

A REVIEW ON EMERGENCE OF ANTIBIOTIC RESISTANT *Staphylococcus aureus* AND ROLE OF CHITOSAN NANOPARTICLE IN DRUG DELIVERY

SUBHANKARI PRASAD CHAKRABORTY¹, PANCHANAN PRAMANIK², SOMENATH ROY^{1*}

¹Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, West Bengal, INDIA.

²Nanomaterials Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur-721 302, West Bengal, INDIA.

ABSTRACT

Staphylococcus aureus is a most common pathogen in hospital and community acquired disease that causes a wide range of infection such as skin and soft tissue infection to life threatening disease like respiratory tract infection, musculoskeletal infection, endocarditis and urinary tract infection. More than 90% of *Staphylococcus* strains are resistant to penicillin. In 1961 *S. aureus* developed resistance to methicillin (MRSA), invalidating almost all antibiotics, including the most potent β -lactams. Vancomycin, a glycopeptide antibiotic, was used for the treatment of MRSA in 1980. Vancomycin inhibits the bio-synthesis of peptidoglycan and the assembly of NAM-NAG-polypeptide into the growing peptidoglycan chain. Vancomycin resistant *S. aureus* (VRSA) first appeared in the USA in 2002. Increasing resistance of *S. aureus* to last line of drug i.e., vancomycin highlights the need for either the development of new and novel antibiotics or the improvement of efficacy of established antibiotics by the development of new agents capable of enhancing antibiotic activity. A Chitosan nanoparticle delivers anti-infective drugs such as antibacterial, antiviral, antifungal and antiparasitic drugs. In the present review the antibiotic emergence of *Staphylococcus aureus*, formulation techniques of chitosan nanoparticles and different biological profits of chitosan nanoparticles are discussed.

Keywords: *Staphylococcus aureus*, drug resistance, chitosan, vancomycin, drug delivery.

1. INTRODUCTION

Staphylococcus aureus is a bacterium that belongs to the family of *Staphylococcaceae*. The bacteria form part of the normal flora of the skin, intestine, upper respiratory tract and vagina (Lowy F, 1998). *Staphylococcus aureus* can become pathogenic when conditions such as pH, temperature and nutrient availability are altered and become favourable for overgrowth (Mims C et al., 2004). The pathogenicity of *S. aureus* is determined by the production of toxins, such as the 33-kd protein-alpha toxin, exfoliatin A, exfoliatin B and Panton-Valentine leukocidin (PVL) toxins (Lowy F, 1998). These

toxins can be harmful to the host and cause skin diseases (carbuncles, boils, folliculitis and impetigo) and other complications, such as endocarditis, meningitis as well as toxic shock syndrome (TSS) (Mims C et al., 2004). *S. aureus* is an important mammalian pathogen that has long been recognized for its propensity to cause serious and invasive diseases. In 1878, Koch first noted that different diseases were caused by Gram-positive cocci depending on whether they formed pairs, chains or clusters. The *staphylococci* were initially identified as grape-like clusters of bacteria isolated from the pus of

human abscesses by Ogeston in 1881 (Ogeston A, 1881). In 1884, Rosenbach differentiated species of *staphylococci* based on pigmentation. The disease-causing *Staphylococcus aureus* produced a golden yellow pigment, whereas the non-disease causing strain was generally white (Rosenbach F, 1884).

1.1 Epidemiology of *Staphylococcus aureus*

In healthy individuals, the carrier rate of *S. aureus* range between 15% to 35% with a risk of 38% of individuals developing infection followed by a further 3% risk of infection when colonized with methicillin-susceptible *Staphylococcus aureus* (MSSA) (File T, 2008). Certain groups of individuals are more susceptible to *S. aureus* colonization than others including health-care workers, nursing home inhabitants, prison inmates, military recruits and children (Ben-David Det al., 2008; Ho P et al., 2008). In a study, conducted in 2007 by the University of the Witwatersrand and the University Hospital of Geneva, health-care workers accounted for 93% of personnel to patient transmission of methicillin-resistant *S. aureus* (MRSA) (Albrich W and Harbath S, 2008). Previously several outbreaks have been reported in Northern-Taiwan in 1997 that suggested MRSA transmission associated with health-care workers, including surgeons (Wang J et al., 2001). Grundmann and colleagues (2006), reported a prevalence of > 50% in countries such as Singapore (1993-1997), Japan (1999-2000) and Colombia (2001-2002) while countries with a prevalence of 25% to 50% included South Africa (1993-1997), Brazil (2001), Australia (2003), Mexico and United States. The lowest prevalence of less than 1% were found in Norway, Sweden and Iceland (1993-1997) (Grundmann H et al., 2006). In 2007, a prevalence of more than 50% of MRSA strains isolated from Cyprus, Egypt, Jordan and Malta was reported by Borg and colleagues (2007). This high prevalence was attributed to overcrowding and poor hand-hygiene facilities in the hospitals (Borg M et al., 2007).

1.2 *Staphylococcus aureus* carriage and disease

Staphylococcus aureus is found as a commensal organism on the squamous epithelium of the anterior nares up to 20% of the population at any one time, however, it has been estimated that *S. aureus* can

transiently colonize up to 60% of the human population (Foster T, 2004). *S. aureus* can cause a wide range of infections ranging from minor skin abscesses to more serious invasive diseases. *S. aureus* commonly causes boils, carbuncles, furuncles and impetigo, but after gaining access to the blood, may also be a major cause of endocarditis, osteomyelitis, pneumonia, toxic shock syndrome and septicemia (Lowy F, 1998). Many invasive staphylococcal infections are correlated with nasal carriage of infecting strains. Although immune compromised patients may be at greater risk for developing an invasive staphylococcal infection, healthy individuals may be also susceptible, especially if they are carriers (Peacock S et al., 2001).

1.3 *Staphylococcus aureus* and oxidative stress

S. aureus expresses a wide array of secreted and cell surface associated virulence factors to help evade immune responses (Foster T, 2005). *S. aureus* were able to survive within phagocytic cells both in polymorphonuclear leukocytes (PMN) and monocytes (Steigbigel R et al., 1974). In order to survive and induce infection, pathogenic bacteria have to cope with their changing environment, as well as continuous attacks of the host anti-microbial defense system (Dryla A et al., 2003). Recent review discussed the molecular mechanism of stress antagonizing activity in the survival of bacteria (Vorob'eva L, 2004). The generation and release of toxic reactive oxygen species by phagocytic cells is thought to be an important component of the host's immunity against bacterial infection (Miller R and Britigan B, 1997). Reactive oxygen intermediates are part of the oxygen dependent bactericidal mechanisms that the phagocytic cell employs (Chance B et al., 1979). After engulfment of bacteria by professional phagocytes the induction of highly microbicidal reactive oxygen metabolites during the oxidative burst occurs, resulting in killing (Beaman L and Beaman B, 1984). Monocyte derived macrophages produce a large amount of hydrogen peroxide (H_2O_2) in response to heat killed *S. aureus* (Komuro I et al., 2001). Catalase has been suggested to protect *S. aureus* (Mandell G, 1975). However, the exact mechanism by which bacteria combat oxidative burst during phagocytosis to enable intracellular survival remains unclear. Other studies have indicated

that production of catalase correlates to virulence of *S. aureus* and other microorganism (Buchmeirer N et al., 1995). It was proposed that Cu-Zn SOD could offer an important advantage in survival within host cells to bacteria expressing high levels of these enzymes (Battistoni A et al., 2000). The interaction of *S. aureus* with murine macrophages and the contribution of catalase and SOD in intracellular persistence of *S. aureus* within murine macrophages during in vitro infection was reported (Das D et al., 2008). Previous studies have shown that both bovine and mammary epithelial cells and human endothelial cells internalize *S. aureus* and subsequently undergo apoptosis. However, the intracellular fate of *S. aureus* (i.e. dead or live) is not clear from these studies (Bayles K et al., 1998). Using green fluorescent *S. aureus*, it was demonstrated clearly that internalized *S. aureus* is not a passive bystander rather replicates actively inside pulmonary epithelial cells and induces apoptosis (Kahl B et al., 2000). Further studies are needed to understand the molecular mechanisms by which *S. aureus* replicates intracellularly and induces apoptosis.

1.4 Oxidative stress and inflammation

Reactive oxygen species (ROS) are associated with the inflammatory response and frequently they contribute to the tissue damaging effects of inflammatory reactions (Leiro J et al., 2004). Previously, inflammation was recognized as a simple allergic reaction, but now, considered to underline pathophysiology of a much broader spectrum of disease. At sites of inflammation, multiple inflammatory cells, including eosinophils, neutrophils and macrophages, are capable of generating ROS, which can contribute to development of various diseases (Nagata M, 2005). IL-1, IL-6, IL-12, TNF- α are the pro-inflammatory cytokines (Th1 cytokines) and IL-10, IL-13, TGF- β and SLPI (secretary leukocyte protease inhibitor) are the anti-inflammatory cytokines (Th2 cytokines). The pro-inflammatory cytokines act as a transcriptional activator. The inducible isozyme cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS) are the two important component and mediator of inflammatory reaction and their activity are regulated by redox status of the cell. COX-2 can also regulate the expression of p38, NF- κ B and AP-1, transcription

factor, which are activated by the redox status of the cell and can control the COX-2 expression (Schreck R and Baeuerle P, 1994). COX-2, on the other hand, is induced by many pro-inflammatory stimuli, including cytokines and bacterial lipopolysaccharide (LPS) (Maier et al., 1990; Mitchell et al., 1993) in cells in vitro and at the site of inflammation in vivo. COX-2 is believed to be responsible for the production of pro-inflammatory prostanooids in various models of inflammation (Chan C et al., 1995). The antioxidants are reducing the inflammatory reactions, expression of COX-2 and iNOS levels, and oxidative stress in the inflammatory cells. Hence, alteration of inflammatory response in relation to *Staphylococcus aureus* induced oxidative stress may take vast importance. Previous studies reported that the presence of TNF- α , whether of host or pathogen origin, was required for the intracellular control of growth and killing of the organisms (Bekkar L et al., 2001). Upon stimulation by *S. aureus* and its products, macrophages are known to synthesize and release the pro inflammatory cytokines TNF- α and IL-6 (Abdelnour A and Tarkowski A, 1993). Previous studies have also reported, the TNF- α and IL-6 has detrimental effects on septic arthritis (Hultgren O et al., 1998). The initial bacterial exposure might have led the circulatory macrophages to release excessive amount of TNF- α and IL-6 to inhibit the bacterial growth inside. It might have played a pivotal role in host defense systems (Das D et al., 2008). Pathogenic bacteria and other infectious agents can stimulate macrophages or monocytes directly, initiating a release of pro-inflammatory cytokines to sustain inflammation and the immunological response. Tumor necrosis factor (TNF- α), interleukin 1 (IL-1), IL-6 and IL-8, are biologically active peptides produced by phagocytic macrophages, polymorphonuclear leukocytes (PMNs), eosinophils, and monocytes induced by the pathogen organisms, endotoxin and other stimuli (Ives T et al., 2003). Further studies are needed to observe whether the intracellularly survived *S. aureus* could potentiate inflammatory response in *in-vivo* condition under the influence of locally released cytokines or its correlation with the anti-oxidant enzymes were not clearly understood.

1.5 Oxidative stress and apoptosis

Apoptosis or programmed cell death is essential for the normal functioning and survival of most multicellular organisms. The morphological and biochemical characteristics of apoptosis, however, are highly conserved during the evolution. Recent studies have demonstrated that, reactive oxygen species (ROS) and the resulting oxidative stress play a pivotal role in apoptosis. Furthermore, at intermediate concentrations, it induces necrotic cell death (Renz A et al., 2001). Apoptosis can be divided into three non-distinct phases: an induction phase, an effector phase, and a degradation phase. The induction phase depends on death-inducing signals to stimulate pro-apoptotic signal transduction cascades. Some of these death-inducing signals include reactive oxygen and nitrogen intermediates, TNF- α , ceramide, over activation of Ca^{2+} ion pathways, and Bcl-2 family proteins such as Bax and Bad (Sohal R et al., 1995). In phase two, the effector phase, the cell becomes committed to die by the action of a key regulator, that is, death domain activation on the cell surface, nuclear activators (such as p53), endoplasmic reticulum pathways, or activation of mitochondrial-induced pathways (release of cytochrome C or apoptosis-inducing factors). The degradation phase involves both cytoplasmic and nuclear events. In the cytoplasm, a complex cascade of protein cleaving enzymes called caspases (cysteine proteases) becomes activated. In the nucleus, the nuclear envelope breaks down, endonucleases are activated, causing DNA fragmentation; and the chromatin condenses. Finally, the cell is fragmented into apoptotic bodies and phagocytosed by surrounding cells (Medvedev Z, 1990). Antioxidant can block or delay the apoptosis pathway. Bcl-2, an endogenously produced protein has been shown to prevent cells from dying of apoptosis apparently by an anti-oxidative mechanism. Taken together ROS, and the resulting cellular redox changes, can be part of signal transduction pathway during apoptosis. During mitochondrial dysfunction, several essential players of apoptosis, including pro-caspase, cytochrome C, apoptosis induced-factor (AIF), and apoptotic protease-activating factor-1 (Apaf-1) are released into the cytosol. The multimeric complex formation of cytochrome C, Apaf-1, and caspase 9 activated downstream caspases leading to apoptotic cell death. Death receptors

(CD95/Fas/APO-1; TNF receptor-1) ligation leads to the recruitment of the adapter molecule Fas activated death domain (FADD) and pro-caspase-8 into a death-inducing signaling complex (Bantel H et al., 2001). All the three functional phases of apoptosis are under the influence of regulatory controls. Thus increasing evidences provide support the oxidative stress and apoptosis are closely linked physiological phenomena, and are implicated in pathophysiology of some of the chronic diseases including AIDS, autoimmunity, cancer, diabetes mellitus, and ischemia of heart and brain (Simon H et al., 2000). Staphylococcal infections are typically associated with death of tissue, and evidence suggests intracellular bacteria are capable of inducing apoptosis. *S. aureus*-mediated apoptosis has been reported in epithelial cells (Bayles K et al., 1998; Kahl B et al., 2000; Wesson C et al., 2000), keratinocytes (Nuzzo I et al., 2000), endothelial cells (Menzies B and Kourteva.I, 2000), and osteoblasts (Tucker K et al., 2000). Wesson et al. (Wesson C et al., 2000) demonstrated host caspases-8 and caspase-3 to play a role in *S. aureus*-induced apoptosis, and caspase-8 is known to be associated with apoptosis triggered by engagement of death receptors (Thornberry N and Lazebnik Y, 1998). Alpha toxin (α -toxin), a major cytotoxin of *S. aureus*, is an effective inducer of apoptosis in Jurkat T cells. Induction of apoptosis by α -toxin was independent of death receptor signaling and was mediated via the mitochondrial pathway, which involved the activation of caspase-9 and caspase-3 as well as the post-mitochondrial activation of caspase-8 (Bantel H et al., 2001).

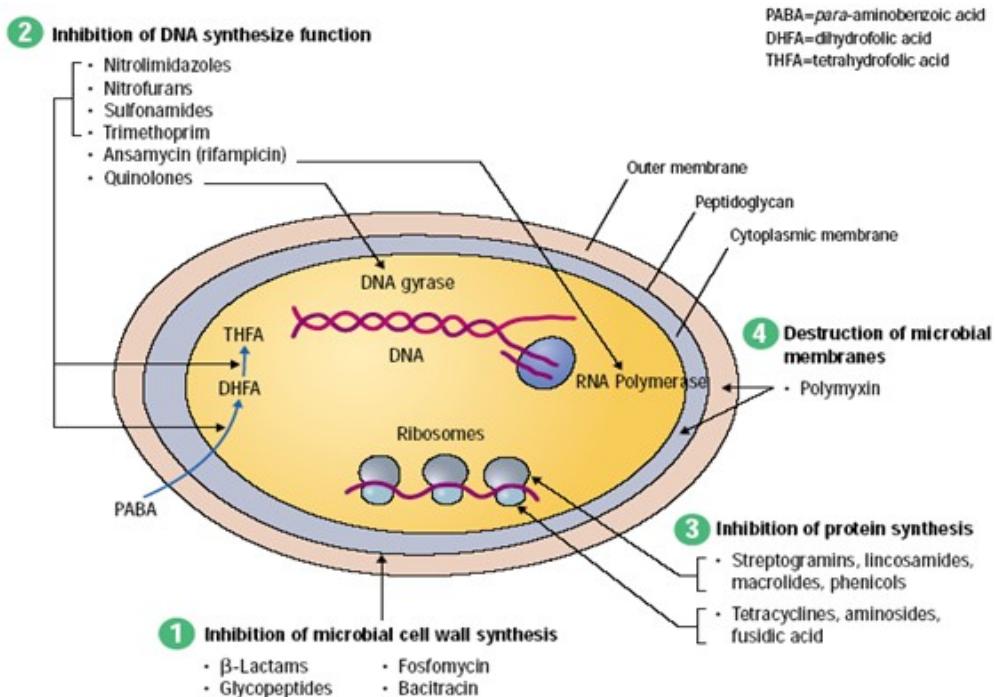
2. Antibiotics

Antibiotics are hailed as the greatest medicinal triumph of the 20th Century. Before their discovery, there was little available to help a patient once they had become infected. The earlier development of vaccination had introduced immunity to some diseases and sterilization had helped to reduce the chance of infection from surgery. With the subsequent formation of germ theory and the work identifying the role of specific bacteria in the diseases anthrax and tuberculosis, the search for a cure began (Pasteur L et al., 1881; Kaufmann S and Schaible U, 2005). In 1929, nearly 250 years after van

Leuwenhoek first discovered bacteria, Fleming noted that the growths of bacteria could be inhibited by the presence of a mould, *Penicillium notatum*. This effect was caused by a metabolic product from the mould that was interacting with the staphylococcal culture (Fleming A, 1929). Penicillin was the first of the family of β -lactam antibiotics that now form the largest share of the antibacterial market.

2.1 Treatment and prevention of *S. aureus* infections

Penicillin is still the main drug of choice for staphylococcal infections as long as the isolate is sensitive to it (Kowalski R et al., 2003). In patients with histories of a delayed-type penicillin allergy a cephalosporin, such as cefazolin or cephalothin can be administered as an alternative choice of treatment. A semisynthetic penicillin, such as methicillin, is indicated for patients with β -lactamase producing staphylococcal isolates (Lowy F, 1998). Patients who have an MRSA infection are treated with a glycopeptide known as vancomycin. Vancomycin is the empirical drug of choice for the treatment of MRSA (Michel M and Gutmann L, 1997). Patients who are intolerable to vancomycin are treated with a fluoroquinolone (ciprofloxacin); lincosamide (clindamycin); tetracycline (minocycline) or trimethoprim-sulfamethoxazole, which is also known as co-trimoxazole (Lowy F, 1998).


Novel quinolones, such as ciprofloxacin with increased antistaphylococcal activity are available but their use may become limited due to the rapid development of resistance during therapy (Lowy F, 1998). Several antimicrobial agents with activity against MRSA are currently evaluated and include: (i) oritavancin, a semisynthetic glycopeptide (Guay D, 2004); (ii) tigecycline, a monacycline derivative (Guay, 2004) and (iii) DW286, a fluoroquinolone (Kim M et al., 2003). Amongst these three antibiotics,

tigecycline has been approved by the Food and Drug administration (FDA) in June 2005 (Stein G and Craig W, 2006).

Recently, an evaluation of glycosylated polyacrylate nanoparticles showed to have *in vitro* activities against methicillin-resistant *S. aureus* and *Bacillus anthracis* (Abeylath S et al., 2007). Other recent investigative drugs include, silver nano particles, oleanolic acid from extracted *Salvia officinalis* (Sage leaves) (Yuan W et al., 2008). Two novel antibiotics, neocitreamicins I and II, isolated from a fermentation broth of a *Nocardia* strain have shown to have *in vitro* activity against *S. aureus* and vancomycin-resistant *Enterococcus faecalis* (VRE) (Peoples A et al., 2008). Accurate empirical therapy against *S. aureus* infections would be an important step towards the reduction of the development of resistance in the different strains (Lowy F, 1998).

2.2 Mechanism of action of antibiotics

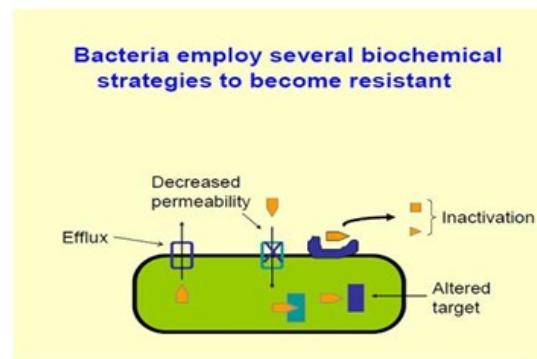
Antibiotics work in variety of ways (Figure 1). Some antimicrobial agents inhibit bacterial cell wall synthesis. These agents include β -lactam compounds such as penicillins (e.g. penicillin G, ampicillin and methicillin), cephalosporins and carbapenems, as well as monolactams and β -lactamase inhibitors. β -lactams inhibit the final stage of murein synthesis. This, by some undetermined mechanism, triggers murein hydrolases to lyse the cell. A related group of antibiotics that prevent a different step in cell wall synthesis are the glycopeptides, vancomycin and teicoplanin. Other agents have an antibacterial effect by inhibiting protein synthesis. Representatives of this group include the aminoglycosides, tetracyclines, macrolides and chloramphenicol which interfere with ribosome function. In addition, there are antibiotics that inhibit DNA synthesis, including quinolones, fluoroquinolones and sulfonamides (Normark B and Normark S, 2002).

Figure 1: Mechanism of action of antibiotics.

2.3 Appearance of antibiotic resistance

The belief of overcome the infectious disease did not last long: the discovery of antibiotics made them widely available, which only accelerated the appearance of antibiotic resistance, devaluing them. This is the aptly named “antibiotic paradox”. The appearance of resistance should have been foreseen. The biochemical warfare between micro-organisms dates back much further than any human intervention, and these organisms had developed defences during that time against the very weapons. The truth is shown no more clearly than in the history of penicillin. Within a decade of antibiotic use, resistance was already being observed, first in hospitals and later in the community (Palumbi S, 2001). As time has progressed, more antibiotics have succumbed to the rising levels of resistance with the effectiveness of most antibiotics dropping. By 1993,

the dosages for these antibiotics had increased from 10 to 100-fold beyond the dosage when they were first introduced (Neu H, 1994).


With the appearance of MRSA, the problem has only grown further. While at present MRSA is mostly confined within hospitals and the care community, the risk of community-acquired infection is very real and something leading to much worry within both the medical profession and general public.

2.4 Mechanism of antibiotic resistance

In recent years, antibiotics resistant bacteria have become a great concern to the medical community. There has been an increased increase in the number of species that have acquired resistance to antibiotics (Table 1). Mechanisms of antimicrobial resistance can be classified into four main groups (Figure 2).

Table 1: Some representative antibiotics, their modes of action and mechanisms of resistance.

Category	Some members	Mode of action	Major mechanisms of resistance
β -Lactams	Penicillins, Cephalosporins, Cefotaximes, Carbapenems	Inhibition of cell-wall synthesis	Cleavage by β -lactamases, ESBLs, CTX-mases, Carbapenemases, altered PBPs
Aminoglycosides	Streptomycin, Gentamycin, Tobramycin, Amikacin	Inhibition of protein synthesis	Enzymatic modification, efflux, ribosomal mutations, 16S rRNA methylation
Quinolones	Ciprofloxacin, Ofloxacin, Norfloxacin	Inhibition of DNA replication	Efflux, modification, target mutations
Glycopeptides	Vancomycin	Inhibition of cell-wall synthesis	Altered cell walls, efflux
Tetracyclines	Tetracycline	Inhibition of translation	Mainly efflux
Rifamycins	Rifampin (Rifampicin)	Inhibition of transcription	Altered β -subunit of RNA polymerase
Streptogramins	Virginiamycins, Quinupristin, Dalfopristin	Inhibition of cell-wall synthesis	Enzymatic cleavage, modification, efflux
Oxazolidinones	Linezolid	Inhibition of formation of 70S ribosomal complex	Mutations in 23S rRNA genes followed by gene conversion

Figure 2: Biochemical mechanisms of antibacterial resistance.

2.4.1 Enzymatic inactivation

Antibiotic modification results in the antibiotic being unable to act on its target. For example β -lactam antibiotics may be destroyed enzymatically by β -lactamases that cleave the β -lactam ring. These enzymes are widespread among many bacterial species (Gram positive and Gram negative) and show varied degrees of inhibition by β -lactam inhibitors such as clavulanic acid (Livermore D, 1995). Most β -lactamases act to some degree against both penicillins and cephalosporins; others are more specific, cephalosporinases (e.g. AmpC enzyme found in *Enterobacter* spp) or penicillinases (e.g. *S. aureus* penicillinase).

2.4.2 Permeability barrier

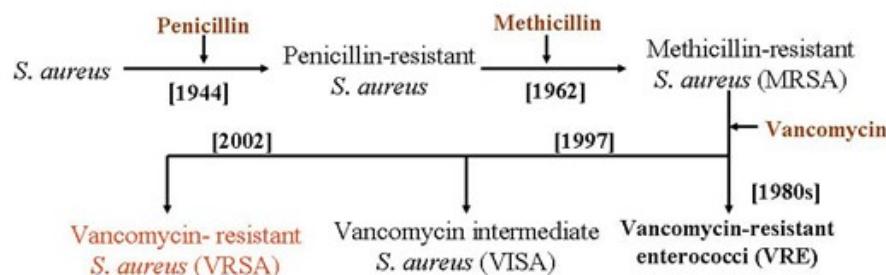
: Protection of the target from antibiotic action by preventing the antibiotic

from entering the cell or acquiring the ability to pump out the antibiotic. β -lactam antibiotics gain access to Gram negative bacteria through porins. Lack of the specific D2 porin in *P. aeruginosa* results in imipenem resistance. This mechanism is also seen with low level resistance to fluoroquinolones and aminoglycosides. Increased efflux via an energy-requiring transport pump is a mechanism for resistance to tetracyclines and is encoded by a wide range of related genes.

2.4.3 Altered targets

Alteration of the target so that it is no longer recognized by the antibiotic. Most strains of *S. pneumoniae* are highly susceptible to both penicillins and cephalosporins but can acquire DNA from other bacteria which changes the enzyme responsible for

cell wall synthesis. As a result the bacteria develop a low affinity for penicillins and hence become resistant (Garcia-Bustos J and Tomasz A, 1990).


2.4.4 Metabolic bypass

Acquisition of an alternative metabolic pathway, bypassing the antibiotic's site of action. The alternative penicillin binding protein (PBP2a) produced by MRSA is an example of this. The protein is encoded by the *mecA* gene and because PBP2a is not inhibited by antibiotics such as flucloxacillin the cell continues to synthesise peptidoglycan and hence has a structurally sound cell wall (Michel M and Gutmann L, 1997). A further example of this type of resistance is shown by vancomycin resistant bacteria (Leclercq R and Courvalin P, 1997). In enterococci sensitive to vancomycin the normal target of vancomycin is a cell wall precursor that contains a pentapeptide that has a D-alanine terminus to which the vancomycin binds, preventing further cell wall synthesis. If an enterococcus acquires the *vanA* gene cluster it can make an alternative cell wall precursor ending in D-alanine-D-lactate to which vancomycin does not bind.

2.5 Emergence of antibiotic resistance in *Staphylococcus aureus*

Staphylococcus aureus, a major cause of potentially life-threatening infections acquired in healthcare and community settings, has developed resistance to most classes of antimicrobial agents (Figure 3). Penicillin was the first choice of antibiotics to treat staphylococcal infection. In 1944, by destroying the penicillin by penicillinase (beta-lactamase), *S. aureus* became resistant to penicillin (Kirby W,

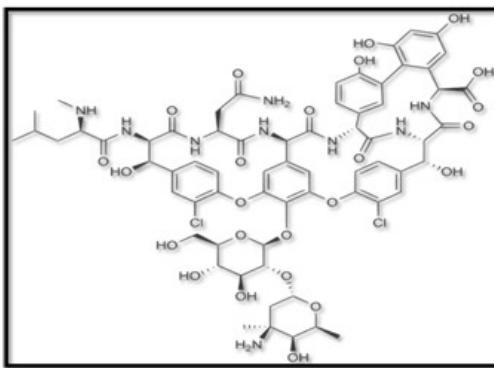
1944). Most *S. aureus* strains ($\geq 90\%$) are resistant to penicillin (Neu H, 1992). Methicillin, a semisynthetic penicillin was used to treat Penicillin Resistant *Staphylococcus aureus* but resistance finally emerged in 1962 (Livermore D, 2001; Lowy F, 1998). Methicillin-resistance in *S. aureus* is mediated by the presence of penicillin-binding protein 2a (PBP-2a) which is expressed by an exogenous gene, *mecA*. This gene is carried by a genetic element, designated as staphylococcal cassette chromosome *mec* (*SCCmec*), which is inserted near the chromosomal origin of replication (Hiramatsu K, 2001). High prevalence of methicillin resistant *Staphylococcus aureus* (MRSA) in hospitals has been reported from many states of India (Rajaduraipandi K et al., 2006). Methicillin resistance among *S. aureus* isolates has reached phenomenal proportions in Indian hospitals, with some cities reporting 70% of the strains to be resistant to methicillin (Anupurba S et al., 2003). Vancomycin continues to be an important antimicrobial agent for treatment of Methicillin Resistant *Staphylococcus aureus* (MRSA) infections but resistance finally emerges. In 1996, a *S. aureus* strain with intermediate resistance to vancomycin (VISA) (vancomycin MIC= 8 $\mu\text{g/ml}$) was first isolated from a patient in Japan (Hiramatsu K et al., 1997). Shortly afterward, VISA strains were isolated in USA, Europe and other Asian countries (Hamilton-Miller J, 2002), arousing considerable concern regarding the emergence of *S. aureus* strains for which there will be no effective therapy. Characterization of these VISA strains indicates that the mechanisms of resistance are complex and involve changes in cell wall content and composition (Avison M et al., 2002).

Figure 3: Evaluation of antibiotic resistance in *Staphylococcus aureus*.

In June 2002, the world's first reported clinical infection due to *S. aureus* with high resistance to vancomycin (VRSA) (vancomycin MIC>128 µg/ml) was diagnosed in a patient in the USA (Sievert D et al., 2002). This isolate contain the vanA genes from enterococci and the methicillin-resistance gene *mecA*. The possible emergence and dissemination of VRSA strains is a serious health threat and makes it absolutely necessary to optimize prevention strategies and fast detection methods. Till today only five VRSA have been found all over the world, first in USA in 2002 (Sievert D et al., 2002), second in Michigan in 2002 (Chang S et al., 2003), third in Pennsylvania in 2002 (Tenover F et al., 2004), fourth in New York in 2004 (Kacica M, 2004), fifth in New York in 2005 (Perichon B and Courvalin P, 2006), and the sixth in Kolkata (India) in 2005 (Saha B et al., 2008).

2.6 Drug of last resort

Due to the nature of MRSA, when a patient is unfortunate to acquire an infection, the resulting treatment inevitably involves the use of vancomycin. As such, vancomycin is thought of as a drug of last resort. While vancomycin is currently an effective treatment in the battle against MRSA, past experience has shown us that this should not lead to complacency and with the increasing use of vancomycin in the treatment of such super-bugs the appearance of vancomycin resistance is only to be accelerated. To compound these fears, vancomycin resistance is already well documented in vancomycin-resistant enterococci (VRE), and has been known about for many years (Uttley A et al., 1988). This, and the emergence of MRSA with resistance to vancomycin (VRSA) in a small number of isolated cases, is definitely cause for alarm. If new antibiotics cannot be found then such infections will


once again be without cure and the consequences deadly. As such, the current situation of looking for new antibiotics or ways to circumvent the current methods of resistance employed by bacteria has lead to the comparison to an arms race, with the hope that we can develop the cures faster than the bacteria evolve.

3. Vancomycin

Vancomycin was isolated in 1953 by Edmund Kornfeld from a soil sample collected from the interior jungles of Borneo by a missionary. It is a glycopeptide antibiotic (Figure 4). It is used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. It has traditionally been reserved as a drug of "last resort", used only after treatment with other antibiotics had failed, although the emergence of vancomycin-resistant organisms is increasingly being displaced from this role by linezolid and daptomycin. The organism that produced it was eventually named *Amycolatopsis orientalis*. The original indication for vancomycin was for the treatment of penicillin-resistant *Staphylococcus aureus*. The compound was initially labelled compound 05865, but was eventually given the generic name, vancomycin (Levine D, 2006). Eli Lilly first marketed vancomycin hydrochloride under the trade name Vancocin (Moellering R, 2006) and as COVANC (India, Marketed by Nucleus).

3.1 Pharmacology and Chemistry

Vancomycin is a branched tricyclic glycosylated non-ribosomal peptide. It has multiple chemically distinct rotamers owing to the rotational restriction of some of the bonds. The form present in the drug is the thermodynamically more stable conformer and, therefore has more potent activity. The chemical data of vancomycin is shown in Table 2.

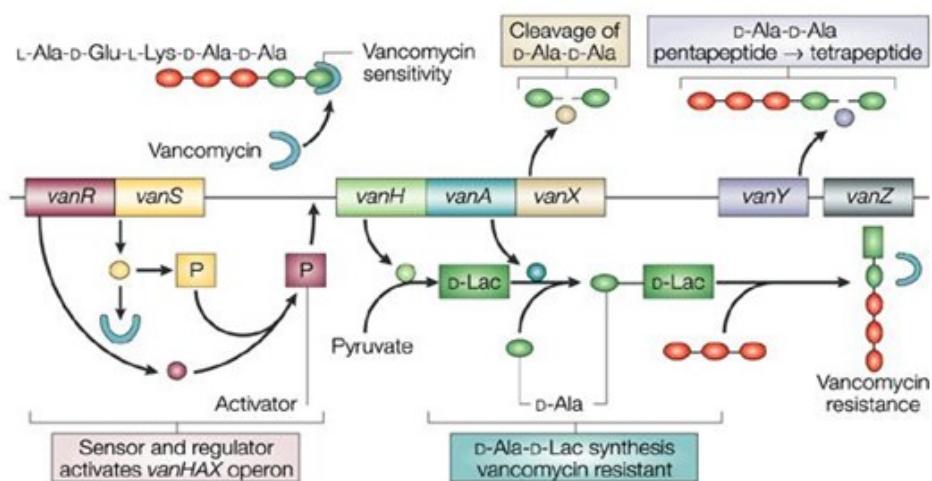

Figure 4: Chemical structure of vancomycin.

Table 2: Chemical data of vancomycin.

<u>Formula</u>	C66H75Cl2N9O24
<u>Mol. mass</u>	1449.3 g.mol ⁻¹
<u>Bioavailability</u>	Negligible (oral)
<u>Metabolism</u>	Excreted unchanged
<u>Half life</u>	4–11 hours (adults)
<u>Excretion</u>	Renal

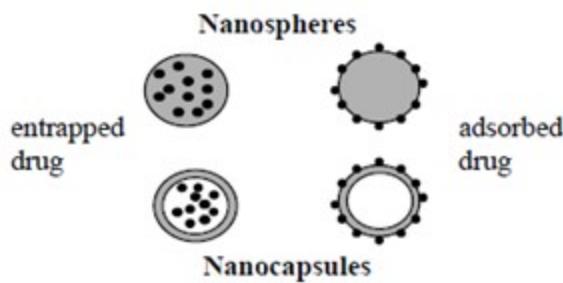
3.2 Mechanism of action of vancomycin

Vancomycin acts by inhibiting proper cell wall synthesis in Gram-positive bacteria. The mechanism inhibited, and various factors related to entering the outer membrane of Gram-negative organisms mean that vancomycin is not active against Gram-negative bacteria. Specifically, vancomycin prevents incorporation of N-acetyl muramic acid (NAM) and N-acetyl glucosamine (NAG)-peptide subunits into the peptidoglycan matrix; which forms the major structural component of Gram-positive cell walls (Figure 5). The large hydrophilic molecule is able to form hydrogen bond interactions with the terminal D-alanyl-D-alanine moieties of the NAM/NAG-peptides. Normally this is a five-point interaction. This binding of vancomycin to the D-Ala-D-Ala prevents the incorporation of the NAM/NAG-peptide subunits into the peptidoglycan matrix (Saha B et al., 2008).

Figure 5: Mechanism of action and resistant of Vancomycin

3.3 Mechanism of resistance

The clinical isolates resistant to vancomycin are characterized by a subtle change in the structure of peptidoglycan termini, as a result of the action of D-alanyl-D-X ligases, which have dual-subsite specificity at their second amino acid-binding site. The switch from D-Ala-D-Ala peptidoglycan termini to D-alanine-D-lactate (D-Ala-D-Lac) results in the loss of crucial hydrogen-bonding interactions, causing a 1,000-fold reduction of vancomycin-binding affinity. Inducible high-level vancomycin resistance in *Enterococcus faecium* BM4147 is associated with the five genes located on the transposable element Tn1546 and is the most common clinical phenotype (Walsh C et al., 1996). A two-component transcriptional-activation system of *VanS* and *VanR* controls the induction of three structural genes *VanH*, *VanA*, and *VanX*. *VanH* is an α -keto acid reductase that converts pyruvate to D-Lac for D-Ala-D-Lac synthesis by the ATP-dependent desipeptide ligase, *VanA* (Bugg T et al., 1991). *VanA* is a 38.5-kDa protein capable of utilizing both hydroxyl acids and D-Ala as substrates with a concomitant switch from ester to peptide bond formation dependent on pH (Park I et al., 1996). The presence of any peptidoglycan chains ending in D-Ala-D-Ala, as a consequence of endogenous peptidoglycan biosynthesis genes, is negated by the action of *VanX*, a Zn^{2+} -dependent D-Ala-D-Ala dipeptidase (Reynolds P et al., 1994). Thus the action of these three genes in concert ensures the production of D-Ala-D-Lac-terminating peptidoglycan chains, which are bound very weakly by the glycopeptide antibiotic vancomycin, rendering the bacteria resistant (Figure 5).


4. Nanotechnology

Nanotechnology is enabling technology that deals with nano-meter sized objects. Nanotechnology is developed at several levels: materials, devices and systems. The nanomaterials level is the most advanced at present, both in scientific knowledge and in commercial applications. A decade ago,

nanoparticles were studied because of their size-dependent physical and chemical properties (Murray C et al., 2000). Now they have entered a commercial exploration period (Paull R et al., 2003). Living organisms are built of cells that are typically 10 μ m across. However, the cell parts are much smaller and are in the sub-micron size domain. Even smaller are the proteins with a typical size of just 5 nm, which is comparable with the dimensions of smallest man-made nanoparticles. This simple size comparison gives an idea of using nanoparticles as very small probes that would allow us to spy at the cellular machinery without introducing too much interference (Taton T, 2002). Understanding of biological processes on the nanoscale level is a strong driving force behind development of nanotechnology (Whitesides G, 2003). Out of plethora of size-dependant physical properties available to someone who is interested in the practical side of nanomaterials, optical and magnetic effects are the most used for biological applications (Parak W et al., 2003).

4.1 Nanoparticles

Nanoparticles are solid colloidal particles with diameters ranging from 1-1000 nm. They consist of macromolecular materials and can be used therapeutically as adjuvant in vaccines or drug carriers in which the active ingredient is dissolved, entrapped, encapsulated, adsorbed or chemically attached. Polymers used to form nanoparticles can be both synthetic and natural polymers. There are two types of nanoparticles depending on the preparation process: nanospheres and nanocapsules (Alleman E et al., 1993). Nanospheres have a monolithic-type structure (matrix) in which drugs are dispersed or adsorbed onto their surfaces; and nanocapsules exhibit a membrane-wall structure and drugs are entrapped in the core or adsorbed onto their exterior (Figure 6). The term "nanoparticles" is adopted because it is often very difficult to unambiguously establish whether these particles are of a matrix or a membrane type.

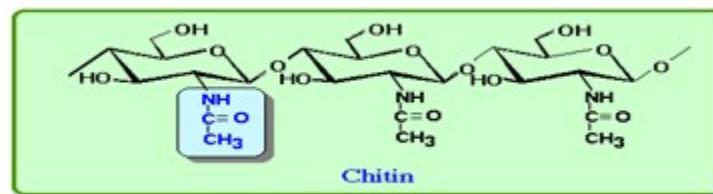


Figure 6: Various types of drug loaded nanoparticles (Allemann et al., 1993).

Nanoparticles not only have potential as drug delivery carriers as they offer non-invasive routes of administration such as oral, nasal and ocular routes, but also show to be good adjuvant for vaccines. Despite these advantages, there is no ideal nanoparticle system available. Most of nanoparticles prepared from water-insoluble polymers are involved heat, organic solvent or high shear force that can be harmful to the drug stability. Moreover, some preparation methods such as emulsion polymerization and solvent evaporation are complex and require a number of preparation steps that are more time and energy consuming. In contrast, water-soluble polymers offer mild and simple preparation methods without the use of organic solvent and high shear force.

4.2 Chitin

Chitin is one of the most abundant organic materials, being second only to cellulose in the amount produced annually by biosynthesis. It occurs in animals, particularly in crustacea, molluscs and insects, where it is a major constituent of the exoskeleton, and in certain fungi, where it is the principal fibrillar polymer in the cell wall. Chitin has a crystalline structure and it constitutes a network of organized fibres, this structure confers rigidity and resistance to organisms that contain it (Roberts G, 1992). Chitin is poly [β -(1 \rightarrow 4)-2-acetamido-2-deoxy-D-glucopyranose], and its idealized structure is shown in Figure 7.

Figure 7: Chemical structure of Chitin.


4.3 Chitosan

Chitosan is a modified natural carbohydrate polymer prepared by the partial N-deacetylation of chitin, a natural biopolymer derived from crustacean shells such as crabs, shrimps and lobsters. Chitosan is also found in some microorganisms, yeast and fungi (Illum L, 1998). The primary unit in the chitin polymer is 2-deoxy-2-(acetyl amino) glucose. These units combined by β -(1,4) glycosidic linkages, forming a long chain linear polymer and its idealized structure is shown in Figure 8. Chitosan is soluble in most organic acidic solutions at pH less than 6.5

including formic, acetic, tartaric, and citric acid (LeHoux J and Grondin F, 1993). It is insoluble in phosphoric and sulfuric acid. Chitosan is available in a wide range of molecular weight and degree of deacetylation. Molecular weight and degree of deacetylation are the main factors affecting the particle size, particles formation and aggregation. Chitosan possesses some ideal properties of polymeric carriers for nanoparticles such as biocompatible, biodegradable, nontoxic, and inexpensive. These properties render chitosan a very attractive material as a drug delivery carrier. In the

last two decades, chitosan nanoparticles have been extensively developed and explored for

pharmaceutical applications (Roberts G, 1992).

Figure 8: Chemical structure of Chitosan.

4.4 Biological profits of chitosan nanoparticle

4.4.1 Parenteral administration

Nano-sized particles can be administered intravenously because the diameter of the smallest blood capillary is approximately 4 μm . The biodistribution of nanoparticles can vary depending on the size, surface charge and hydrophobicity of the administered particles (Tabata and Ikada, 1988). Particles greater than 100 nm in diameter are rapidly taken up by the reticuloendothelial system (RES) in the liver, spleen, lung and bone marrow, while smaller-sized particles tend to have a prolonged circulation time. Negatively-charged particles are eliminated faster than positively-charged or neutral particles (Tabata Y and Ikada Y, 1988). The most promising drugs that have been extensively studied for delivery by this route are anticancer agents. Following intravenous injection, many nanoparticle systems including chitosan NP exhibited a marked tendency to accumulate in a number of tumors (Kreuter J, 1994). One possible reason for the phenomenon may involve the leakiness of tumor vasculature (Sadzuka Y et al., 1998).

4.4.2 Peroral administration

Delivery of anti-infective such as antibacterial, antiviral, antifungal and antiparasitic drugs, is another common use of nanoparticles (Page-Clisson M et al., 1998). The low therapeutic index of antifungal drugs, short half-life of antivirals and the limited ability of antibiotics to penetrate infected cells in intracellular compartments make them ideal candidates for nanoparticle delivery. The absorption promoting effect of chitosan has been extensively studied by several research groups and found to be due to a combination of mucoadhesion and transient

opening of tight junctions in the mucosal cell membrane which have been verified both *in vitro* and *in vivo* (Aspden T et al., 1996). Pan et al. reported that hypoglycemic effect was observed in induced diabetic rats after orally administration of chitosan nanoparticles (Pan Y et al., 2002). Furthermore, chitosan can be employed as a coating material for liposomes, micro/nanocapsules to enhance their residence time, thereby improving drug bioavailability (Vila A et al., 2002).

4.4.3 Non-viral gene delivery vectors

Viruses can efficiently transfer genes into cells, concerns such as host immune response, residual pathogenicity, and potential induction of neoplastic growth following insertional mutagenesis have led to the exploration of non-viral gene transfer systems (Otto E et al., 1994). These latter delivery systems are generally considered to be safer since they are typically less immunogenic and lack mutational potential. Chitosan as a promising gene delivery vector was first proposed by Mumper (Mumper R et al., 1995). Park et al. developed liver targeted delivery system by preparing galactosylated-chitosan-graft-dextran DNA complexes, as galactose is known as liver targeted delivery (Park I et al., 2000). Similarly, Mao et al. prepared transferrin-chitosan-DNA nanoparticles as a targeted drug delivery (Mao H et al., 2001).

4.4.4 Delivery of vaccines

Nanoparticles often exhibit significant adjuvant effects in parenteral vaccine delivery since they may be readily taken up by antigen presenting cells (Kreuter J, 1995). Among the polymers used to form vaccine nanoparticles, chitosan is one of the most

recently explored and extensively studied as prospective vaccine carriers. Furthermore, chitosan has also been widely explored as the application for DNA mucosal vaccines. For instance, a chitosan-based DNA flu vaccine showed high antibody level in mice after intranasal administration (Illum L et al., 2001). Plasmid pCMVArh2 encoding peanut allergen genes were reported successfully incorporated into chitosan NP with good antigen expression and good protection after oral administration in mice (Roy K et al., 1999).

4.4.5 Ocular administration

Nanoparticles have been found to be potential carriers for ocular delivery following the observation that various types of nanoparticles tend to adhere to the ocular epithelial surface (Wood R et al., 1985). The resulting prolonged residence time of nanoparticles leads to a much slower elimination rate compared to conventional ophthalmologic formulations, thereby improving drug bioavailability. As a consequence, nanoparticles have been developed for targeted ophthalmic delivery of anti-inflammatory, antiallergic and beta-blocker drugs (De Campos A et al., 2001). Felt et al. found that chitosan solutions prolonged the cornea resident time of antibiotic in rabbits (Felt O et al., 1999). The same effects were also observed employing chitosan NP as demonstrated by De Campos et al. that chitosan NP remained attached to the rabbits' cornea and conjunctiva for at least 24 hr (De Campos A et al., 2001). Chitosan also shown to be a low toxic material, ophthalmic formulation based on chitosan exhibited an excellent tolerance after applied chitosan onto the rabbit's corneal surface (Felt O et al., 1999). Beside employing chitosan NP to improve drug transport via ocular, chitosan-coated nanoparticles can also be utilized as it exhibited ability to enhance the corneal penetration (Calvo P et al., 1997).

4.5 Chitosan-as drug delivery vehicles

Chitosan is the most important chitin derivative in terms of application. Chitosan has attracted considerable interest because of its unique combination of properties, such as biocompatibility, biodegradability, metal complexation and antibacterial activity. Chitosan has a variety of

current and potential applications in various fields, for example, biotechnology (Mao et al., 2001), pharmaceutics (Illum, 1998), wastewater treatment (Ramnani and Sabharwal, 2006), cosmetics (Majet N and Kumar R, 2000), and food science (Chien P et al., 2007). The antibacterial activity of chitosan has been widely explored (Hong K et al., 2002; Tsai G et al., 2004; Liu N et al., 2006). Penicillin bound acrylare nanoparticles have equipotent in vitro antibacterial properties against methicillin susceptible and methicillin resistance form of *Staphylococcus aureas* and indefinite stability toward beta lactamase (Turos E et al., 2007). Recently it was reported that chitosan nanoparticle coated with Folic acid containing pendant group enhances drug delivery in cancer cell (Sahu S et al., 2010).

5. CONCLUSION

Resistance of *S. aureus* to antibiotics appeared within a few years after the onset of the antibiotic era, and this problem has reached epic proportions owing to overuse and improper use of antibiotics. *S. aureus* resistance to antibiotics currently spans all known classes of natural and synthetic compounds. Increasing resistance of *S. aureus* to last line of drug i.e., vancomycin highlights the need for either the development of new and novel antibiotics or the improvement of efficacy of established antibiotics by the development of new agents capable of enhancing antibiotic activity. Staphylococcal infections are typically associated with death of tissue, and evidence suggests intracellular bacteria are capable of inducing apoptosis. *S. aureus*-mediated apoptosis has been reported in epithelial cells, keratinocytes, endothelial cells, and osteoblasts. A number of chitosan derivates with different modifications have been prepared to improve its antibacterial activity. A Chitosan nanoparticle also delivers anti-infective drugs such as antibacterial, antiviral, antifungal and antiparasitic drugs. In view of antibiotic resistance of *S. aureus*, staphylococcal infections mediated apoptosis in cellular system and important beneficial effects of chitosan nanoparticles, it may be concluded that chitosan derivatives may shows the antibacterial activity against VRSA after binding with vancomycin.

Abbreviations:

COX	: Cyclooxygenase
DNA	: Deoxyribonucleic acid
FDA	: Food and Drug administration
H_2O_2	: Hydrogen peroxide
IL	: Interleukin
iNOS	: Inducible nitric oxide synthase
MRSA	: Methicillin resistant <i>Staphylococcus aureus</i>
NAM	: N-acetyl muramic acid
NAG	: N-acetyl glucosamine
PBP	: Penicillin binding protein.
PMN	: Polymorphonuclear leukocytes.
PVL	: Panton-Valentine leukocidin.

ROS	: Reactive oxygen species
<i>S. aureus</i>	: <i>Staphylococcus aureus</i>
SOD	: Superoxide dismutase
TNF	: Tumor necrosis factor
TSS	: Toxic shock syndrome.
VRE :	: Vancomycin resistant <i>Enterococcus</i>
VRSA	: Vancomycin resistant <i>Staphylococcus aureus</i>
VSSA	: Vancomycin sensitive <i>Staphylococcus aureus</i>

ACKNOWLEDGEMENT

Authors express gratefulness to Department of Biotechnology, Government of India. Authors also

express gratefulness to Indian Institute of Technology, Kharagpur and Vidyasagar University, Midnapore for providing the facilities to execute this review work.

REFERENCES

1. Abdelnour A, Tarkowski A. Polyclonal B cell activation by an arthritogenic *Staphylococcus aureus* strain: contribution of T cell and monokines. *Cell. Immunol.* 1993; 147: 279-293.
2. Abeylath SC, Turos E, Dickey S. Glyconanobiotics: novel carbohydrate nanoparticle antibiotics for MRSA and *Bacillus anthracis*. *Bioorganic and Medicinal Chemistry.* 2007; 16:2412-2418.
3. Albirich W, Harbath S. Health-care workers: source, vector, or victim of MRSA? *The Lancet Infectious Diseases.* 2008; 8: 289-301.
4. Allemann E, Gurny R, Doelker E. Drug-loaded nanoparticles-preparation methods and drug targeting issues. *Eur. J. Pharm. Biopharm.* 1993; 39: 173-191.
5. Anupurba S, Sen MR, Nath G, Sharma BM, Gulati AK, Mohapatra TM. Prevalence of methicillin resistant *Staphylococcus aureus* in a Tertiary care Referral Hospital in Eastern Uttar Pradesh. *Indian J Med Microbiol.* 2003; 21: 49-51.
6. Aspden TJ, Skaugrud O, Illum L. Chitosan as a nasal delivery system: evaluation of insulin absorption enhancement and effect on nasal membrane integrity using rat models. *Eur. J. Pharm. Sci.* 1996; 4: 23-31.
7. Avison MB, Bennett PM, Howe RA, Walsh TR. Preliminary analysis of the genetic basis for vancomycin resistance in *Staphylococcus aureus* strain Mu50. *J Antimicrob Chemother.* 2002; 49: 255-260.
8. Bantel H, Sinha B, Domschke W, Peters G, Schulze-Osthoff, K, Janicke RU. α -Toxin is a mediator of *Staphylococcus aureus*-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. *J Cell Biol.* 2001; 155: 637-648.
9. Battistoni A, Pacello F, Folcarelli S, Ajello M, Donnarumma G. Increased expression of Cu-Zn SOD enhances survival of *E. coli* invasive strains within non-phagocytic cells. *Infect Immun.* 2000; 68: 30-37.
10. Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR. Intracellular *S. aureus* escapes the endosome and induces apoptosis in epithelial cells. *Infect Immune.* 1998; 66: 336-342.

11. Beaman L, Beaman BL. The role of oxygen and its derivatives in microbial pathogenesis. *Ann Rev Microbiol.* 1984; 38: 27-48.
12. Bekkar LG, Freeman S, Murray P, Ryffel B, Kaplan G. TNF- α controls intracellular mycobacterial growth by both inducible nitric oxide synthase-dependent and inducible nitric oxide synthase-independent pathways. *J Immunol.* 2001; 166: 6728-6734.
13. Ben-David D, Mermel L, Parenteau S. Methicillin-resistant *Staphylococcus aureus* transmission: The possible importance of unrecognized health-care worker carriage. *American Journal of Infection Control.* 2008; 36: 93-97.
14. Borg MA, De Kraker M, Scicluna E. Prevalence of methicillin-resistant *Staphylococcus aureus* (MRSA) in invasive isolates from southern and eastern Mediterranean countries. *Journal of Antimicrobial Chemotherapy.* 2007; 60: 1310-1315.
15. Buchmeir NA, Libby SJ, Xu Y, Loewen PC, Switala J, Guiney DG et al. DNA repair is more important than catalase for *Salmonella* virulence in mice. *J Clin Invest.* 1995; 95: 1047-1053.
16. Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT. Molecular basis for vancomycin resistance in *Enterococcus faecium* BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins *VanH* and *VanA*. *Biochemistry.* 1991; 30: 10408-10415.
17. Chien PJ, Seu F, Yang FH. Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. *J. Food Eng.* 2007; 78: 225-229.
18. Calvo P, Vila-Jato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. *Int. J. Pharm.* 1997; 153: 41-50.
19. Chan CC, Boyce S, Brideau C, Ford-Hutchinson AW, Gordon R, Guay D, Hill RG, Li CS, Mancini J, Penneton M, Prasit P, Rasori R, Riendeau D, Roy P, Tagari P, Vickers P, Wong E, Rodger IW. Pharmacology of a selective cyclooxygenase-2 inhibitor, I-745,337: a novel nonsteroid antiinflammatory agent with an ulcerogenic sparing effect in rat and non-human primate stomach. *J. Pharmacol. Exp. Ther.* 1995; 274: 1531-1537.
20. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. *Physiol Rev.* 1979; 59(3): 527-605.
21. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrik JT, Pupp GR, Brown WJ, Cardo D, Fridkin SK. Infection with vancomycin-resistant *Staphylococcus aureus* containing the vanA resistance gene. *N Engl J Med.* 2003; 348: 1342-1347.
22. Das D., S Saha. S., Bishayi B. Intracellular survival of *Staphylococcus aureus*: correlating production of catalase and superoxide dismutase with levels of inflammatory cytokines. *Inflamm. res.* 2008; 57: 1-10
23. De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. *Int. J. Pharm.* 2001; 224: 159-168.
24. Dryla A, Gelbmann D, Gabain VA, Nagy E. Identification of a novel iron regulated Staphylococcal surface protein with haptoglobin binding activity. *Mol Microbiol.* 2003; 49: 37-53.
25. Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. *Int. J. Pharm.* 1999; 180: 185-193.
26. File TM. Methicillin-resistant *Staphylococcus aureus* (MRSA): focus on community-associated MRSA. *South African Journal of Epidemiology and Infection.* 2008; 23:13-15.
27. Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. *British Journal of Experimental Pathology,* 1929; 10: 226-236.
28. Foster TJ. Immune evasion by staphylococci. *Nat Rev Microbiol.* 2005; 3: 948-958.
29. Foster TJ. The *Staphylococci aureus* "superbug". *J Clin Invest.* 2004; 114: 1693-1696.

30. Garcia-Bustos J, Tomasz A. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. *Proc. Natl. Acad. Sci.* 1990; 87: 5415-5419.

31. Grundmann H, Aires-de S, Boyce I. Emergence and resurgence of methicillin-resistant *Staphylococcus aureus* as a public-health. *The Lancet.* 2006; 368: 874-885.

32. Guay DR. Oritavancin and tigecycline: investigational antimicrobials for multidrug-resistant bacteria. *Pharmacotherapy.* 2004; 24: 11-532.

33. Hamilton-Miller JM. Vancomycin-resistant *Staphylococcus aureus*: a real and present danger? *Infection.* 2002; 30: 118-124.

34. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin-resistant *Staphylococcus aureus* clinical strain with reduced vancomycin susceptibility. *J Antimicrob Chemother.* 1997; 40: 135-136.

35. Hiramatsu K. Vancomycin-resistance *Staphylococcus aureus*: a new model of antibiotic resistance. *Lancet Infect Dis.* 2001; 1: 147-155.

36. Ho PL, Chuang SK, Choi YF. Community-associated methicillin-resistant and methicillin-sensitive *Staphylococcus aureus*: skin and soft tissue infections in Hong Kong. *Diagnostic Microbiology and Infectious Disease.* 2008; 61: 245-250.

37. Hong KN, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. *Int. J. Food Microbiol.* 2002; 74(1-2): 65-72

38. Hultgren O, Eugster HP, Tarkowski A. TNF/Lta double mutant mice resist septic artheitis but display increased mortality in response to *Staphylococcus aureus*. *J. Immunol.* 1998; 161: 5937-5942.

39. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. *Adv. Drug Deliv. Rev.* 2001; 51: 81-96.

40. Illum L. Chitosan and its use as a pharmaceutical excipient. *Pharm. Res.* 1998; 15: 1326-1331.

41. Ives TJ, Schwab UE, Ward ES, Hall IH. In-vitro anti-inflammatory and immunomodulatory effects of grepafloxacin in zymogen A- or *Staphylococcus aureus*-stimulated human THP-1 monocytes. *J Infect Chemother.* 2003; 9: 134-143.

42. Kacica M. Vancomycin-resistant *Staphylococcus aureus*—New York, Morb. Mortal. Wkly. Rep. 2004; 53: 322-323.

43. Kahl BC, Goulian M, Wamel WV, Hermann M, Simon SM, Kaplan G et al. *S. aureus* RN 6390 replicates and induces apoptosis in a pulmonary epithelial cell line. *Infect Immun.* 2000; 68: 5385-5392.

44. Kaufmann SHE, Schaible UE. 100th anniversary of Robert Koch's Nobel prize for the discovery of the tubercle bacillus. *Trends in Microbiology.* 2005; 13: 469-475.

45. Kim MJ, Yun HJ, Kang JW. *In vitro* development of resistance to a novel fluoroquinolone, DW286, in methicillin-resistant *Staphylococcus aureus* isolates. *Journal of Antimicrobial Chemotherapy.* 2003; 51:1011-1016.

46. Kirby WMM. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. *Science.* 1944; 99: 452-453.

47. Komuro I, Keicho N, Iwamoto A, Akagawa KS. Human alveolar macrophages and granulocyte macrophages colony stimulating factor- induced monocyte derived macrophages are resistant to H₂O₂ via their high basal and inducible levels of catalase activity. *J Biol Chem.* 2001; 276(26): 24360-24364.

48. Kowalski RP, Karenchak LM, Romanowski EG. Infectious disease: changing antibiotic susceptibility. *Ophthalmology Clinics of North America.* 2003; 16:1-9.

49. Kreuter J. Nanoparticles as adjuvants for vaccines. In: *Vaccine Design*, edited by Powell, M. F., and M. J. Newman. New York: Plenum Press, Chapter 19: 1995; 463-471.

50. Kreuter J. Nanoparticles. In: *Colloidal Drug Delivery Systems*, edited by Kreuter, J. New York: Marcel Dekker, 1994; 261-276.

51. Leclercq R, Courvalin P. Resistance to glycopeptides in enterococci. *Clin. Infect. Dis.* 1997; 24: 545-556.

52. LeHoux JG, Grondin F. Some effects of chitosan on liver function in the rat. *Endocrinology*. 1993; 132: 1078-1084.

53. Leiro J, Alvarez E, Arranz JA, Laguna R, Uriarte E, Orallo F. Effects of cis-resveratrol on inflammatory murine macrophages: antioxidant activity and down-regulation of inflammatory genes. *J. Leukoc. Biol.* 2004; 75: 1156-1165.

54. Levine D. *Vancomycin: A History*. *Clin Infect Dis*. 2006; 42: 5-12.

55. Liu N, Chen XG, Park HJ, Liu CG, Liu CS, Meng XH, Yu LJ. Effect of MW and concentration of chitosan on antibacterial activity of *Escherichia coli*. *Carbohydr. Polym.* 2006; 64: 60-65.

56. Livermore DM. Antibiotic resistance in staphylococci. *Int J Antimicrob Agents*. 2001; 16: 3-10.

57. Livermore DM. β -lactamases in laboratory and clinical resistance. *Clin. Microbiol. Rev.* 1995; 8:557-584.

58. Lowy FD. *Staphylococcus aureus* infections. *New England Journal of Medicine*. 1998; 339: 520-532.

59. Majet NV, Kumar R. A review of chitin and chitosan applications. *React. Funct. Polym.* 2000; 46(1): 1-27

60. Mandell GL. Catalase, superoxide dismutase and virulence of *Staphylococcus aureus*. In vitro and in vivo studies with emphasis on staphylococcal-leukocyte interaction. *J Clin Invest.* 1975; 55: 561-566.

61. Mao HQ, Roy K, Troung-Le VL, Janes KA., Lin KY, Wang Y, August JT, Leong KW. Chitosan-DNA nanoparticles as gene carrier: synthesis, characterization and transfection efficiency. *J. Control. Release*. 2001; 70: 399-421.

62. Medvedev Z. An attempt at a rational classification of theories of ageing. *Biol. Rev.* 1990; 65: 375-398.

63. Menzies BE, Kourteva I. *Staphylococcus aureus* alpha-toxin induces apoptosis in endothelial cells. *FEMS Immunol Med Microbiol*. 2000; 29(1): 39-45.

64. Michel M, Gutmann L. Methicillin-resistant *Staphylococcus aureus* and vancomycin-resistant enterococci: therapeutic realities and possibilities. *Lancet*. 1997; 349:1901-1906.

65. Moellering RC. *Vancomycin: A 50-Year Reassessment*. *Clin Infect Dis*. 2006; 42: 3-4.

66. Miller RA, Britigan BE. Role of oxidants in microbial pathophysiology. *Clin Microbiol Rev*.1997; 10: 1-18.

67. Mims C, Dockrell HM, Goering RV. *Medical Microbiology*. 3 edition. Elsevier Mosby, Edinburgh, United Kingdom: 2004; 585-586.

68. Mumper RJ, Wang J, Claspe JM, Rolland AP. Novel polymeric condensing carriers for gene delivery. *Proc. Intl. Symp. Controlled Rel. Bioact. Mater.* 1995; 22: 178-179.

69. Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. *Annu Rev Mater Sci.* 2000; 30:545-610.

70. Nagata M. Inflammatory cells and oxygen radicals. *Current Drug Targets-Inflammation and Allergy*. 2005; 4(4): 503-504.

71. Neu HC. Emerging trends in antimicrobial resistance in surgical infections. A review. *The European journal of surgery*. 1994; 573: 7-18.

72. Normark BH, Normark S. Evolution and spread of antibiotic resistance. *J. Intern. Med.* 2002; 252: 91-106.

73. Nuzzo I, Sanges MR, Folgore A, Carratelli CR. Apoptosis of human keratinocytes after bacterial invasion. *FEMS Immunol Med Microbiol*. 2000; 27(3): 235-240.

74. Ogeston A. Report upon microorganisms in surgical diseases. *Br. Med.J.* 1881;1: 369-375.

75. Otto E, Jones-Trower A, Vanin EF, Stambaugh K, Mueller SN, Anderson WF, McGarry GJ. Characterization of a replicationcompetent retrovirus resulting from recombination of packaging and vector sequences. *Hum. Gene Ther.* 1994; 5: 567-575.

76. Page-Clisson ME, Pinto-Alphandary H, Ourevitch M, Andremont A, Couvreur P. Development of ciprofloxacin-loaded nanoparticles: physicochemical study of the drug carrier. *J. Control. Release*. 1998; 56: 23-32.

77. Palumbi SR. Humans as the world's greatest evolutionary force. *Science*. 2001; 293:1786-1790.

78. Pan Y, Li Y, Zhao H, Zheng J, Xu H, Wei G, Hao J, Cui F. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. *Int. J. Pharm.* 2002; 249: 139-147.

79. Park IK, Park YH, Shin BA, Choi ES, Kim YR, Akaike T, Cho CS, Park YK, Park YR. Galactosylated chitosan-graft-dextran as hepatocyte-targeting DNA carrier. *J Control Release* 2000; 69: 97-108.

80. Park IS, Lin CH, Walsh CT. Gain of D-Alanyl-D-lactate or D-Lactyl-D-alanine Synthetase Activities in Three Active-Site Mutants of the *Escherichia coli* D-Alanyl-D-alanine Ligase B. *Biochemistry*. 1996; 35 (32): 10464-10471.

81. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams CS, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP: Biological applications of colloidal nanocrystals. *Nanotechnology* 2003; 14:R15-R27.

82. Pasteur L, Camberland CE, Roux E. Compte rendu sommaire des expériences faites à Pouilly-le-Fort, près Melun, sur la vaccination charbonneuse. *Comptes Rendus des séances De L'Academie des Sciences*. 1881; 92:1378-1383.

83. Paull R, Wolfe J, Hebert P, Sinkula M. Investing in nanotechnology. *Nature Biotechnology*. 2003; 21:1134-1147.

84. Peacock SJ, De Silva I, Lowry FD. What determines nasal carriage of *Staphylococcus aureus*? *Trends Microbiol.* 2001; 9: 605-610.

85. Peoples AJ, Zhang Q, Millett WP. Neocitreamicins I and II, novel antibiotics with activity against methicillin-resistant *Staphylococcus aureus* and vancomycin-resistant enterococci. *The Journal of Antibiotics*. 2008; 61:457-463.

86. Perichon B, Courvalin P. Synergism between beta-lactams and glycopeptides against vanA-type methicillin-resistant *Staphylococcus aureus* and heterologous expression of the *vanA* operon. *Antimicrob Agents Chemother*. 2006; 50: 3622-3630.

87. Rajaduraipandi K, Mani KR, Panneerselvam K, Mani M, Bhaskar M, Manikandan P. Prevalence and antimicrobial susceptibility pattern of methicillin resistant *Staphylococcus aureus*: A multicentre study. *Indian J Med Microbiol*. 2006; 24 (1): 34-38.

88. Renz A, Berdel WE, Kreuter M, Belka C, Schulze-Osthoff K, Los M. Rapid extracellular release of cytochrome C is specific for apoptosis and marks cell death in vivo. *Blood*. 2001; 98: 1542-1548.

89. Reynolds PE, Depardieu F, Dutka-Malen S, Arthur M, Courvalin P. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of vanX for hydrolysis of D-alanyl-D-alanine. *Mol Microbiol*. 1994; 13: 1065-1070.

90. Roberts, GAF. *Chitin Chemistry*, Macmillan press, London, UK, 1992; p. 55-58.

91. Rosenbach FJ. *Mikro-organismen bei den Wund-infektions Krankheiten des Menschen*. J.F. Bergmann's Verlag. 1884.

92. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. *Nat. Med.* 1999; 5: 387-391.

93. Sadzuka Y, Hirotsu S, Hirota S. Effect of liposomalization on the antitumor activity, side-effects and tissue distribution of CPT-11. *Cancer Lett.* 1998; 127: 99-106.

94. Saha B, Singh AK, Ghosh A, Bal M. Identification and characterization of a vancomycinresistant *Staphylococcus aureus* isolated from Kolkata (South Asia). *Journal of Medical Microbiology*. 2008; 57: 72-79.

95. Sahu SK, Mallick SK, Santra S, Maity TK, Ghosh SK, Pramanik P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. *J. Mater. Sci.* 2010. DOI 10.1007/s10856-010-3998-4004.

96. Schreck R, Baeuerle PA. Assessing oxygen radicals as mediators in activation of inducible eukaryotic transcription factor NF-κB. *Methods Enzymol.* 1994; 234: 151-163.

97. Sievert DM, Boulton ML, Stoltman G, Johnson D, Stobierski MG, Downes FP, Somsel PA,

Rudrik JT, Brown W, Hafeez W, Lundstrom T, Flanagan E, Johnson R, Mitchell J, Chang S. *Staphylococcus aureus* resistant to vancomycin—United States, Morb Mortal Wkly Rep 2002; 51: 565–567.

98. Simon, H.U., Haj-Yehia, A., Levi-Schaffer, F., 2000. Role of reactive oxygen species (ROS) in the apoptosis induction. *Apoptosis* 5, 415-418.

99. Sohal RS, Sohal BH, Orr WC. Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. *Free Rad. Biol. Med.* 1995; 19: 499-504.

100. Steigbigel RT, Lambert LH Jr, Remington JS. Phagocytic and antibacterial properties of normal human monocytes. *J Clin Invest.* 1974; 53: 131-142.

101. Stein GE, Craig WA. Tigecycline: a critical analysis. *Clinical Infectious Diseases.* 2006; 40:518-524.

102. Tabata Y, Ikada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. *J. Biomed. Mater. Res.* 1988; 22: 837-857.

103. Taton TA. Nanostructures as tailored biological probes. *Trends Biotechnol* 2002; 20:277-279.

104. Tenover FC, Weigel LM, Appelbaum PC, McDougal LK, Chaitram J, McAllister S, Clark N, Killgore G, O'Hara CM, Jevitt L, Patel JB, Bozdogan B. Vancomycin-resistant *Staphylococcus aureus* isolate from a patient in Pennsylvania. *Antimicrob Agents Chemother.* 2004; 48 (1): 275-280.

105. Tsai GJ, Zhang SL, Shieh PL. Antimicrobial Activity of a Low-Molecular-Weight Chitosan Obtained from Cellulase Digestion of Chitosan. *J. Food Protect.* 2004; 67: 396-398.

106. Tucker KA, Reilly SS, Leslie CS, Hudson MC. Intracellular *Staphylococcus aureus* induces apoptosis in mouse osteoblasts. *FEMS Microbiol Lett.* 2000; 186(2):151-156.

107. Thornberry NA, Lazebnik Y. Caspases: enemies within. *Science.* 1998; 281: 1312-1316.

108. Turos E, Reddy SKG, Greenhalgh K, Ramaraju P, Abeylath SC, Jang S, Dickey S, Lim DV. Penicillin-bound polyacrylate nanoparticles: Restoring the activity of β -lactam antibiotics against MRSA. *Bioorg. Med. Chem. Lett.* 2007; 17(12): 3468-3472.

109. Uttley AH, Collins CH, Naidoo J, George RC. Vancomycin-resistant enterococci. *Lancet,* 1988; 1:57-58.

110. Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. *J. Control. Release.* 2002; 78: 15-24.

111. Vorob'eva LI. Stressors, Stress reactions and survival of bacteria, a Review. *Appl Biochem Microbiol.* 2004; 40: 261–269.

112. Walsh CT, Fisher SL, Park IS, Prahalad M, Wu Z. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. *Chem Biol.* 1996; 3: 21-28.

113. Wang JT, Chang ST, Ko WJ. A hospital-acquired outbreak of methicillin-resistant *Staphylococcus aureus* infection initiated by a surgeon carrier. *Journal of Hospital Infection.* 2001; 47:104-109.

114. Wesson CA, Deringer J, Liou LE, Bayles KW, Bohach GA, Trumble WR. Apoptosis induced by *Staphylococcus aureus* in epithelial cells utilizes a mechanism involving caspases 8 and 3. *Infect. Immun* 2000; 68: 2998-3001.

115. Whitesides GM: The 'right' size in Nanobiotechnology. *Nature Biotechnology* 2003; 21:1161-1165.

116. Wood RW, Li VHK, Kreuter J, Robinson JR. Ocular disposition of poly-hexyl-2-cyano 3-[¹⁴C] acrylate nanoparticles in the albino rabbit. *Int. J. Pharm.* 1985; 23: 175-184.

117. Yuan W, Jiang G, Che J. Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. *Journal of Physical Chemistry.* 2008; 112:18754-18759.