

Stability Indicating Method for Known and Unknown Impurities Profiling for Cholecalciferol Tablets

Nitin Mahajan^{1*} Suparna Deshmukh² and Mazahar Farooqui¹

¹Post Graduate and Research Centre, Department of Chemistry, Maulana Azad College of Arts, Science and Commerce, Aurangabad, Maharashtra, India

²Department of Chemistry, S.K Gandhi college, Kada, Maharashtra, India

Abstract: The main objective of this research work was to develop and validate, a new gradient, highly sensitive, specific and stability indicating Reverse Phase HPLC method for quantitative determination of known, unknown impurities and degradant impurities profiling for Cholecalciferol tablets. No Pharmacopoeial method is available to quantify known, unknown impurities and degradants profiling for Cholecalciferol tablets. The impurities were separated on the Hypersil BDS column (150 mm x 4.6mm, 3 μ m) with a mobile phase of mixture of Trifluoroacetic acid buffer and acetonitrile with flow rate of 1.5 mL minute⁻¹. The column compartment was maintained at 40°C and the detection wavelength was at 265nm. Cholecalciferol, its known impurity and unknown impurities have been well resolved from each other. Recovery of the known and unknown impurities found between 80% to 120% as per ICH guideline. Method found linearity over the working concentration range with acceptance criteria of correlation coefficient greater than 0.99. Method precision and intermediate precision results found with percentage relative standard deviation of impurity content less than 10% for replicated analysis of test samples. A stress study was conducted with a drug product that was exposed to different conditions of acid, base, oxidation, heat, humidity and photolytic degradation. Cholecalciferol was found to degrade significantly under Photolytic, Thermal and Alkaline stress conditions. The degradation products were well resolved from Cholecalciferol and its impurities. For each stress condition, peak purity of Cholecalciferol was assessed using the Photodiode Array detector and found homogeneous in nature. The mass balance for stress study was found in between 95% and 105%. Thus, proving the stability indicating nature of the analytical method. The developed method was validated as per ICH guidelines. The method found accurate, precise, linear, robust, rugged, specific and stability indicating in nature.

Keyword: Cholecalciferol, Stability Indicating, Analytical Method Validation, Impurities profiling, ICH guidelines.

***Corresponding Author**

Nitin Mahajan , Post Graduate and Research Centre, Department of Chemistry, Maulana Azad College of Arts, Science and Commerce, Aurangabad, Maharashtra, India

Received On 17 March 2021

Revised On 17 June 2021

Accepted On 03 June 2021

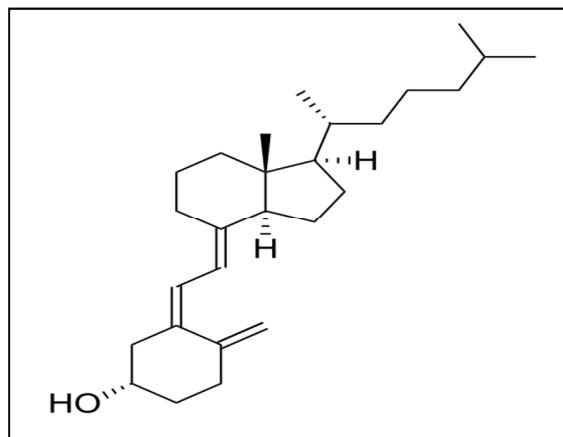
Published On 05 July 2021

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Nitin Mahajan Suparna Deshmukh and Mazahar Farooqui , Stability Indicating Method for Known and Unknown Impurities Profiling for Cholecalciferol Tablets.(2021).Int. J. Life Sci. Pharma Res. 11(4), 7-18 <http://dx.doi.org/http://dx.doi.org/doi 10.22376/ijpbs/lpr.2021.11.4.P7-18>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com


I. INTRODUCTION

The main objective of this research study is to develop a new gradient, highly sensitive, specific and stability indicating Reverse Phase HPLC method for quantitative determination of known, unknown impurities and degradant impurities profiling for Cholecalciferol tablets which is not earlier reported. The degradation kinetics with respect to known and unknown impurities of the drug products also not discussed and reported in any research journal. Cholecalciferol is also known as Vitamin D₃. Cholecalciferol is synthesized endogenously from 7-dehydrocholesterol after ultraviolet irradiation or absorbed from the diet¹⁻². Cholecalciferol is a type of Vitamin D. Vitamin D is also found in few foods and can be taken as a dietary supplement³. It is a unique fat soluble vitamin. Vitamin D is not a single compound but is a family of compounds that exhibit Vitamin D activity. Clinically its measurement in the body is very important because it is a nutritional indicator which decides its deficiency, which is one of the causes of osteoporosis. Vitamin D plays an important role to fight against a broader range of various diseases like cancer, cardiovascular disease, autoimmune disease, hypertension, diabetes mellitus, viral respiratory infection etc. ⁴⁻¹¹ The Literature survey revealed that the several RP-HPLC method were reported for the determination of Cholecalciferol alone¹²⁻¹⁷ and in combination with other drugs or components¹⁸⁻²². No Pharmacopoeial method (USP/BP/EP/JP/IP) is available to quantify known, unknown impurities and degradants profiling for Cholecalciferol tablets. For Active pharmaceutical ingredient

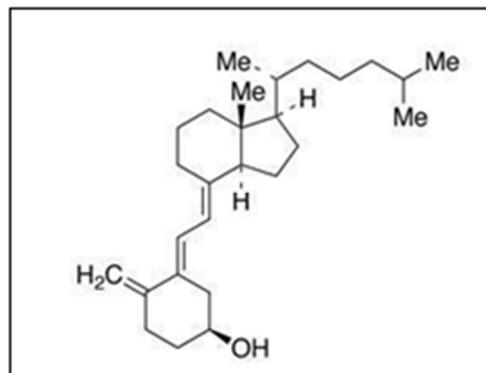

(API) the method for determination of the related substances (impurities) is available in British Pharmacopeia and European Pharmacopeia, which involves chromatography in the normal phase, but the method suffer various disadvantages with involving complicated, tedious, thermal reflux procedure and not economically feasible. However, the comprehensive literature review found that very few methods were reported for the determination of related substances²³⁻²⁶, degradation products²⁷⁻²⁸ and metabolites²⁹⁻³² of cholecalciferol. The methods that have been reported for related substances involve normal phase chromatography²³, qualitative and comparative study using two new stationary phases²⁴. Estimation of Impurities of Vitamin D3 Analogue and not impurities of Vitamin D3²⁵ and related substances by LC-MS method²⁶. Degradation & metabolites studies reported by LC-MS methods²⁷⁻³². None of the above methods discussed pertaining to the stability indicating nature, the degradation kinetics of the product and degradant impurities profiling which is the essential regulatory pharmaceutical requirement of the various countries for the therapeutic efficacy and safety of the pharmaceutical dosage form. The LC-MS methods involve a higher cost per sample analysis than the reverse-phase chromatography method. Therefore it is essential to develop a reverse phase liquid chromatographic procedure that will serve as a reliable, accurate, sensitive, rugged, robust and cost effective for monitoring the impurities and degradation product of Cholecalciferol in Cholecalciferol tablets. The chemical name & structure of Cholecalciferol and its impurity are shown in Table-I and Figure-I and Figure-2.

Table I: Chemical name of Cholecalciferol and its impurity

Compound Name	Chemical Name
Cholecalciferol	(3 β , 5Z,7E)-9,10-secocholesta-5,7,10(19)-trien-3-ol
Cholecalciferol Impurity-A	(5E,7E)-9,10-secocholesta-5,7,10(19)-trien-3 β -ol

Fig 1. Chemical structure of Cholecalciferol

Fig 2. Chemical structure of Cholecalciferol impurity-A

The therapeutic efficacy and safety of drug products will depend on the presence of unknown or degrading impurities if they permit within the maximum limits set by the ICH guideline³³⁻³⁴. Therefore, the drug regulations require that the stability study of the drug substance and drug product for the impurity profile study be conducted using a stability indicating validated analytical method.³⁵⁻³⁹ To develop and prove the stability indicating nature of the analytical method it is essential to conduct a stress study on drug substances and drug products, in order to produce the potential degrading impurities and to monitor the increase in known impurities under stress conditions. Environmental factors such as sun light, Heat and presence of moisture (hydrolysis) or air (oxidation) can lead to generation of different potential degradants impurities⁴⁰⁻⁴¹. The stress study will help to identify unknown potential degradants, and provide information necessary for the stability of drug substances, and pharmaceutical products. Therefore, the results of the cholecalciferol degradation study, which will provide information on the intrinsic stability of the drug product, are reported here.

2. MATERIALS AND METHODS

2.1 Reagents and Materials

Marketed samples of Cholecalciferol tablets were used for analytical method development and validation. The related substances (Impurity-A) of Cholecalciferol were procured from Analytika Chemie Inc., Bangalore (India). Trifluoroacetic

acid, methanol & acetonitrile were obtained from spectrochem Limited, HPLC grade and water was obtained from Milli-O purification system.

2.2 *Instrumentation*

HPLC system (Make: Waters,) equipped with an auto sampler and quaternary gradient pump was used. The column compartment having temperature controlled and photodiode array detector (PDA) was used throughout the analysis. Chromatographic data was acquired using empower software.

2.3 Chromatographic conditions

Hypersil BDS (150 x 4.6) mm, 3µm (Thermo scientific) column was used as stationary phase and maintained at 40°C. The mobile phase involved a variable composition of buffer and organic solvents, Mobile phase-A (mixture of 0.1% Trifluoroacetic acid Buffer pH 3.0 and Acetonitrile in the ratio of -10:90v/v respectively), and mobile phase-B (mixture of 0.1% Trifluoroacetic acid Buffer pH 3.0 and Acetonitrile in the ratio of -90:10 v/v respectively). HPLC gradient programme run mentioned in Table-2.

2.4 Diluent

Mixture of acetonitrile and water in the ratio 80:20 %v/v. used as a diluent.

Table 2: The mobile phase programme for gradient elution

Table 2: The mobile phase programme for gradient elution			
Time (minute)	Flow (ml min ⁻¹)	Mobile phase-A (%)	Mobile phase-B (%)
0	1.5	100	0
20	1.5	100	0
30	1.5	80	20
45	1.5	80	20
50	1.5	100	0
60	1.5	100	0

2.5 Solution preparations

2.5.1 Standard solution

Solution containing $0.2\mu\text{g mL}^{-1}$ of Cholecalciferol working standard prepared in diluent.

2.5.2 Impurity-A stock solution

Solution containing 20 μ g mL⁻¹ of Cholecalciferol impurity-A

standard prepared in acetonitrile.

2.5.3 Standard stock solution

Solution containing 200 μ g mL⁻¹ of Cholecalciferol standard prepared in acetonitrile.

2.5.4 System suitability solution

Transfer 10mL of standard stock solution ($200\mu\text{g mL}^{-1}$ of

Cholecalciferol) into 100mL volumetric flask. Add 75mL diluent and heat in a water bath at 70°C for 45minutes, and then cool the solution. Add 1.0mL of Impurity-A stock solution (20 μ g mL⁻¹) in it. Dilute the solution up to the mark with diluent.

2.5.5 Sample solution: (Strength: 0.05mg/tablet)

Transfer 10 tablets into a 25mL volumetric flask. Add 5mL of water, sonicated to completely disperse the tablets, then add 15mL acetonitrile, sonicated for 30 minutes with intermittent shaking then dilute with acetonitrile. Filtered through 0.45 μ m PVDF filter. (Concentration: 20 μ g mL⁻¹).

2.6 Forced degradation study

Multiple stressed samples were prepared as indicated below. They were chromatographed along with a non-stressed sample. %Degradation was calculated in terms of % total impurities (known and unknown impurities), and % degraded Cholecalciferol peak along with mass balance reported in Table-3.

2.6.1 Acid Degradation

Solution containing 20mg mL⁻¹ of Cholecalciferol was treated with 0.5N HCl in a water bath maintained at 50°C for 1 hour. The solution was neutralized as needed with 0.5N NaOH.

Table 3: Degradation study data for Cholecalciferol tablets

Stress conditions	% Total Impurity	% Area of Cholecalciferol	Purity Angle	Purity Threshold	Purity flag	% Mass Balance
Base	12.94	89.94	0.274	1.364	No	102.9
Peroxide	5.10	94.41	0.525	1.262	No	99.5
Humidity	6.96	93.49	0.376	1.272	No	100.5
Thermal	8.37	88.48	0.396	1.276	No	96.9
Photolytic	11.58	87.7	0.429	1.269	No	99.3
Acid	5.89	94.76	0.380	1.282	No	100.7

3. RESULTS

3.1 Method validation

The developed Reverse Phase HPLC analytical method validated according to ICH guidelines³⁸ with respect to specificity, accuracy, precision (method precision and intermediate precision), linearity, range and robustness.

3.2 System suitability

The system suitability of the test method was evaluated^{43, 44} by injecting system suitability solution once, and standard solution six times. Resolution between peaks due to Impurity-A and Pre-cholecalciferol from system suitability solution and USP plate count, USP tailing, and %RSD of Cholecalciferol peak area from six replicate injections of standard solution were evaluated. The acceptance criteria defined for system suitability test was resolution between peak due to Impurity-A and pre-cholecalciferol should not be less than 1.5 and %RSD of Cholecalciferol peak area in six replicate injections should not be more than 5.0%, USP tailing for Cholecalciferol peak should not be more than 2.0 and USP plate count for Cholecalciferol peak should not be less than 5000.

2.6.2 Base Degradation

Solution containing 20mg mL⁻¹ of Cholecalciferol was treated with 0.5N NaOH in a water bath maintained at 50°C for 1hour. The solution was neutralized as needed with 0.5N HCl.

2.6.3 Peroxide Degradation

Solution containing 20mg mL⁻¹ of Cholecalciferol was treated with 30% w/v H₂O₂. This treated sample solution was kept for 24 hours at room temperature.

2.6.4 Thermal degradation

Transfer 10 tablets into dry 25mL volumetric flasks, these tablets were exposed to 60 °C in the oven for 24hours.

2.6.5 Photolytic degradation

Tablets are directly exposed in photo jilytic chamber for 1.2million Lux hours with energy of not less than 200W/m2

2.6.6 Humidity degradation

Transfer 10 tablets into dry 25mL volumetric flasks, these tablets were exposed to 40°C /75%RH for 5days in the humidity chamber.

3.3 Specificity

Peak purity results for the analyte in forced degradation studies were determined with the PDA detector⁴⁵⁻⁴⁷ under optimised chromatographic conditions considered homogeneous (purity angle < purity threshold) indicating that no additional peaks were co-eluting with the analyte (Cholecalciferol & its known impurity) and which indicate the specificity of the method. Resolution was achieved for all known, unknown impurities and degradants.

3.4 Stability of drug substance in analytical solution

The stability of the drug in the analytical solution was verified by preparing the sample solution from drug product and injected at regular time intervals into the HPLC at 5°C and at room temperature. On verifying the formation of additional peaks, it was found that no additional peaks were formed and no increase of present known and unknown impurities by 0.04% level from its initial level to till 42hours, indicating that the sample solution is stable for about 42 hours at room temperature, as well as at 5°C. The stability of the standard solution is evaluated by injecting the standard solution at various time intervals up to 43 hours into the HPLC at 5°C and at room temperature. %RSD of the peak area was monitored from its initial level to 43 hours and found less than 5.0% from its initial level, indicating that the standard

solution is stable for about 43 hours at room temperature, as well as at 5°C.

3.5 Linearity and range³⁸

The test concentration for Cholecalciferol is 20.0mg mL⁻¹. Considering the impurity tolerance limit level 1.0% with respect to test concentration of Cholecalciferol. The Response function was determined by preparing a standard solution of Cholecalciferol and impurity-A at different concentration levels ranging from the lower limit of quantification to 150% of the impurity tolerance level. The graph of peak responses of the analytes relative to their

corresponding concentrations were determined and found that they fitted straight lines responding to equations. The y-intercepts were close to zero with their confidence intervals containing the origin. The correlation coefficient (r) found less than 0.99 the acceptance threshold suggested for linearity of procedures for the determination of impurity content in bulk drugs. Furthermore, the graph of residuals exhibited random patterns with the residuals passing the normal distribution test ($p < 0.05$), all of which evidenced that the method is linear in the tested range. The Linear graph for cholecalciferol and impurity-A are shown below along with Regression statistics of linearity experimental results are shown in Table-4.

Table 4: Regression statistics of linearity experimental results

Compound	Concentration $\mu\text{g mL}^{-1}$	Multiple R	Regression equation	F-value	P-Value
Impurity-A	0.02 to 0.30	0.999	$y=104478x-13.078$	4.60	0.0016
Cholecalciferol	0.02 to 0.30	0.999	$y=194233x+206.75$	4.60	0.0015

3.6 Determination of limit of quantification and detection (LOQ and LOD)³⁸

The linearity performed as mentioned above, used for the determination of Limit of Quantification (LOQ) and Limit of Detection (LOD). Residual standard deviation (σ) method

was used, and the LOQ and LOD values were predicted using the following formulas and established the precision at these predicted levels. The visual method also considered assessing the signal to noise ratio of impurities and analyst peak.³⁶⁻³⁸ The LOQ and LOD results are tabulated in Table-5.

$$\text{LOQ} = \frac{10 \times \sigma}{S}$$

$$\text{LOQ} = \frac{3.3 \times \sigma}{S}$$

σ = residual standard deviation of response

S = slope of the calibration curve

3.7 Determination of response factor (RF) with linear calibration curve³⁸

Calibration curves for all components were constructed using the peak areas and analyte concentrations in the range reported in Table-4 by linear regression analysis. The linear

regression equation containing the slope for all components was summarized in Table-4. The Response Factor (RF) was determined, as the ratio of slope of the regression line of the main drug component (Cholecalciferol) to that for impurity, and is listed in Table-5.

Table 5: Limit of quantification, detection, response factor (LOQ, LOD and RF)

Compound	LOQ		LOD		RF
	$\mu\text{g mL}^{-1}$	%w/w*	$\mu\text{g mL}^{-1}$	%w/w*	
Impurity-A	0.02	0.10	0.01	0.05	1.86
Cholecalciferol	0.02	0.10	0.01	0.05	1.00

Note: * %w/w calculated w.r.t. sample concentration (20 $\mu\text{g mL}^{-1}$)

3.8 Accuracy³⁸

Accuracy was evaluated by the simultaneous determination of analytes in solution prepared by standard addition method. The experiment was conducted by adding the known amount of impurity (Impurity-A) in the test sample, and cholecalciferol in the placebo (excipient) corresponding to four concentration levels at LOQ, 50%, 100% and 150% by considering the tolerance level i.e. 1.0%w/w with respect to test sample concentration. The samples were prepared in triplicate at each level. The quantification of added analyte i.e.

impurity-A and Cholecalciferol (%weight/weight) was calculated as per methodology by applying RF (response factor) of impurity. The experimental results revealed that approximately 80% to 120% of the recovery was obtained for the related compounds studied, and %RSD for triplicate preparation of recovery results found less than 10%. Therefore, based on the recovery data (Table-6 and Table-7) the estimation of related compounds that are prescribed in this report was shown to be accurate for its intended purpose, and is adequate for routine analysis.

Table-6: Recovery for impurity-A

Impurity-A	Preparation	% Recovery	Mean	%RSD
LOQ	1	100.9	101.2	0.6
	2	101.9		
	3	100.9		
50%	1	102.8	102.2	0.7
	2	101.5		
	3	102.4		
100%	1	105.9	107.3	1.1
	2	107.6		
	3	108.3		
150%	1	111.5	111.9	0.5
	2	111.7		
	3	112.6		

Table-7: Recovery for Cholecalciferol

Cholecalciferol	Preparation	% Recovery	Mean	%RSD
LOQ	1	108.3	108.0	2.1
	2	110.2		
	3	105.6		
50%	1	107.9	107.4	0.8
	2	106.4		
	3	107.9		
100%	1	103.9	104.8	0.8
	2	105.4		
	3	105.1		
150%	1	106.0	104.7	1.1
	2	104.4		
	3	103.7		

3.9 Method precision and ruggedness³⁸

According to the ICH (International Conference on Harmonization of technical Requirements for Registration of Pharmaceuticals for Human Use) ruggedness is considered as the method reproducibility and intermediate precision. Method precision was evaluated by preparing six spike samples by spiking the known impurity (Impurity-A) at 1.0%w/w level with respective of test concentration 20.0 mg mL⁻¹. Intermediate precision was evaluated by different analysts on different HPLC systems, on different columns, and on different days. Experiment was conducted the same as the method precision by spiking the known impurities

(Impurity-A) at 1.0%w/w level with respect to test concentration. Results (%w/w) were calculated for known, unknown and total impurities for method precision and intermediate precision experiment. %RSD was calculated for (%w/w) known, unknown and total impurities and found less than 10%. Overall %RSD for (%w/w) known, unknown and total impurities was calculated for method precision and intermediate precision experiment results (n=12 results, six from method precision, and six from intermediate precision) and found less than 10.0%. The results for method precision and intermediate precision were listed in Table-8 and Table-9 revealed that the method has good reproducibility with acceptable precision.

Table-8: Comparison of method precisions and intermediate precision results.

Name	MP*Impurity-A	IP*Impurity-A	MP*SM* unknown	IP*SM* unknown
Spike sample-1	1.13	1.12	0.92	0.97
Spike sample-2	1.15	1.14	0.93	0.98
Spike sample-3	1.16	1.20	0.91	0.95
Spike sample-4	1.16	1.15	0.91	0.96
Spike sample-5	1.17	1.12	0.91	0.99
Spike sample-6	1.17	1.18	0.91	0.95
Mean	1.16	1.15	0.92	0.97
%RSD	1.30	2.82	0.91	1.69
Overall Mean		1.15		0.94
Overall %RSD		2.10		3.15

MP*: Method precision IP*: Intermediate precision.

SM*: Single max

Table 9: Comparison of method precisions and intermediate precision results

MP* Name	IP* Total Impurities	Total Impurities
Spike sample-1	2.75	2.74
Spike sample-2	2.79	2.88
Spike sample-3	2.76	2.81
Spike sample-4	2.76	2.75
Spike sample-5	2.77	2.78
Spike sample-6	2.77	2.88
Mean	2.77	2.81
%RSD	0.49	2.20
Overall Mean	2.79	
Overall %RSD	1.71	

MP*: Method precision IP*: Intermediate precision.

3.10 Robustness

The robustness of the method has demonstrated by establishing the system suitability parameter with change in flow rate by ± 0.1 mL min $^{-1}$, change in column oven temperature by $\pm 5^\circ\text{C}$, change in organic composition of mobile phase by $\pm 2\%$ absolute and change in wavelength by $\pm 5\text{nm}$. The method was found robust by deliberate change in chromatographic conditions as mentioned above.

4. DISCUSSION

The probable impurities of Cholecalciferol are very similar to the respective structure of drug substances²³. Cholecalciferol is practically insoluble in water and freely soluble in acetonitrile, methanol and ethanol. The molecular structure (Figure-1 and Figure-2) shows that the related compounds of Cholecalciferol (Impurity-A) and Cholecalciferol are nonpolar in nature. But the presence of Hydroxyl group (-OH) adds some polarity extent in nature³⁶. The objective of the method development is to separate all known, unknown impurities and degradants from each other, as well as from the main drug substance with short run time of analysis. Different columns consisting of different stationary phases (RP-C₈ and RP-C₁₈), and different particle sizes of the column (3 μm and 5 μm) were also tested. Considering Cholecalciferol and their known related impurities with nonpolar features, the following mobile phases with gradient elution attempts were used to separate all the impurities which are present and generated during stress studies. a) Orthophosphoric acid buffer with methanol, b) Orthophosphoric acid buffer with acetonitrile, c) Perchloric acid buffer with methanol, d) Perchloric acid buffer with acetonitrile, e) Trifluoroacetic acid buffer with methanol and f) Trifluoroacetic acid buffer with acetonitrile.

4.1 Selection of stationary phase^{36,39}

The poor resolution between Cholecalciferol and Cholecalciferol impurity-A, as well as broad peak shape for Cholecalciferol observed, early elution (in void volume) of impurities implies that C₈ stationary phase is not suitable for this application. Hence C₁₈ stationary phase was chosen to improve resolution among the peaks and peak shape for Cholecalciferol. The peak shape for Cholecalciferol and resolution among all components improved with Hypersil BDS C18, 150 mm \times 4.6mm, 3 μm columns. But the

stationary phase is not only the parameter which can give better separation among all impurities. Mobile phase, additives and organic modifiers also play a very important role which leads to the best separation.

4.2 Selection of mobile phase^{36,39}

Resolution among the known related impurities, and unknown impurities of Cholecalciferol was found poor using mobile phase with orthophosphoric acid, and perchloric acid buffer. Mobile phase containing Trifluoroacetic acid buffer gives the better resolution among the impurities, but having peak tailing with mobile phase pH more than 3.5.

4.3 Influence of organic modifier and additives^{36,39}

Initial method development started with methanol as an organic modifier. With the use of methanol, disturbed, and noisy baseline was observed throughout the development paths and peak response for related known impurity was low and not precise for accurate quantification. The retention behaviour for all known and unknown impurities was higher, and poor resolution among the unknown impurities was noted. Therefore to improve the response of known and unknown impurities and their resolution among them, acetonitrile has been tried as an organic modifier. With the use of acetonitrile response for all known and unknown impurities was improved and no noisy baseline line was observed. Therefore to increase the response of impurities, acetonitrile was considered. Consequently, it was decided to use a mixture of trifluoroacetic acid and acetonitrile for further method development. After an extensive study, the method has been finalized on Hypersil BDS, 150 mm 4.6 mm, 3 μm using variable composition of mobile phase-A (mixture of 0.1% Trifluoroacetic acid Buffer pH 3.0, and acetonitrile in the ratio of 100:900 v/v respectively), and mobile phase-B (mixture of 0.1% Trifluoroacetic acid Buffer pH 3.0, and acetonitrile in the ratio of 900:100 v/v respectively). The mobile phase at a flow rate of 1.5 mL min $^{-1}$ and column compartment temperature kept at 40°C. The detector response for all the components found maximum at 265 nm; hence the typical chromatogram was recorded at this wavelength. The typical HPLC chromatograms for Blank, Placebo, Spike sample, and individual Impurity-A represent in Figure-3, Figure-4, Figure-5 and Figure-6, respectively.

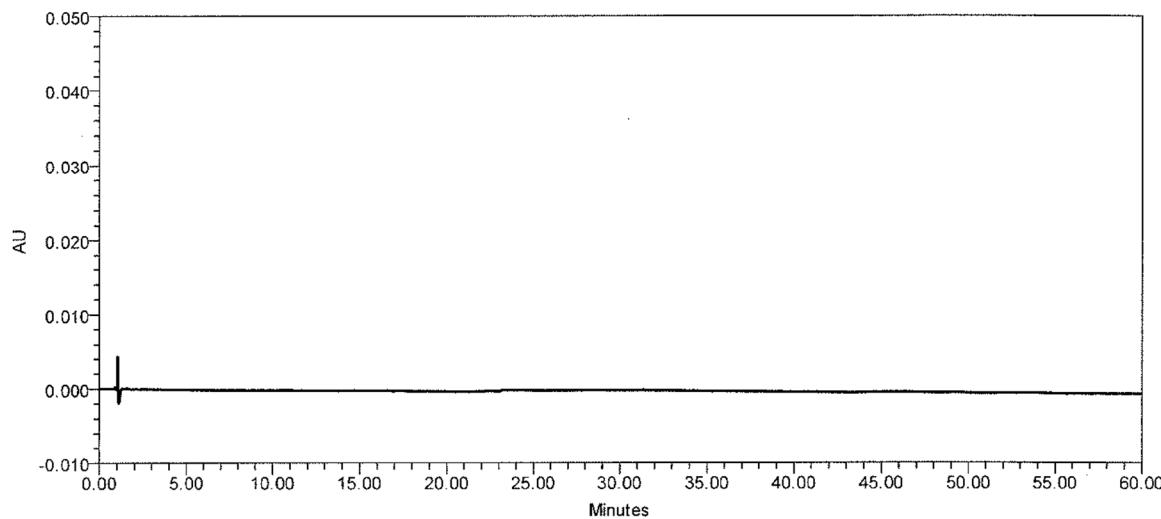


Fig 3. Typical HPLC chromatogram of Blank

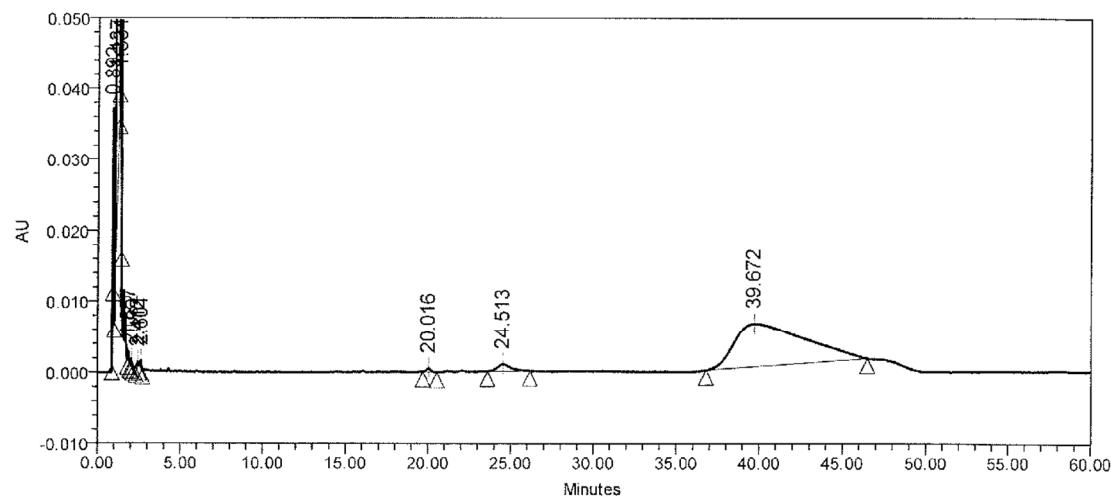
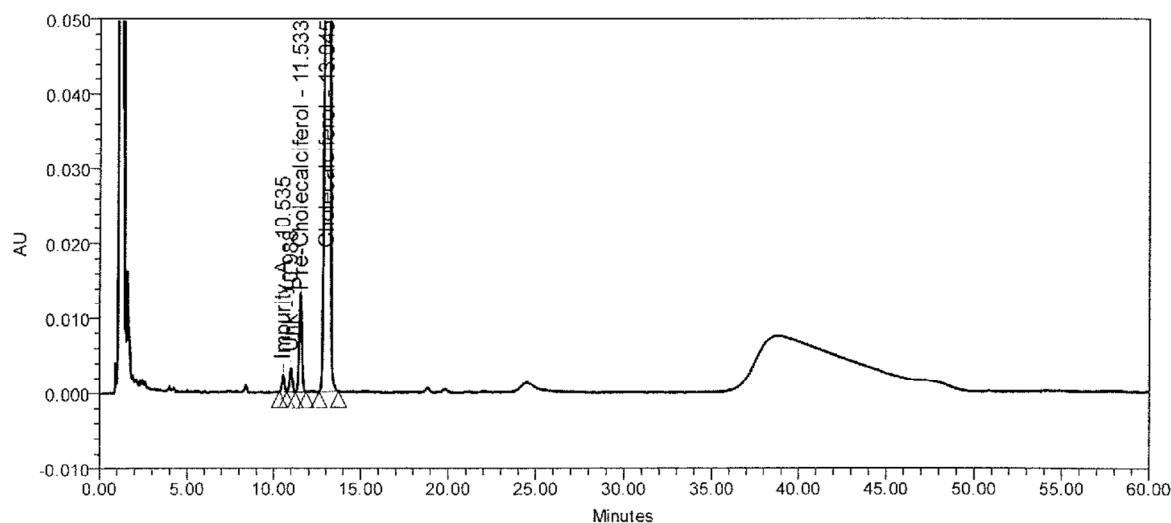
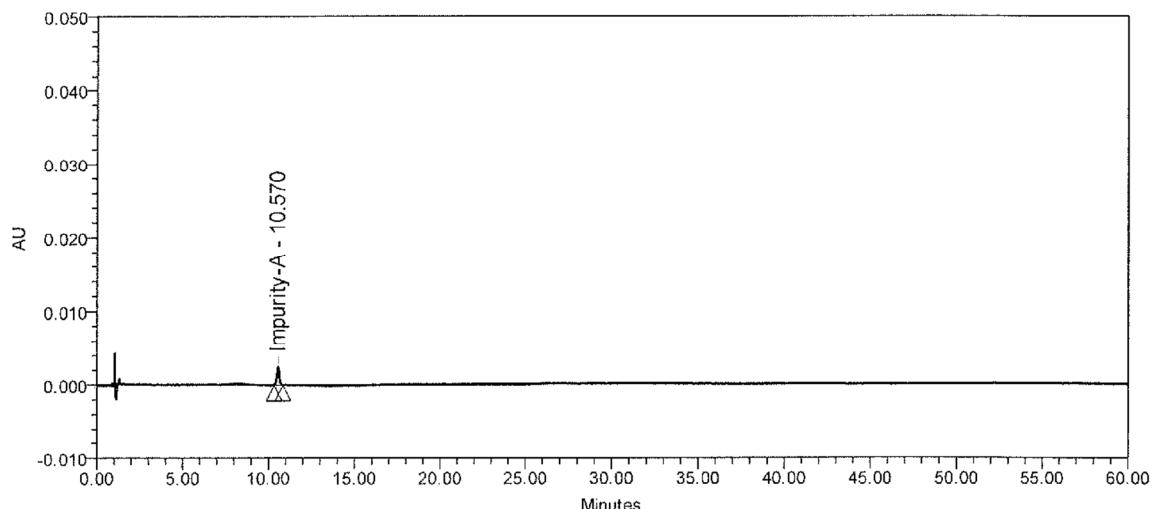
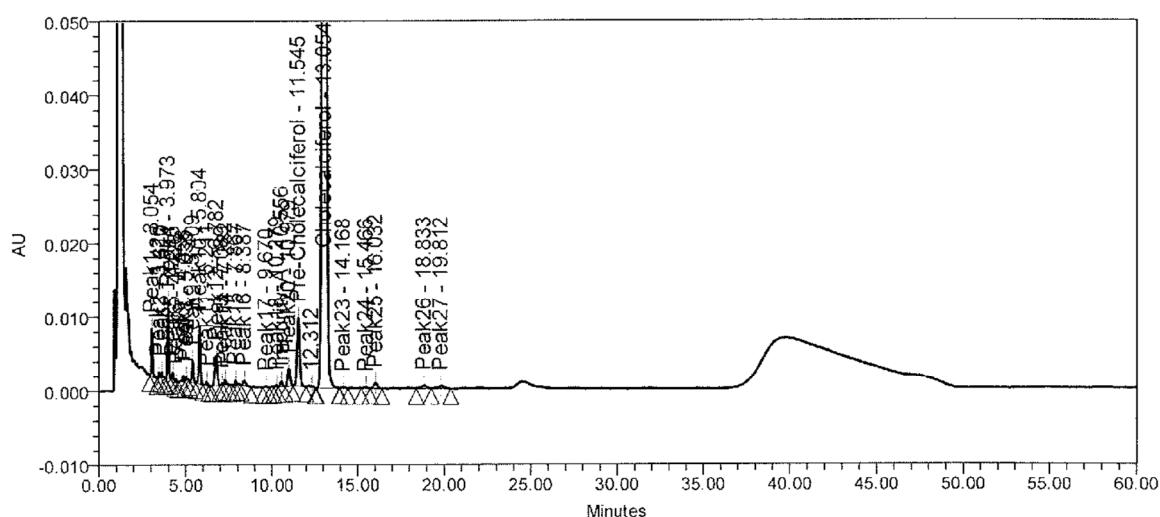


Fig 4. Typical HPLC chromatogram of Placebo


Fig 5. Typical HPLC chromatogram of spike sample

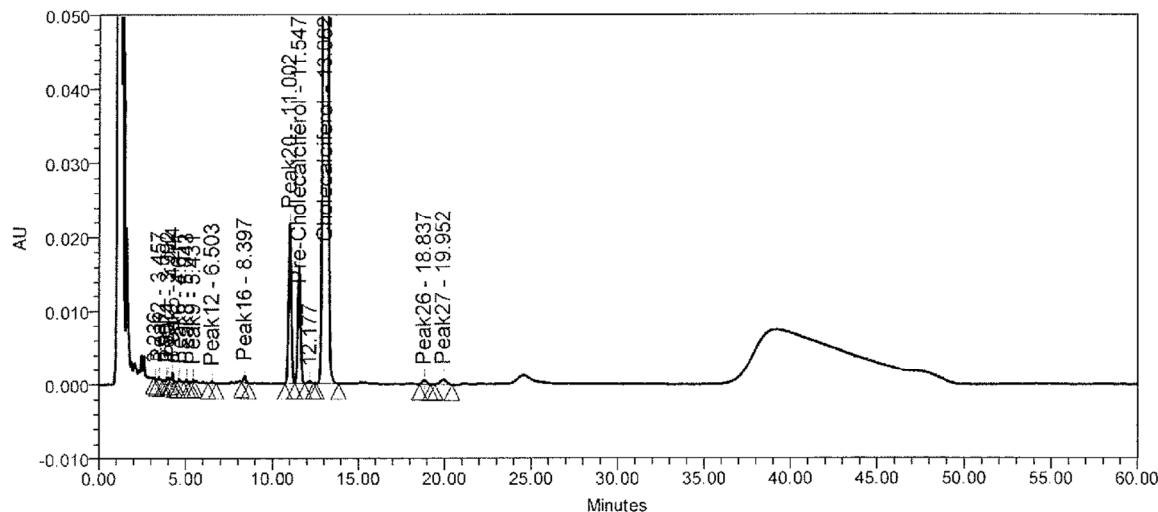


Fig 6. Typical HPLC chromatogram of Individual Impurity-A

The typical HPLC chromatograms of photolytic, thermal and alkaline stressed conditions (force degradation) sample represented in Figure-7, Figure-8 and Figure-9, respectively. In Figure-7 photolytic degradation, it was observed that the unknown impurity at 0.44 RRT found major degradation impurity, and known impurity-A was not increased significantly from its not detected level in the initial sample. In

Figure-8 Thermal degradation, it was observed that pre cholecalciferol found major degradation impurity and known impurity-A was not increased significantly from its not detected level in the initial sample. In Figure-9, alkali degradation, it was observed that in unknown impurity at 0.84 RRT found major degradation impurity.

Fig 9. Typical HPLC chromatogram of alkaline degradation

5. CONCLUSION

Analytical method validation experiment results revealed that the newly developed analytical method is linear, accurate, specific and precise in the proposed working range. Forced degradation and specificity experiment results with mass balance prove the stability indicating nature of the method and separate all known, unknown impurities and degradants from each other, as well as from the main drug component (Cholecalciferol). The method is robust to change in flow rate, column oven temperature, change in wavelength and change in organic composition of mobile phase. Hence this cost-effective analytical method can be used for routine analysis as well as to monitor the known, unknown and degradation profile of Cholecalciferol in Cholecalciferol pharmaceutical dosage (tablets).

9. REFERENCES

- Holick MF. Environmental factors that influence the cutaneous production of vitamin D. *Am J Clin Nutr.* 1995;61(3); Suppl:638S-45S. doi: 10.1093/ajcn/61.3.638S, PMID 7879731.
- Holick MF. Importance in the prevention of cancer, type 1 diabetes, heart disease. *The Am J Chem Nutr.* 2004; 79(3):362-71. <http://citeseervx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.7237&rep=rep1&type=pdf>
- Colulston AM, Boushey C, Ferruzzi M. Nutrition in the Prevention and Treatment of Disease. Academic press;2013.p.818.<https://www.elsevier.com/books/nutrition-in-the-prevention-and-treatment-of-disease/coulston/978-0-12-802928-2>
- Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB, Holick MF. The role of vitamin D in cancer prevention. *Am J Public Health.* 2006;96(2):252-61. doi: 10.2105/AJPH.2004.045260, PMID 16380576.
- Dou R, Ng K, Giovannucci EL, Manson JE, Qian ZR, Ogino S. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. *Br J Nutr.* 2016;115(9):1643-60.doi: 10.1017/S0007114516000696, PMID 27245104.
- Scaranti M, Júnior Gde C, Hoff AO. Vitamin D and cancer: does it really matter? *Curr Opin Oncol.* 2016;28(3):2059.doi:10.1097/CCO.0000000000000028
- Swami S, Krishnan AV, Williams J, Aggarwal A, Albertelli MA, Horst RL, Feldman BJ, Feldman D. Vitamin D. mitigates the adverse effect of obesity on breast cancer in mice. *Endocr Relat Cancer.* 2016;23(4):251-64. doi: 10.1530/ERC-15-0557, PMID 26817629.
- Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. *Am J Clin Nutr.* 2007;85(6):1586-91. doi: 10.1093/ajcn/85.6.1586, PMID 17556697.
- Stechschulte SA, Kirsner RS, Federman DG. Vitamin D: bone and beyond, rationale and recommendations for supplementation. *Am J Med.* 2009;122(9):793-802. doi: 10.1016/j.amjmed.2009.02.029, PMID 19699370.
- Garland CF, Gorham ED, Mohr SB, Garland FC. Vitamin D for cancer prevention: global Perspective. *Ann Epidemiol.* 2009;19(7):468-83. doi: 10.1016/j.annepidem.2009.03.021.
- Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, Garland CF, Giovannucci E. Epidemic influenza and vitamin D. *Epidemiol Infect.* 2006;134(6):1129-40. doi: 10.1017/S0950268806007175, PMID 16959053.

6. ACKNOWLEDGMENTS

The author wishes thanks to management of Maulana Azad College of Arts, Science and Commerce for providing excellent research facilities.

7. AUTHORS CONTRIBUTION STATEMENT

Mr. Nitin Mahajan conceptualized, designed and executed the current research work. Dr. Suparna Deshmukh and Dr. Mazahar Farooqui have supervised the work. All Authors have read and agreed to the published version of the manuscript.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

12. Temova Ž, Roškar R. Stability-indicating HPLC-UV method for vitamin D3 determination in solutions, nutritional supplements and pharmaceuticals. *J Chromatogr Sci.* 2016;54(7):1180-6. doi: 10.1093/chromsci/bmw048, PMID 27048642.
13. Kumar S, Chawla D, Tripathi AK. An Improved and Sensitive Method for vitamin D3 Estimation by RP-HPLC. *Pharm Anal Acta.* 2015;6:8. DOI: 10.4172/2153-2435.1000410
14. Vinayak AK, Syed S, Lateef. Transfer of USP cholecalciferol normal-phase HPLC method to SFC using the Agilent 1260. Infinity hybrid SFC/UHPLC system. Application Note. Bangalore, India: Agilent Technologies, Inc. <https://www.agilent.com/cs/library/applications/5991-1456EN.pdf>
15. Suryawanshi D, Jha DK, Shinde U, Amin PD. Development and validation of a stability-indicating RP-HPLC method of cholecalciferol in bulk and Pharmaceutical formulations: analytical quality by design approach. *J App Pharm Sci.* 2019;9(6):21-32. doi: 10.7324/JAPS.2019.90604.
16. Zhang Y, Zhou WE, Yan JQ, Liu M, Zhou Y, Shen X, Ma YL, Feng XS, Yang J, Li GH. A Review of the Extraction and Determination Methods of Thirteen Essential vitamin S to the Human Body: an Update from 2010. *Molecules.* 2018;23(6):23(6):1484. doi: 10.3390/molecules23061484, PMID 29921801.
17. Tartivita KA, Sciarello JP, Rudy BC. High-performance liquid chromatographic analysis of vitamins I: quantitation of cholecalciferol or ergocalciferol in presence of photochemical isomers of the provitamin and application to cholecalciferol resins. *J Pharm Sci.* 1976;65(7):1024-7. doi: 10.1002/jps.2600650717, PMID 182953.
18. Zagalak B, Curtius HC, Foschi R, Wipf G, Redweik U, Zagalak MJ. Mass fragmentographic determination of cholecalciferol and 25-hydroxycholecalciferol in human serum. *Experientia.* 1978;34(12):1537-9. doi: 10.1007/BF02034657, PMID 215444.
19. Aljuffali, Ibrahim, Almarri, et al. Simultaneous determination of cholecalciferol in Lipid- based self-nanoemulsifying formulation and Marketed Product Vi-de3® by UHPLC-UV. *Curr Pharm Anal.* 2020;16(1):100-9. DOI : 10.2174/1573412915666190612141228
20. Maria N, Georgiana S, Bucur AC. Validation of a high-performance liquid chromatography /veterinary method for the determination of vitamin A, vitamin D3, vitamin E and benzyl alcohol in a veterinary oily injectable solution. *Medicamentul Veterinar. Drug.* 2015;9(1):84-8 http://www.veterinarypharmacon.com/docs/1539-2015_VD_ART_9.EN.pdf
21. Bilodeau L, Dufresne G, Deeks J, Clément G, Bertrand J, Turcotte S, Robichaud A, Beraldin F, Fouquet A. Determination of vitamin D3 and 25-hydroxyvitamin D3 in foodstuffs by HPLC UV-DAD and LC-MS/MS. *J Food Compos Anal.* 2011;24(3):441-8. doi: 10.1016/j.jfca.2010.08.002.
22. Petritz E, Tritthart T, Wintersteiger R. Determination of phylloquinone and cholecalciferol encapsulated in granules formed by melt extrusion. *J Biomed Biophys Methods.* 2006;69(1-2):101-12. doi: 10.1016/j.jbbm.2006.03.007.
23. Andri B, Lebrun P, Dispas A, Klinkenberg R, Strel B, Ziemons E, Marini RD, Hubert P. Optimization and validation of a fast supercritical fluid chromatography method for the quantitative determination of vitamin D3 and its related impurities. *J Chromatogr A.* 2017;1491:171-81. doi: 10.1016/j.chroma.2017.01.090, PMID 28242051.
24. Benmoussa A, Delaurent C, Lacout J-L, Loiseau PR, Mikou M. Determination of cholecalciferol and related substances by calcium phosphate hydroxyapatite and calcium phosphate fluoroapatite high-performance liquid chromatography. *J Chromatogr A.* 1996;731(1-2):153-60. doi: 10.1016/0021-9673(95)01152-8.
25. Bhogadi RK, Satyanarayana A, Rao NS, Arutla S, Reddy AM. Stability Indicating RP-HPLC Method for Estimation of Impurities of Vitamin D3 Analogue and Corticosteroid Used as Antipsoriatic Drugs. An Attempt to Characterize Pre-Calcipotriene. *Am J Anal Chem.* 2015; 06(13):1050-8. doi: 10.4236/ajac.2015.613100.
26. Wang S, Zheng F, Ding L. Determination of related substance of vitamin D3 in its preparation by RP-HPLC. *J China Pharm Univ.* 2012; 43(1): 55-9. https://www.researchgate.net/publication/288803267_Determination_of_related_substancesof_vitamin_D3_in_its_preparations_by_RP-HPLC
27. Mahmoodani F, Perera CO, Fedrizzi B, Abernethy G, Chen H. Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. *Food Chem.* 2017; 219:373-81. doi: 10.1016/j.foodchem.2016.09.146, PMID 27765240.
28. Ballard JM, Zhu L, Nelson ED, Seburg RA. Degradation of vitamin D3 in a stressed formulation: the identification of esters of vitamin D3 formed by a transesterification with triglycerides. *J Pharm Biomed Anal.* 2007;43(1):142-50 doi: 10.1016/j.jpba.2006.06.036, PMID 16901672.
29. Shepard RM, Horst RL, Hamstra AJ, DeLuca HF. Determination of vitamin D and its metabolites in plasma from normal and anephric man. *Biochemical Journal.* 1979;182(1):55-69. doi: 10.1042/bj1820055.
30. Jones G, Kaufmann M. Vitamin D metabolite profiling using liquid chromatography-tandem mass spectrometry (LC-MS/MS). *J Steroid Biochem Mol Biol.* 2016;164:110-4. doi: 10.1016/j.jsbmb.2015.09.026, PMID 26409684.
31. Kasalová E, Aufartová J, Krčmová LK, Solichová D, Solich P. Recent trends in the analysis of vitamin D and its metabolites in milk –A review. *Food Chem.* 2015;171:177-90. doi: 10.1016/j.foodchem.2014.08.102, PMID 25308658.
32. Wan D, Yang J, Barnych B, Hwang SH, Lee KS, Cui Y, Niu J, Watsky MA, Hammock BD. A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. *J Lipid Res.* 2017;58(4):798-808. doi: 10.1194/jlr.D073536, PMID 28148721.
33. International Conference on Harmonization (ICH). Impurities in New Drug substance. Q3A (R2); October 2006. <https://database.ich.org/sites/default/files/Q3A%28R2%29%20Guideline.pdf>
34. International Conference on Harmonization (ICH). Impurities in new drug products. Vol. Q3B(R2); 2006

35. FDA. Guidance for industry, analytical procedures and method validation for Drug and biologics. United States Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER); July 2015. <https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods- Validation-for-Drugs-and-Biologics.pdf>

36. Bakshi M, Singh S. Development of validated stability indicating assay Methods--critical review. *J Pharm Biomed Anal.* 2002;28(6):1011-40. doi: 10.1016/s0731-7085(02)00047-x, PMID 12049968.

37. Swartz M, Krull I. Analytical method validation for biotechnology proteins, peptides and antibodies. *LC GC North Am.* 2009; 2009:550-75. <https://www.chromatographyonline.com/view/quantifying-aav-quality-attributes-using-sec-mals>

38. International Conference on Harmonization (ICH) Q2 (R1): Validation of Analytical Procedures Test and Methodology; November 2005. <https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf>

39. Épshtain NA. Validation of HPLC Techniques for Pharmaceutical Analysis. *Pharm Chem J.* 2004;38(4):21228.doi:10.1023/B:PHAC.0000038422.27193.6c.

40. International Conference on Harmonization (ICH) Q1A (R2): Stability Testing of New Drug Substances and Products; February 2003. <https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf>

41. International Conference on Harmonization (ICH). Stability testing. Vol. Q1B. USA: Photostability Testing of New Drug Substances and Products; 1996. <https://database.ich.org/sites/default/files/Q1B%20Guideline.pdf>

42. The United States Pharmacopeia. 30th ed, United States Pharmacopeia convention, System suitability Testing, Rockville, USA, 2007. <https://online.uspnf.com/uspnf>

43. British Pharmacopeia, Her Majesty's Stationery office, System suitability. London, UK: Testing 2007. <https://www.pharmacopoeia.com/>

44. Marc V, Gorenstein J, Li B, Van J, Antwerp D. Chapman. Detecting Coeluted Impurities Spectral Comparison. 1994; 12(10):768-72. <https://www.waters.com/waters/library.htm?locale=113&lid=1788445&cid=511436>

45. Young PM, Gorenstein MV. Tryptic mapping by reversed phase HPLC with photodiode array detection incorporating the spectral contrast Technique. 1994;12(11):832-8. <https://core.ac.uk/download/pdf/81215431.pdf>

46. Warren WJ, Stanick WA, Gorenstein MV, Young PM. HPLC analysis of synthetic oligonucleotides using spectral contrast Techniques. *BioTechniques.* 1995;18(2):282-7. PMID7727131. <https://pubmed.ncbi.nlm.nih.gov/7727131/>