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Abstract: The use of fossil fuels in the current situation has been increased. These fossil fuels do not come
under the category of sustainable sources due to its depleting nature. Fossil fuels also pollutes the environment
by increased emission of Greenhouse Gases (GHG). In order to produce an alternate renewable energy and to
reduce the percentage of environmental pollution caused, many technologies like solar energy, tidal energy,
wind energy etc. came into existence. But all these forms of energy can be produced in terms of electricity. To
meet the increasing fuel demand, renewable biofuels came into the field where biomasses are utilized to
produce biofuels. Second generation renewable biofuels are produced from conventional plant sources with
higher oil content whose efficiency is determined by the amount of Green House Gases (GHG) emitted and
the life cycle cost whether positive, neutral or negative. High yielding energy crops such as sugarcane, corn,
switchgrass, wheat etc. are subjected to various processes / fermentation to yield biofuels like bioethanol,
biobutanol, biohydrogen, biodiesel etc. The US and Brazil are replacing the demand for gasoline with around
15% of bioethanol and it has a higher octane rating, increased engine’s compression ratio, increased thermal
efficiency and ultimately reduces atmospheric pollution emissions. In future biofuels will be recognized as
alternative fuel in transportation, energy generation, heat producer, charging electronics, environmental
friendly cleaners, cooking, lubricants, adhesives etc. This review provides a brief outline about the second
generation biofuels which would serve as an alternative energy in the near future.
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I. INTRODUCTION

Biofuel production research in the current scenario has
dramatically increased due intensification of civilization,
transport, demand for fossil fuels etc.'. The global demand
has been reported as 32.4 billion gallons in 2013 and it is
predicted to increase to 5I.1 billion gallons in 20222 It has
been depicted that about |3 fold energy consumption
increased in the 20" century which is greater than the rate of
population growth®®. Predicted analysis between 2006 and
2013 revealed that 80% of fuel consumption was against
transport and it has diminished the supply of fossil fuels and
stimulated the use and production of biofuels as alternative
source®'®. Evidence of biofuel consumption in EU27
countries from 2006 and 2008 was 5625 Kilotons of oil to
10064 Kilotons where the biofuel production increased from
5639 million tons to 8165 million tons''. Anticipated rising
energy demand has developed to an alternate method of
usage of biomass for energy production'”". Biomass waste
(maize, sugarcane, sugar beets, rice husk) were worldwide
used for production of biofuels in most developing
countries'®. The energy from biofuel is considered to be a
promising sustainable alternative source for its eco friendly,
economic nature for future'. Nowadays sources for
production of biofuel are well studied and reviewed that the
availability of bioenergy from feedstock had been
recommended for its special and abundant availability of
cellulosic and lignocellulosic nature'®". India, is known for its
agricultural resources and enormous supply of waste is
wasted (1/3™ as waste) every year'®'’. Developing countries
which depend on natural resources grow energy crops (eg)
Brazil which is located mainly between Equator and Tropic of
Capricorn is growing crops for about 851 million hectares®.
With 30 years of experience, Brazil has developed bioethanol
industries from sugarcane (since the climatic conditions suit
the growth and high yield)*'. A study from NIPE/ UNICAMP
stated that Brazilian Government encourages the increase of
sugarcane production to meet the demand of gasoline in
2025 and this can be overcome by substituting ethanol (5%
102 billion litres)®. Agro industrial traders are acting as cross
borderin biofuel production in US and European countries
followed by Canada and Mexico 2%, Use of maize has shifted
towards use of jatropha and palm oil as alternative feed
stocks in Central America and Soy in neighboring Uruguay,
Paraguay and Bolivia. The present review article focuses on
the importance and strategic plans adopted in various
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countries for production of biofuels from biomass (wealth
from waste).

I.I' CHARACTERISTICS OF BIOFUEL

It has been predicted that by 2050, quarter of the world will
depend on biofuel for transport fuel because of low carbon,
non petroleum fuel, minimal changes to vehicle stock?® and
this will support the economic development for the
country”. Biofuel usage has substantially increased from 2012
(25%) of anhydrous and hydrated ethanol (19.1 Mm®) and
biodiesel (2.2 Mm®)®. Research on Greenhouse Gas Emission
(GMG threshold) reduction by Renewable Fuel Standard
(RFS) the biofuel should have 50% lower emission and it will
classified as “Advanced Biofuel” and 60% as “Cellulosic
Biofuel” and other biomass registered 44% (Corn ethanol)
and 68% (sugar cane ethanol)®*. Experimental analysis of
biobutanol with gasoline in various compositions (100%
Butanol, 50% gasoline and Butanol and 95% gasoline) were
listed in the city of Sao Paulo for 120 km. It was found that
the emission of biogenic CO, was 231.5 by 100% butanol and
104.2 in the second combination and 9.53 in the third case of
95% gasoline and CO, was nil in 100% butanol and 127.3 and
221.09 in other cases®. Elementary analysis of biocrude oil
revealed carbon (75.2%), hydrogen (8.2%), nitrogen (0.5%),
sulphur (0.3%), oxygen (15.8%), ash content (0.48%), bound
water  (3.8%)%. The cellulosic biocrude through
Hydrothermal Liquefaction consisted of 4.4 mg/g aldehyde
which was present as 5 — hydro-xymethyl-furfural (5-HMF)
and 3.9 mg/g of ketone as 3-methyl-1,2 cyclopentanedione,
2,5-hexanedione and |-(2-furanyl)ethane etc. and phenolic
compounds such as guaiacol and creosol’*. The leading
bioethanol producers are Brazil with 19,000 million litres
(ML) which is equivalent to 10.44 million litres of oil (MTOE)
followed by China with 1,840 ML with 1.0l MTOE which is
followed by Canada of 1,000 ML with 0.55 MTOE and USA
ranked first with 26,500 ML and 14.55 MTOE®. Bioethanol
comprises of oxygen (35%) which influence complete
combustion of fuel and imparts reduced particulate emission
3637 and even 10% ethanol blends GHG emission to 12.19%
when compared to fossil fuel source * and 85% ethanol as
fuel reduces nitrogen oxide to 10%, particulate to 20% and
sulphate emission to 80%, respectively compared to
conventional gasoline. The out/input ratio of various biomass
is tabulated in Table |I.

Table | : Out/input ratio of various biomasses

Crop Biomass

Output / input ratio References

Corn

Alfalfa corn

Switchgrass

Sugar beet

Winter cereals

6.9-95 39
2.9-3.1 40
10.8-11.3 40

1.8 41
2.5-2.8 42

1.2 BIOFUEL AS ALTERNATIVE ENERGY SOURCE

Around 16 distilleries in Pakistan are functioning effectively
and produce 506.33 Million Litres (ML) of alcohol from 1.687
Million Tonnes of molasses®. It is also reported that Pakistan
is exporting ethanol to European Union around 141.3 ML in
2004, 212.16 in 2006 etc**. In Brazil 25% of sugarcane
production is utilized for 25% butanol and 50% of ethanol
production®”’. The second generation biobutanol has more
advantages that the photochemical oxidation was reduced

from 30% to 20%* and this has proved that bioethanol has
been considered eco friendly fuel in Brazil®®. More recently,
Brazil started concentrating on corn fermentation with yeast
cells and proved that the process was faster (34-36h) when
compared to the traditional process (45-60h)**°. Dry weight
of sugarcane bagasse contain 60% of lignocellulosic and
cellulose sources which are accountable for ethanol
production by acid or enzymatic hydrolysis®. Researchers
still have technological challenges to overcome the
pretreatment process, use of suitable enzymes, improve the
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efficiency of bagasse hydrolysis etc. for production of highly
efficient second generation ethanol and butanol®*®,
Hemicellulosic has been classified as micro and cellulose as
macro fibrils®* and lignin provides the structural role of the
matrix>® and these are demonstrated to be the major
constituents for biofuel production by enzymatic hydrolysis®.
First generation ethanol was produced basically from
sugarcane and corn worldwide and production was 25 billion
gallons where Brazil and the US contributed 85% globally*’. In
the second generation of biofuels low valued lignocellulosic
materials from forestry, agriculture were used for production
wherein improved pretreatment, fermentation processes
were subjected to meet the challenges in 20" century®. The
application of thermostable enzymes was used to achieve
ethanol production of 40-50% assisting liquefaction process.
Characterization of bioethanol production were performed
enzymatically using many acids of different concentrations
(eg. Sulphuric, hydrochloric, hydrofluoric, formic phosphoric
and nitric acids)®® and with common catalyst®' and varied
temperature ®2. Three best fermentation process for ethanol
production from lignocellulosic sources are Separate
Hydrolysis and Fermentation (SHF), Saccharification and
Fermentation (SF) and Simultaneous Saccharification and
fermentation (SSCF) etc®***and the microbial strains plays an
important role for efficient production®® and it is proved
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Saccharomyces cereviae as ultimate choice of strain®® and
Scheffersomycesshehatae (Candida shehatae) is also proved to
be promising in ethanol production®.

1.3 ADVANTAGES OF SECOND GENERATION
BIOFUELS

The biofuels obtained from sugar and vegetables oils are
classified under first generation biofuels. Whereas, the
second generation biofuels are obtained from cellulose,
hemicelluloses or lignin sources. The advantages of second
generation biofuels are

Less greenhouse gas emission (upto 86%)

Fully biodegradable

Environmentally friendly

It can be directly supported or blended with petrol
in some proportion (ethanol)

Lower energy density

71 Enhance and safeguard energy security®’

Ooood

The second generation technology includes processes like
thermochemical,  gasification,  pyrolysis,  torrefaction,
hydrothermal liquefraction®®¢’(Table 2).

Table 2: Second generation technologies

Process Temperature & Products
Pressure
Thermochemical routes 150-3740C Hydrogen, carbon monoxide,
carbon dioxide, methane
Gasification >700°C Diesel, biomethanol, gasoline
Pyrolysis 430°C under pressure Bio oil
Terrefaction 200-320°C Bio oil

Hydrothermal Liquefaction

400°C and higher than

Bio oil, bio crude

atmospheric pressure

1.4 CURRENT STRATEGIC PRODUCTION OF
BIOFUEL

Biofuels obtain energy by the process of biological carbon
fixation. United States leading the top most producer is

biofuels (1,557 petajoules/year) where, they have gradually
increased from 187 thousand barrels per day in 2000 to 1.8
million barrels per day in 2019. A statistic representation of
leading countries was published by lan Tiseo, September 2,
2020 is represented in the Table 3.7

Table 3: Biofuel production in developed countries

Countries

Biofuel production
(Petajoules)

United States

1557.1

Brazil

992.2

Indonesia

275.5

Germany

143.4

France

113

China

1.3

Argentina

102.8

Thailand

95.6

Netherlands

79.2

Spain

66.7

The largest consumers of biofuels in US are National Army
(Vehicles are fueled using 10% ethanol). US mainly uses corn
(5.55 billion bushels in 2018) and soybeans for biodiesel
production and according to Energy Information Administration
(EIA) US produced 16.061 billion gallons of ethanol.Brazil which
ranks seconduses sugarcane and soybeans and the production
30.755 billion litres of ethanol in 2018 which was 9% more than
2017. Germany produced 75.8 thousand barrels/day in 2018

vineethdevika@gmail.com

(2.9% of global biofuel production in 2018). ADM OlIlmuhle
Hamburg (American group) is one of the major producer of
biodiesel in Germany. Argentina leads the fourth global
production (70.6 thousand barrels / day in 2018) which accunts
for 2017% of world’s production. There are |9 bioethanol plants
of 1.4 billion litres/year production and sugarcane is the raw
material in all these plants. Gela bio refinery in Europe which
Was launched in August 2019 utizies second generation raw
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materials and produced 7,50,000 tonnes annually of biofuel (70%
of SOz, COy, dust are reduced).
1.5 ALCOHOLIC FUELS

Aliphatic alcohols (CnH2n+| OH)such as methanol, ethanol,
proponal and butanol are used as fuel for internal combustion

Biotechnology

engines. The advantage of alcoholic fuels recorded is that they all
have High Octane Rating which tends to increase their fuel
efficiency. These alcoholic fuels are derived from fossil fuel and
biomass and their Research Octane Number (RON) and Motor
Octane Number (MON) and their energy density are tabulated
in Table 47!,

Table: 4 Alcoholic fuel characteristics

Fuel Energy density Research Octane Motor Octane
(megajoules / Liter) Number (RON) Number (MON)

Butanol -30 96 78

Ethanol -20 109 90

Proponal -24 108 118

Methanol -16 109 89

Alcoholic fuels have the potential to reduce NOx (25-32%),
CO (12-24%) and MC (20-22%) due to lower carbon to
hydrogen ratio and improved engine efficiency. Propane and
butanol are less toxic and less volatile than methanol. The
cellulosic  fermentation  with  Clostridium  acetobulicum
processes produces proponal and butanol with extremely
unpleasant smell. Swiss company (Butaico GmbH) adopts

modified yeast in the production of butanol and on
combustion they give out CO,, water and heat. Ethanol has
been used as rocket fuel and even in lightweight rocket
powered racing aircraft and the energy content of ethanol is
compared with other fuels is tabulated in Table 57> and
schematic representation of biofuel production in Fig.1”*

Table 5: Comparison efficiency of ethanol

Fuel Energy content Research Octane
(MJ/IL) Number (RON)

Methanol 17.9 109

Ethanol 21.2 109

E85(85% ethanol + Gasoline 15%) 25.2 105

LPG 25.3

Aviation gasoline 33.5 100

Gasohol 337 93

Regular gasoline 34.8 91

Diesel 385 25

Raw Biomass
Pretreatment Ethanol

Combining of two steps proposed: simultaneous
saccharification and fermentation - SSF

Saccharification F- Fermentation

)k Recovery &

e
.

AR RNNL -

=)

Combining of three steps proposed l
consolidated bloprocessing - CBP

; Distillation

Steam & power
generation

Solids
separation

x

Process steam & electricity +—

Fig I: Schematic representation of ethanol production

1.6 ADVANCED BIOFUEL PRODUCTION
THROUGH METABOLIC ENGINEERING

The demand in biofuel usage has raised the diversity of
microorganisms in strain optimization in production of
biofuel at industrial sectors in large scale. The engineered
microorganisms (E.coli, S. cerevisae and Yarrowia lipolytica) are
more effective in the production of advanced biofuel from
lignocellulosic biomass’™. In recent years isobutanol and n
butanol has become more popular because of its low water

solubility, anti knock properties and energy densities’.
Clostridium strains are proven to produce butanol through
acetone-butanol-ethanol (ABE) fermentation’®”’. Engineerded
E.coli has greater commercial implementation in which
isobutanol pathway is altered to anaerobic conditions and
secondly the cofactor preference for NADH over NADPH in
iive and adhA’®”. E coli in another engineered method
proved to increase the yield of isobutanol by eccretion of
ammonia and deleting both gdhA and gInA gene (used in
nitrogen assimilation)in Erlich-like pyruvate pathway. Six fold
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improvement of n butanol production (120 mg/L) was
observed in heterologous expression of cytosolic pdh gene
(inhibits ethanol and glycerol formation)using S.cerevisiae®
and 242.8 mg/L of n butanol titers was reported in keto acid
pathway by double deletion of ilv2 and adhl by directing
cytosoli ¢ pyruvate to mitochondrial threnine metabolism®.
Two distinct pathways such as isopentenyl diphosphate (IPP)
and dimethyl allyl diphosphate (DMAPP). And proved to be
the precursors of isoprenoid fuels serving more effectively in
jet engines®. E.coli strains proved to efficient in the
isoprenoid derived branched C; alcohol production by
overexpression of mudF gene and alleviating the rate limiting
step of dophosphate hydrolysis®*. The purity of the product
was improved whrn the pathway overexpressed the absence
of idi gene in IPP to DMAPP®, Another proven evidence is
that in optimization of MVA pathway, when multiple —
omicsdata analysis, coupled with ribosome binding site
(optimization for onudB) increased the production to 2.2g/L
with 1% glucose substratum®¥. Convential biodiesels were
produced from plant oils and animal fats through fatty acid
ethyl esters (FAEE) and fatty acid methyl esters (FAME) via
trans estification of lipids. Fatty acid biosynthesis are more
advantangeous for its purities, improving performance etc.
E.coli, S.cerevisiae and Yarrowia lipolytica (Oleaginous yeast)
proved to be very efficient in fatty acid production of
convential biodiesel and petroleum based diesel®. High yield
of production was achieved by altering DNA binding affinity
(response to acyl CoA) or by implementation of malonyl
CoA (FapR) or supply of acetyl CoA and consumption of
malonyl-CoA/ACP¥ or by linking upregulated FadfR or
bypass ATP-dependent activation of acetyl CoA (C,)” or
optimized lipoylation pathway®' .
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countries have reduced their dependence on fossil fuels.
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