Crocin reduced
acrylamide induced neurotoxicity in Wistar rat through
inhibition of oxidative stress *. Major active components in
cloves such as eugenol and isoeugenol®, curcumin®,
geraniol®, lipoic acid ¥, linalool *, ferulic acid * had
neuroprotective activity against ACR-induced neurotoxicity
by reducing the oxidative stress.Epigallocatechingallate,
epicatechingallate protected ACR-induced neurotoxicity as
manifested by PCI2 cells viability in in-vitro model * and
chrysin improved GSH content thereby inhibited lipid
peroxidation in in-vivo model *'. In the present study rutin
restored SOD and GSH levels and attenuated calcium and
MDA levels indicating its protective role impart may be due
to its antioxidant potential. Proinflammatory cytokines such
as tumour necrosis factor q, interleukin IB, interleukin 6
induce acute or short term hyperalgesia and are implicated

directly in chronic hyperalgesia and allodynia®> *. Anti-
inflammatory effect of rutin was observed in dexamethasone
treated mice **. Rutin prevented cognitive impairments by
ameliorating oxidative stress and neuroinflammation in the
rat model of Alzheimer type % In the present study, ACR
administration upregulated the expressions
ofproinflammatory cytokines IL-6 and TNF-a.Administration
of rutindownregulated the expressions of IL-6 and TNF-a
significantly, which supports the anti-inflammatory potential
of rutin against ACR-induced neurotoxicity. On par with this,
previous studies showed that Ferulic acid and Selenium
nanoparticles showed neuroprotective effect by inhibiting the
proinflammatory cytokines in ACR induced neurotoxicity in
rats “. Another major mechanism of ACR-induced
neurotoxicity is apoptosis, which is induced by oxidative
stress >. Bcl-2 is a family of regulatory proteins which include
proapoptotic and antiapoptotic proteins that modulate
apoptosis ***’. The mechanism underlying acrylamide-induced
neuronal injury is through elevated expression of apoptotic
markers as Bcl-2 and Bax*® in the cerebral cortex of rats. The
main action of the Bcl-2 family of proteins is the regulation of
cytochrome C release from the mitochondria through
alteration of mitochondrial membrane permeability *°.
Resistance to apoptosis can be by the up-regulation of
antiapoptotic proteins such as Bcl-2 or by the down-
regulation of pro-apoptotic proteins such as Bax®.
Thymoquinone showed neuroprotective effects in ACR
induced peripheral nervous system toxicity through
modulating MAPKinase and apoptosis pathways inrat °'.
Taurine attenuated acrylamide-induced apoptosis via
PI3K/AKT-dependent manner®. ACR downregulated Bcl-2
protein expression while upregulatedBax protein and
potentiated apoptosis in PCI2 cells *. Administration of
ACR to rats markedly increased the late apoptosis ratio in
neutrophils ®. The results of our study showed that
exposure to ACR reduced the level of Bcl-2 protein &
increased Bax protein expression. Rutin up-regulated anti-
apoptotic protein Bcl-2 and down-regulated proapoptotic
protein Bax. These observations clearly demonstrated that
rutin offered a significant protection against ACR induced
neurotoxicity, possibly due to its anti-apoptotic potential as
well.

6. CONCLUSION

In conclusion, targeting oxidative stress, inflammation and
apoptotic cascade seems to be promising therapeutic
interventions for ACR induced neurotoxicity. Our results
clearly indicated that rutin rendered a remarkable protection
by reducing the oxidative stress, down-regulating
proinflammatory cytokines IL-6, TNF-q, apoptotic mediator
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Bax proteins and up-regulating anti-apoptotic Bcl-2 protein,
thereby decreasing neurological severity, and prevented
associated neuronal damage in rats.
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