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Abstract: The use of fossil fuels in the current situation has been increased. These fossil fuels do not come 
under the category of sustainable sources due to its depleting nature. Fossil fuels also pollutes the environment 
by increased emission of Greenhouse Gases (GHG). In order to produce an alternate renewable energy and to 
reduce the percentage of environmental pollution caused, many technologies like solar energy, tidal energy, 
wind energy etc. came into existence. But all these forms of energy can be produced in terms of electricity. To 
meet the increasing fuel demand, renewable biofuels came into the field where biomasses are utilized to 
produce biofuels. Second generation renewable biofuels are produced from conventional plant sources with 
higher oil content whose efficiency is determined by the amount of Green House Gases (GHG) emitted and 
the life cycle cost whether positive, neutral or negative. High yielding energy crops such as sugarcane, corn, 
switchgrass, wheat etc. are subjected to various processes / fermentation to yield biofuels like bioethanol, 
biobutanol, biohydrogen, biodiesel etc. The US and Brazil are replacing the demand for gasoline with around 
15% of bioethanol and it has a higher octane rating, increased engine’s compression ratio, increased thermal 
efficiency and ultimately reduces atmospheric pollution emissions. In future biofuels will be recognized as 
alternative fuel in transportation, energy generation, heat producer, charging electronics, environmental 
friendly cleaners, cooking, lubricants, adhesives etc. This review provides a brief outline about the second 
generation biofuels which would serve as an alternative energy in the near future. 
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1. INTRODUCTION 
 
Biofuel production research in the current scenario has 
dramatically increased due intensification of civilization, 
transport, demand for fossil fuels etc.1. The global demand 
has been reported as 32.4 billion gallons in 2013 and it is 
predicted to increase to 51.1 billion gallons in 20222. It has 
been depicted that about 13 fold energy consumption 
increased in the 20th century which is greater than the rate of 
population growth3-5. Predicted analysis between 2006 and 
2013 revealed that 80% of fuel consumption was against 
transport and it has diminished the supply of fossil fuels and 
stimulated the use and production of biofuels as alternative 
source6-10. Evidence of biofuel consumption in EU27 
countries from 2006 and 2008 was 5625 Kilotons of oil to 
10064 Kilotons where the biofuel production increased from 
5639 million tons to 8165 million tons11. Anticipated rising 
energy demand has developed to an alternate method of 
usage of biomass for energy production12,13. Biomass waste 
(maize, sugarcane, sugar beets, rice husk) were worldwide 
used for production of biofuels in most developing 
countries14. The energy from biofuel is considered to be a 
promising sustainable alternative source for its eco friendly, 
economic nature for future15. Nowadays sources for 
production of biofuel are well studied and reviewed that the 
availability of bioenergy from feedstock had been 
recommended for its special and abundant availability of 
cellulosic and lignocellulosic nature16,17. India, is known for its 
agricultural resources and enormous supply of waste is 
wasted (1/3rd as waste) every year18,19. Developing countries 
which depend on natural resources grow energy crops (eg) 
Brazil which is located mainly between Equator and Tropic of 
Capricorn is growing crops for about  851 million hectares20. 
With 30 years of experience, Brazil has developed bioethanol 
industries from sugarcane (since the climatic conditions suit 
the growth and high yield)21. A study from NIPE/ UNICAMP 
stated that Brazilian Government encourages the increase of 
sugarcane production to meet the demand of gasoline in 
2025 and this can be overcome by substituting ethanol (5% 
102 billion litres)22. Agro industrial traders are acting as cross 
border.in biofuel production in US and European countries 
followed by Canada and Mexico 23,24. Use of maize has shifted 
towards use of jatropha and palm oil as alternative feed 
stocks in Central America and Soy in neighboring Uruguay, 
Paraguay and Bolivia25. The present review article focuses on 
the importance and strategic plans adopted in various 

countries for production of biofuels from biomass (wealth 
from waste). 

 
1.1 CHARACTERISTICS OF BIOFUEL 

 
It has been predicted that by 2050, quarter of the world will 
depend on biofuel for transport fuel because of low carbon, 
non petroleum fuel, minimal changes to vehicle stock26 and 
this will support the economic development for the 
country27. Biofuel usage has substantially increased from 2012 
(25%) of anhydrous and hydrated ethanol (19.1 Mm3) and 
biodiesel (2.2 Mm3)28. Research on Greenhouse Gas Emission 
(GMG threshold) reduction by Renewable Fuel Standard 
(RFS) the biofuel should have 50% lower emission and it will 
classified as “Advanced Biofuel” and 60% as “Cellulosic 
Biofuel” and other biomass registered 44% (Corn ethanol) 
and 68% (sugar cane ethanol)29,30. Experimental analysis of 
biobutanol with gasoline in various compositions (100% 
Butanol, 50% gasoline and Butanol and 95% gasoline) were 
listed in the city of Sao Paulo for 120 km. It was found that 
the emission of biogenic CO2 was 231.5 by 100% butanol and 
104.2 in the second combination and 9.53 in the third case of 
95% gasoline and CO2 was nil in 100% butanol and 127.3 and 
221.09 in other cases31. Elementary analysis of biocrude oil 
revealed carbon (75.2%), hydrogen (8.2%), nitrogen (0.5%), 
sulphur (0.3%), oxygen (15.8%), ash content (0.48%), bound 
water (3.8%)32,33. The cellulosic biocrude through 
Hydrothermal Liquefaction consisted of 4.4 mg/g aldehyde 
which was present as 5 – hydro-xymethyl-furfural (5-HMF) 
and 3.9 mg/g of ketone as 3-methyl-1,2 cyclopentanedione, 
2,5-hexanedione and 1-(2-furanyl)ethane etc. and phenolic 
compounds such as guaiacol and creosol34. The leading 
bioethanol producers are Brazil with 19,000 million litres 
(ML) which is equivalent to 10.44 million litres of oil (MTOE) 
followed by China with 1,840 ML with 1.01 MTOE which is 
followed by Canada of 1,000 ML with 0.55 MTOE and USA 
ranked first with 26,500 ML and 14.55 MTOE35. Bioethanol 
comprises of oxygen (35%) which influence complete 
combustion of fuel and imparts reduced particulate emission 
36,37 and even 10% ethanol blends GHG emission to 12.19% 
when compared to fossil fuel source 38 and 85% ethanol as 
fuel reduces nitrogen oxide to 10%, particulate to 20% and 
sulphate emission to 80%, respectively compared to 
conventional gasoline. The out/input ratio of various biomass 
is tabulated in Table 1. 

 

Table 1 : Out/input ratio of various biomasses 
Crop Biomass Output / input ratio References 
Corn 6.9 - 9.5 39 
Alfalfa corn 2.9-3.1 40 
Switchgrass 10.8-11.3 40 
Sugar beet 1.8 41 
Winter cereals 2.5-2.8 42 

 
1.2 BIOFUEL AS ALTERNATIVE ENERGY SOURCE 

 
Around 16 distilleries in Pakistan are functioning effectively 
and produce 506.33 Million Litres (ML) of alcohol from 1.687 
Million Tonnes of molasses43. It is also reported that Pakistan 
is exporting ethanol to European Union around 141.3 ML in 
2004, 212.16 in 2006 etc44,45. In Brazil 25% of sugarcane 
production is utilized for 25% butanol and 50% of ethanol 
production47. The second generation biobutanol has more 
advantages that the photochemical oxidation was reduced 

from 30% to 20%48 and this has proved that bioethanol has 
been considered eco friendly fuel in Brazil28. More recently, 
Brazil started concentrating on corn fermentation with yeast 
cells and proved that the process was faster (34-36h) when 
compared to the traditional process (45-60h)49,50. Dry weight 
of sugarcane bagasse contain 60% of lignocellulosic and 
cellulose sources which are accountable for ethanol 
production by acid or enzymatic hydrolysis51. Researchers 
still have technological challenges to overcome the 
pretreatment process, use of suitable enzymes, improve the 
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efficiency of bagasse hydrolysis etc. for production of highly 
efficient second generation ethanol and butanol52,53. 
Hemicellulosic has been classified as micro and cellulose as 
macro fibrils54 and lignin provides the structural role of the 
matrix55 and these are demonstrated to be the major 
constituents for biofuel production by enzymatic hydrolysis56. 
First generation ethanol was produced basically from 
sugarcane and corn worldwide and production was 25 billion 
gallons where Brazil and the US contributed 85% globally57. In 
the second generation of biofuels low valued lignocellulosic 
materials from forestry, agriculture were used for production 
wherein improved pretreatment, fermentation processes 
were subjected to meet the challenges in 20th century58. The 
application of thermostable enzymes was used to achieve 
ethanol production of 40-50%59 assisting liquefaction process. 
Characterization of bioethanol production were performed 
enzymatically using many acids of different concentrations 
(eg. Sulphuric, hydrochloric, hydrofluoric, formic phosphoric 
and nitric acids)60 and with common catalyst61 and varied 
temperature 62. Three best fermentation process for ethanol 
production from lignocellulosic sources are Separate 
Hydrolysis and Fermentation (SHF), Saccharification and 
Fermentation (SF) and Simultaneous Saccharification and 
fermentation (SSCF) etc63,64and the microbial strains plays an 
important role for efficient production65  and it is proved 

Saccharomyces cereviae as ultimate choice of strain66 and 
Scheffersomycesshehatae (Candida shehatae) is also proved to 
be promising in ethanol production66. 
 
1.3 ADVANTAGES OF SECOND GENERATION 

BIOFUELS 

 
The biofuels obtained from sugar and vegetables oils are 
classified under first generation biofuels. Whereas, the 
second generation biofuels are obtained from cellulose, 
hemicelluloses or lignin sources. The advantages of second 
generation biofuels are 
 

⮚ Less greenhouse gas emission (upto 86%) 
⮚ Fully biodegradable 
⮚ Environmentally friendly 
⮚ It can be directly supported or blended with petrol 

in some proportion (ethanol) 
⮚ Lower energy density 
⮚ Enhance and safeguard energy security67 

 
The second generation technology includes processes like 
thermochemical, gasification, pyrolysis, torrefaction, 
hydrothermal liquefraction68,69(Table 2). 

 

Table 2: Second generation technologies 
Process Temperature & 

Pressure 
Products 

Thermochemical routes 150-3740C Hydrogen, carbon monoxide,  
carbon dioxide, methane 

Gasification >7000C Diesel, biomethanol, gasoline 
Pyrolysis 4300C under pressure Bio oil 
Terrefaction 200-3200C Bio oil 
Hydrothermal Liquefaction 4000C and higher than  

atmospheric pressure 
Bio oil, bio crude 

 
1.4 CURRENT STRATEGIC PRODUCTION OF 

BIOFUEL 

 
Biofuels obtain energy by the process of biological carbon 
fixation. United States leading the top most producer is 

biofuels (1,557 petajoules/year) where, they have gradually 
increased from 187 thousand barrels per day in 2000 to 1.8 
million barrels per day in 2019. A statistic representation of 
leading countries was published by Ian Tiseo, September 2, 
2020 is represented in the Table 3.70 

 

Table 3: Biofuel production in developed countries 
Countries Biofuel production 

(Petajoules) 
United States 1557.1 
Brazil 992.2 
Indonesia 275.5 
Germany 143.4 
France 113 
China 111.3 
Argentina 102.8 
Thailand 95.6 
Netherlands 79.2 
Spain 66.7 

 
The largest consumers of biofuels in US are National Army 
(Vehicles are fueled using 10% ethanol). US mainly uses corn 
(5.55 billion bushels in 2018) and soybeans for biodiesel 
production and according to Energy Information Administration 
(EIA) US produced 16.061 billion gallons of ethanol.Brazil which 
ranks seconduses sugarcane and soybeans and the production 
30.755 billion litres of ethanol in 2018 which was 9% more than 
2017. Germany produced 75.8 thousand barrels/day in 2018 

(2.9% of global biofuel production in 2018). ADM Olmuhle 
Hamburg (American group) is one of the major producer of 
biodiesel in Germany. Argentina leads the fourth global 
production (70.6 thousand barrels / day in 2018) which accunts 
for 2017% of world’s production. There are 19 bioethanol plants 
of 1.4 billion litres/year production and sugarcane is the raw 
material in all these plants. Gela bio refinery in Europe which 
Was launched in August 2019 utizies second generation raw 

vineethdevika@gmail.com 
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materials and produced 7,50,000 tonnes annually of biofuel (70% 
of SO2, CO2, dust are reduced). 
 
1.5 ALCOHOLIC FUELS 

 

Aliphatic alcohols (CnH2n+1 OH)such as methanol, ethanol, 
proponal and butanol are used as fuel for internal combustion 

engines. The advantage of alcoholic fuels recorded is that they all 
have High Octane Rating which tends to increase their fuel 
efficiency. These alcoholic fuels are derived from fossil fuel and 
biomass and their Research Octane Number (RON) and Motor 
Octane Number (MON) and their energy density are tabulated 
in Table 471. 

  

Table: 4 Alcoholic fuel characteristics 

Fuel Energy density 
(megajoules / Liter) 

Research Octane 
Number (RON) 

Motor Octane 
Number (MON) 

Butanol -30 96 78 

Ethanol -20 109 90 

Proponal -24 108 118 

Methanol -16 109 89 

 
Alcoholic fuels have the potential to reduce NOx (25-32%), 
CO (12-24%) and MC (20-22%) due to lower carbon to 
hydrogen ratio and improved engine efficiency. Propane and 
butanol are less toxic and less volatile than methanol. The 
cellulosic fermentation with Clostridium acetobulicum 
processes produces proponal and butanol with extremely 
unpleasant smell. Swiss company (Butaico GmbH) adopts 

modified yeast in the production of butanol and on 
combustion they give out CO2, water and heat. Ethanol has 
been used as rocket fuel and even in lightweight rocket 
powered racing aircraft and the energy content of ethanol is 
compared with other fuels is tabulated in Table 572 and 
schematic representation of biofuel production in Fig.173 

 

Table 5: Comparison efficiency of ethanol 

Fuel Energy content 
(MJ/L) 

Research Octane 
Number (RON) 

   

Methanol 17.9 109 

Ethanol 21.2 109 

E85(85% ethanol + Gasoline 15%) 25.2 105 

LPG 25.3  

Aviation gasoline 33.5 100 

Gasohol 33.7 93 

Regular gasoline 34.8 91 

Diesel 38.5 25 

 

 
 

Fig 1: Schematic representation of ethanol production 
 

1.6 ADVANCED BIOFUEL PRODUCTION 

THROUGH METABOLIC ENGINEERING 
 
The demand in biofuel usage has raised the diversity of 
microorganisms in strain optimization in production of 
biofuel at industrial sectors in large scale. The engineered 
microorganisms (E.coli, S. cerevisae and Yarrowia lipolytica) are 
more effective in the production of advanced biofuel from 
lignocellulosic biomass74. In recent years isobutanol and n 
butanol has become more popular because of its low water 

solubility, anti knock properties and energy densities75. 
Clostridium strains are proven to produce butanol through 
acetone-butanol-ethanol (ABE) fermentation76,77. Engineerded 
E.coli has greater commercial implementation in which 
isobutanol pathway is altered to anaerobic conditions and 
secondly the cofactor preference for NADH over NADPH in 
ilvc and adhA78,79. E coli in another engineered method 
proved to increase the yield of isobutanol by eccretion of 
ammonia and deleting both gdhA and glnA gene (used in 
nitrogen assimilation)in Erlich-like pyruvate pathway. Six fold 
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improvement of n butanol production (120 mg/L) was 
observed in heterologous expression of cytosolic pdh gene 
(inhibits ethanol and glycerol formation)using S.cerevisiae80 
and 242.8 mg/L of n butanol titers was reported in keto acid 
pathway by double deletion of ilv2 and adh1 by directing 
cytosoli c pyruvate to mitochondrial threnine metabolism82. 
Two distinct pathways such as isopentenyl diphosphate (IPP) 
and dimethyl allyl diphosphate (DMAPP). And proved to be 
the precursors of isoprenoid fuels serving more effectively in 
jet engines83. E.coli strains proved to efficient in the 
isoprenoid derived branched C5 alcohol production by 
overexpression of mudF gene and alleviating the rate limiting 
step of dophosphate hydrolysis84. The purity of the product 
was improved whrn the pathway overexpressed the absence 
of idi gene in IPP to DMAPP85. Another proven evidence is 
that in optimization of MVA pathway, when multiple –
omicsdata analysis, coupled with ribosome binding site 
(optimization for onudB) increased the production to 2.2g/L 
with 1% glucose substratum86.87. Convential biodiesels were 
produced from plant oils and animal fats through fatty acid 
ethyl esters (FAEE) and fatty acid methyl esters (FAME) via 
trans estification of lipids. Fatty acid biosynthesis are more 
advantangeous for its purities, improving performance etc. 
E.coli, S.cerevisiae and Yarrowia lipolytica (Oleaginous yeast) 
proved to be very efficient in fatty acid production of 
convential biodiesel and petroleum based diesel88. High yield 
of production was achieved by altering DNA binding affinity 
(response to acyl CoA) or by implementation of malonyl 
CoA (FapR) or supply of acetyl CoA and consumption of 
malonyl-CoA/ACP89 or by linking upregulated FadfR or 
bypass  ATP-dependent  activation  of  acetyl  CoA  (C2)

90 or  
optimized lipoylation pathway91 . 
 

2. CONCLUSION 
 

Fossil fuels are limited and there may be a demand for coal, 
oil and natural gas and therefore the biofuels can work as an 
alternative form of fuel and reduce the pollution rate in the 
future. Biofuels are produced locally and therefore many 
countries have reduced their dependence on fossil fuels.  
Around more than 84% of the world’s petroleum is utilized 
in the US and demand for transportation fuel is dramatically 
increasing day by day. The current scenario in the 
improvement in pretreatment, efficacy of enzymatic 
digestion, fermentation processes using efficient new strains 
will definitely increase the production of biofuel and strategic 
performance of eco friendly environment.  Collective efforts 
in strain development, optimization process, novel biological 
pathways production rate and yield etc. will now be capable 
of developing economically feasible high yielding and efficient 
biofuels in industrial sectors. Apparent direction of recent 
advancement in metabolic engineering titers of these biofuel 

production requires significant improvement before 
commercial scale production. 
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