



## Strategies for Tracking Immune Surveillance of Tumor Milieu during Angiogenesis

Praveen Kumar Vemuri<sup>1\*</sup>, Greeshma Nimmagadda<sup>1</sup>, Sreedhar Bodiga<sup>2</sup>, Vijaya Lakshmi Bodiga<sup>3</sup>, Suryanarayana

Veeravilli<sup>4</sup> and KRS Sambasiva Rao<sup>5</sup>

<sup>1</sup>Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.

<sup>2</sup>Laboratory of Biochemistry, Forest College and Research Institute, Mulugu, Siddipet District, Telangana, India.

<sup>3</sup>Department of Biochemistry and Molecular Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, Telangana, India.

<sup>4</sup>Department of Humanities and Basic Sciences, Aditya Engineering College, Kakinada, Andhra Pradesh, India

<sup>5</sup>Mizoram University (A Central University), Aizawl, Mizoram, India.

**Abstract:** Cancer is a multi-stage, multi-mechanistic, multifactorial complex process that has excessive potential for excessive proliferation with no relation to the physiological organ. Inherited genetic inclinations contribute extensively to about 10 % of breast cancers and about 13 % of colon cancers incidences. In the industrialized countries, 7% of most cancer deaths result from viral infections; 4% from occupational hazards; 2% from sunlight; 2% from air, water, and soil pollution; and less than 1% from diet and lifestyle. Formation of new blood vessels, angiogenesis, is elicited by tissue hypoxia and is essential for normal course of development of every tissue and organ. Angiogenesis unequivocally promotes tumor growth and metastasis. Tumors exhibit different rates of pathological angiogenesis and involve not only abnormally proliferating cancer cells, but also various tumor-infiltrating leukocytes and stromal cells. Local milieu of the cancers polarizes the leukocytes to support the tumor growth further. Although conventional knowledge reveals that immune surveillance helps to suppress tumor development, unresolved immune mechanisms including chronic inflammation can promote growth and progression of tumors. In this review, we outline the immune cells and their derived factors, including immunosuppressive and inflammatory cytokines that either can promote or inhibit cancer development, and the role of tumor microenvironment in this process of regulation. In the present review, the role of T-lymphocyte, NK cells, antibody dependent cell cytotoxicity, tumor escape mechanisms are presented.

**Keywords:** Angiogenesis, Cancer, Carcinogen, Milieu, Metastasis, Tumor

---

### \*Corresponding Author

Praveen Kumar Vemuri , Department of Biotechnology,  
Koneru Lakshmaiah Education Foundation, Vaddeswaram,  
Andhra Pradesh, India.



Received On 13 May 2020

Revised On 12 June 2020

Accepted On 04 July 2020

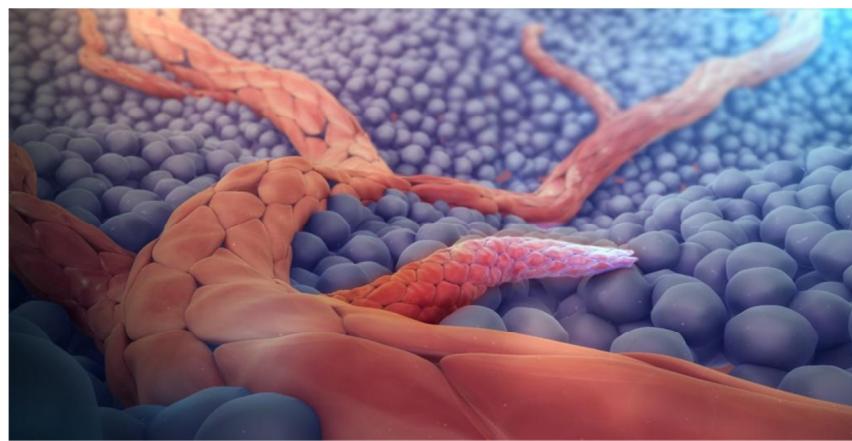
Published On 03 January 2021

---

**Funding** This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors

**Citation** Praveen Kumar Vemuri<sup>1\*</sup>, Greeshma Nimmagadda<sup>1</sup>, Sreedhar Bodiga<sup>2</sup>, Vijaya Lakshmi Bodiga<sup>3</sup>, Suryanarayana Veeravilli<sup>4</sup> and KRS Sambasiva Rao<sup>5</sup> , Immune surveillance of tumor milieu during angiogenesis.(2021).Int. J. Life Sci. Pharma Res.11(1), 102-106  
<http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.1.L102-106>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)




Copyright @ International Journal of Life Science and Pharma Research, available at [www.ijlpr.com](http://www.ijlpr.com)

## I. INTRODUCTION

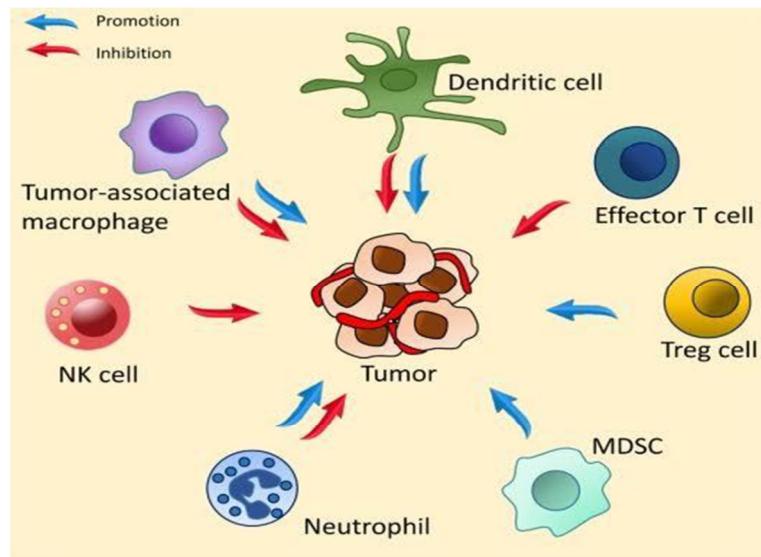
Many cancerous agents can trigger a variety of cellular mutations<sup>1</sup>. Majority of these cancerous agents are chemical entities assuming different forms<sup>2</sup>. Carcinogens are extremely diverse systems and include both natural and synthetic chemicals entities<sup>3</sup>. All chemical carcinogens are surprisingly reacting electrophiles that react with the electron dense atoms like RNA, DNA and protein<sup>4</sup>. Metals inclusive of arsenic and arsenic compounds, chromium, nickel, cadmium and beryllium can also lead to lung cancer and prostate cancer<sup>5</sup>. Physical carcinogens along with X-ray and UV rays

may additionally lead upto the formation of pyrimidine dimers, apurinic sites in DNA and formation of highly reactive free radicals, which can subsequently lead to somatic mutations<sup>6</sup>. An increasing list of DNA and RNA viruses have proved to be oncogenic in animals, while only some viruses were connected with human cancers<sup>7</sup>. The most lifestyles-threatening aspects of the oncogenic procedure is metastasis. Even though the clinical significance of such expression of the malignant phenotype has been well appreciated, advances in know-how, the molecular mechanisms involved in metastasis have lagged in the back of different trends within the cancer subject (Fig. 1).



**Fig 1. Tumors induce blood vessel growth in promoting angiogenesis, Image courtesy from [wikiwand.com/en/Angiogenesis](https://wikiwand.com/en/Angiogenesis), CC BY-SA 4.0.**

### I.1 T-LYMPHOCYTES


Cytotoxic T-Lymphocytes (CTLs) offer effective antitumor immunity in hosts. CTLs may additionally carry out a surveillance characteristic by using spotting and killing doubtlessly malignant cells that express peptides which might be derived from mutant mobile or oncogenic viral proteins which are presented in affiliation with class I MHC molecules<sup>8</sup>. Role of NK cells and macrophages NK cells can be activated through direct recognition of tumor or on account of cytokines produced by way of tumor-particular T lymphocytes<sup>9</sup>. Recognition of tumor cells by means of NK cells is not MCH constrained. In some cases, Fc receptors on NK cells can bind to antibody-covered tumor cells mainly to antibody dependent mobile cytotoxicity (ADCC)<sup>10</sup>. Numerous observations suggest that activated macrophages additionally play a giant role inside the immune responses to tumors by means of releasing lysosomal enzymes, reactive oxygen metabolites or with the aid of generating TNF- $\alpha$ . Macrophage-specific Fc receptors permit them to mediate ADCC. Activated macrophages secrete TNF- $\alpha$  that has powerful antitumor potential<sup>11</sup>. Role of immune device in tumor improvement- immune surveillance Host affords both humoral and cellular mediated immune responses to tumor antigens and is tested to be effective inside the immune destruction of tumors. A range of tumors have been shown to induce tumor-unique cytotoxic-T lymphocytes (CTLs). CTLs may additionally perform a surveillance characteristic through spotting and killing probably malignant cells that specific peptides that are derived from mutant cells or oncogenic viral proteins which can be offered in association with class I MHC molecules<sup>12</sup>.

### I.2 NATURAL KILLER CELLS

NK cells can be activated through direct popularity of tumor or as a result of cytokines produced by means of tumor-unique T lymphocytes<sup>13</sup>. Recognition of tumor cells by way of NK cells isn't MHC restricted. Activated macrophages secrete TNF- $\alpha$  that has potent antitumor activity. In some instances, Fc receptors on NK cells can bind to antibody-covered tumor cells leading to antibody based cellular cytotoxicity<sup>14</sup>. Numerous observations imply that activated macrophages additionally play a considerable function in the immune responses to tumors via releasing lysosomal enzymes, reactive oxygen metabolites or by means of producing TNF- $\alpha$ . Macrophages also have specific Fc receptors enabling them to mediate ADCC<sup>15</sup>.

### I.3 ADCC

In Antibody Dependent Cellular Cytotoxicity (ADCC), the target tumor cells, which might be coated with IgG antibodies, are selectively lysed by using killer cells<sup>16</sup>. Several one-of-a-kind leukocyte populations like neutrophils, eosinophils, mononuclear phagocytes and NK cells are able to lysing the target cells. Recognition of certain antibodies takes place through a low affinity receptor on the leukocyte, referred to as CD16<sup>17</sup>. The antibody molecule presents the specific popularity signal whilst the in any other case quiescent and nonspecific effector cells are directed to the goal cells to offer the cytotoxic occasion (Fig. 2).



**Fig 2. Cells of immune system in regulation of cancer (copyright 2017 by M De Palma<sup>18</sup>)**

#### 1.4 TUMOR ESCAPE MECHANISM

Malignant tumors may also express specific protein antigens, that are diagnosed as foreign and unnatural by way of the tumor host, and even though immune surveillance may also restrict the outgrowth of some tumors, it is clear that the immune gadget frequently does no longer save you the incidence of human deadly cancer<sup>19</sup>. It can be because of the rapid growth and spread of a tumor overwhelms the effector mechanism of the immune responses, the lack of ability of the host to expand an effective immune reaction has additionally been proven in several classes<sup>20</sup>. The method of tumor breaks out may be a result of numerous mechanisms as given below. A) Class I MHC expression can be downregulated on tumor cells, that is required for CTL recognition<sup>21</sup>. B) Tumor products might also suppress antitumor immune responses<sup>22</sup>. C) Loss of poor expression of tumor antigens<sup>23</sup>. D) Tumor surface antigens can be hidden from the immune machine<sup>24</sup>.

#### 1.5 CYTOKINES

Cytokines are small secreted proteins which mediate and regulate immunity, infection, and hematopoiesis<sup>25</sup>. They are small, structural proteins with molecular weights starting from 8-40 kDa. They act via binding to unique membrane receptors, which then signal the cellular via second messengers, tyrosine kinases, to regulate its conduct (gene expression). Responses to cytokines include growing or reducing expression of membrane proteins (along with cytokine receptors), proliferation, and secretion of effector molecules<sup>26</sup>. Cytokines are endogenous immunostimulatory proteins. Cytokines play a critical position in tumor metastasis. Some of the cytokines may additionally inhibit tumor increase through interfering with host tumor dating for example by means of inhibiting tumor angiogenesis and modulation of a greater cellular matrix<sup>27</sup>.

#### 1.6 ANGIOGENESIS

Angiogenesis, the formation of new capillaries, is many of the key occasions in numerous detrimental pathologic procedures, inclusive of tumor growth, metastasis, arthritis

and so on as well as in physiologic tactics, like organ growth and development, wound recovery and reproduction<sup>28</sup>. Blood vessels represent the first organ in the embryo and form the biggest network in our body however unluckily also are often lethal. When dysregulated, the formation of recent blood vessels contributes to severe malignant, ischemic, inflammatory, infectious and immune disorders<sup>29</sup>. Molecular insights into these procedures are being generated at unexpectedly increasing pace, imparting new therapeutic opportunities which are currently being evaluated.

#### 1.7 TUMOR GROWTH AND METASTASIS

Angiogenesis is needed for invasive tumor growth and metastasis and constitutes a vital point within the manipulation of cancer development<sup>30</sup>. For tumors to broaden in length and reach metastatic ability they have to make an angiogenic switch via perturbing the nearby stability of proangiogenic and antiangiogenic factors. Tumors that have become neovascularized frequently express increased ranges of proangiogenic proteins, along with vascular endothelial growth factor<sup>31</sup>. The expression of proangiogenic proteins may be brought on by numerous elements, including hypoxia, activation of oncogenes or inactivation of tumor suppressor genes. In some tumors, the angiogenic transfer is the end result of down law of antiangiogenic elements. In most grown up tissues, the stability between proangiogenic and anti-angiogenic signaling favors vasculature<sup>32</sup>. In a few instances, however, proangiogenic activities prevail, ensuing inside the tumor vascularization and metastatic growth. Two general techniques have been used inside the development of antiangiogenic dealers: inhibition of proangiogenic issues and therapy with endogenous inhibitors of angiogenesis<sup>33</sup>.

## 2. CONCLUSION

In maximum instances, physiological cellular dying happens via apoptosis in preference to necrosis. Abnormalities in this technique are implicated as cause or contributing thing in a variety of diseases. Inhibition of apoptosis can promote neoplastic transformation, mainly in mixture with dysregulated cellular cycle manipulation, and may have an

impact on the reaction to tumor cells to anti-cancer therapy. Diverse regulators of the caspases, inclusive of activators and inhibitors of mobile loss of life proteases are also observed. It is an important procedure in controlling tissue homeostasis in multicellular organisms. Apoptosis may be caused with the aid of a variety of stimuli together with ionizing radiations, glucocorticoids chemotherapeutic dealers, lymphokines deprivation and diverse oxidants. Although the stimuli which set off apoptosis range markedly, the morphological functions of the manner are but conserved in special mobile sorts. It includes chromatin condensation, nuclear fragmentation, Plasma membrane blebbing, mobile shrinkage and formation of apoptotic bodies.

## 5. REFERENCES

- Stratton MR, Campbell PJ, Futreal PA. The cancer genome. *Nature*. 2009;458(7239):719-24. doi: 10.1038/nature07943, PMID 19360079.
- Coats JR. Risks from natural versus synthetic insecticides. *Annu Rev Entomol*. 1994;39(1):489-515. doi: 10.1146/annurev.en.39.010194.002421, PMID 8135501.
- Miller JA, Miller EC. The metabolic activation and nucleic acid adducts of naturally occurring carcinogens: recent results with ethyl carbamate and the spice flavors safrole and estragole. *Br J Cancer*. 1983;48(1):1-15. doi: 10.1038/bjc.1983.151, PMID 6191767.
- Chen QY, DesMarais T, Costa M. Metals and mechanisms of carcinogenesis. *Annu Rev Pharmacol Toxicol*. 2019;59:537-54. doi: 10.1146/annurev-pharmtox-010818-021031, PMID 30625284.
- Verougstraete V, Lison D, Hotz P. Cadmium, lung and prostate cancer: a systematic review of recent epidemiological data. *J Toxicol Environ Health B*. 2003;6(3):227-55. doi: 10.1080/10937400306465, PMID 12746140.
- Liu Y, Guo J, Huang L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. *Theranostics*. 2020;10(7):3099-117. doi: 10.7150/thno.42998, PMID 32194857.
- Liao JB. Viruses and human cancer. *Yale J Biol Med*. 2006;79(3-4):115-22. PMID 17940621.
- Shiku H. Importance of CD4+ helper T-cells in antitumor immunity. *Int J Hematol*. 2003;77(5):435-8. doi: 10.1007/BF02986610, PMID 12841380.
- Prado BL, Qian Y. Anti-cytokines in the treatment of cancer cachexia. *Ann Palliat Med*. 2019;8(1):67-79. doi: 10.21037/apm.2018.07.06, PMID 30180740.
- Soloski MJ. Recognition of tumor cells by the innate immune system. *Curr Opin Immunol*. 2001;13(2):154-62. doi: 10.1016/s0952-7915(00)00198-9, PMID 11228407.
- Chenoweth AM, Wines BD, Anania JC, Mark Hogarth P. Harnessing the immune system via Fc $\gamma$ R function in immune therapy: a pathway to next-gen mAbs. *Immunol Cell Biol*. 2020;98(4):287-304. doi: 10.1111/imcb.12326, PMID 32157732.
- Shen Z, Reznikoff G, Dranoff G, Rock KL. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. *J Immunol*. 1997;158(6):2723-30. PMID 9058806.
- Domogala A, Madrigal JA, Saudemont A. Natural killer cell immunotherapy: from bench to bedside. *Front Immunol*. 2015;6:264. doi: 10.3389/fimmu.2015.00264, PMID 26089820.
- Wagner AK, Alici E, Lowdell MW. Characterization of human natural killer cells for therapeutic use. *Cytotherapy*. 2019;21(3):315-26. doi: 10.1016/j.jcyt.2018.11.001, PMID 30910383.
- Yeap WH, Wong KL, Shimasaki N, Teo EC, Quek JK, Yong HX, Diong CP, Bertoletti A, Linn YC, Wong SC. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes [Sci Rep:2016]. *Sci Rep*. 2016;6(1):1-22:34310. doi: 10.1038/srep34310, PMID 27670158.
- Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. *J Clin Oncol*. 2010;28(28):4390-9. doi: 10.1200/JCO.2009.27.6360, PMID 20697078.
- Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. *Trends Immunol*. 2001;22(11):633-40. doi: 10.1016/s1471-4906(01)02060-9, PMID 11698225.
- De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. *Nat Rev Cancer*. 2017;17(8):457-74. doi: 10.1038/nrc.2017.51, PMID 28706266.
- Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. *Immunology*. 2007;121(1):1-14. doi: 10.1111/j.1365-2567.2007.02587.x, PMID 17386080.
- Stewart TJ, Abrams SI. How tumours escape mass destruction. *Oncogene*. 2008;27(45):5894-903. doi: 10.1038/onc.2008.268, PMID 18836470.
- Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. *Front Immunol*. 2018;9:847. doi: 10.3389/fimmu.2018.00847, PMID 29780381.
- Toes RE, Ossendorp F, Offringa R, Melief CJ. CD4 T cells and their role in antitumor immune responses. *J Exp Med*. 1999;189(5):753-6. doi: 10.1084/jem.189.5.753, PMID 10049938.
- Campoli M, Chang CC, Ferrone S. HLA class I antigen loss, tumor immune escape and immune selection.

## 3. AUTHOR CONTRIBUTION STATEMENT

Praveen Kumar Vemuri taken responsibility in the conception and design of the study. Sreedhar Bodiga contributed substantially in compiling literature sources and drafting the manuscript. Vijaya Lakshmi Bodiga has provided critical revision of the article for important intellectual content. Greeshma Nimmagadda has checked the references. KRS Sambasiva Rao has given final approval of the version to be published.

## 4. CONFLICT OF INTEREST

Conflict of interest declared none

24. Vaccine. 2002;20(Suppl 4):A40-5. doi: 10.1016/s0264-410x(02)00386-9, PMID 12477427.

25. Freudemann LK, Marcu A, Stevanović S. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry. *Immunology*. 2018;154(3):331-45. doi: 10.1111/imm.12936, PMID 29658117.

26. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. *Front Immunol*. 2014;5:491. doi: 10.3389/fimmu.2014.00491, PMID 25339958.

27. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. *Biochem Pharmacol*. 2009;78(6):539-52. doi: 10.1016/j.bcp.2009.04.029, PMID 19413999.

28. Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. *npj Breast Cancer*. 2016;2(1):1-2. doi: 10.1038/npjbcancer.2015.25, PMID 26998515.

29. Yüksel S, Boylu Akyerli C, Cengiz Yakıcıer M. Angiogenesis, invasion, and metastasis characteristics of hepatocellular carcinoma. *J Gastrointest Cancer*. 2017;48(3):256-9. doi: 10.1007/s12029-017-9962-5, PMID 28785955.

30. Velazquez OC. Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. *J Vasc Surg*. 2007;45(6):Suppl A:A39-47. doi: 10.1016/j.jvs.2007.02.068, PMID 17544023.

31. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. *Am J Pathol*. 1993;143(2):401-9. PMID 7688183.

32. Roskoski Jr R. Vascular endothelial growth factor (VEGF) signaling in tumor progression. *Crit Rev Oncol Hematol*. 2007;62(3):179-213. doi: 10.1016/j.critrevonc.2007.01.006, PMID 17324579.

33. Tate MC, Aghi MK. Biology of angiogenesis and invasion in glioma. *Neurotherapeutics*. 2009;6(3):447-57. doi: 10.1016/j.nurt.2009.04.001, PMID 19560735.

34. Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. *FEBS Journal*. 2019;286(15):2830-69. doi: 10.1111/febs.14818, PMID 30908868.