

SERUM LEVELS OF C-REACTIVE PROTEIN, COMPLEMENT 3 AND COMPLEMENT 4 IN IRAQI DIABETIC PATIENTS ON METFORMIN THERAPY

**MUHANNAD SHWEASH^{1*}, HATEM M. HADEED¹, YASIR M. FARHAN²,
THULFIQAR FAWWAZ MUTAR³**

¹*Department of Clinical Laboratories Sciences, College of Pharmacy, University of Anbar, Anbar, Ramadi, Iraq.*

²*Department of Clinical Pharmacy, College of Pharmacy, University of Anbar, Anbar, Ramadi, Iraq.*

³*Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.*

ABSTRACT

Metformin is considered as an oral anti-diabetes agent. It is regularly used as a first-drug for the controlling of type-2 Diabetes Mellitus (T2DM). However, we aimed to evaluate whether the inflammatory biomarkers C - reactive protein (CRP), Complement 3 (C3) and Complement 4 (C4) levels are affected by metformin therapy in (T2DM) patients. Data from 150 male patients were classified into five groups (40 diabetics metformin users only, 40 diabetics without treatment, 25 diabetic insulin users only, 25 diabetic insulin plus metformin users and 20 nondiabetic healthy groups). The age ranged from 40-70 years old; samples were collected from patients who underwent treatment at National Center for Diabetes Research and Treatment/ Baghdad between the periods of October 2016 and June 2017. Blood sampling was collected separated and determined by using immunoassays. Our study revealed that serum levels of C - reactive protein, C3 and C4 significantly increased in patients with (T2DM) without metformin treatment (Uncontrolled). Serum levels of all indicated markers were markedly reduced in the metformin-treated group. Patients using insulin alone showed marked reduction in C4 level. While in patients using both insulin and metformin, C - reactive protein and C3 were highly reduced than C4 which was approximately 50 % of decrement. Study outcomes demonstrated an elevation of some inflammatory biomarkers in uncontrolled diabetic patients. Metformin has a potential role in alleviating these indicated biomarkers.

KEYWORDS: *Metformin, C - reactive protein, Complement 3, Complement 4 and Type-2 Diabetes Mellitus*

MUHANNAD SHWEASH *

**Department of Clinical Laboratories Sciences, College of Pharmacy,
University of Anbar, Anbar, Ramadi, Iraq.**

Received on: 18-04-2018

Revised and Accepted on: 17-05-2018

DOI: <http://dx.doi.org/10.22376/ijpbs/lpr.2018.8.3.P1-9>

INTRODUCTION

Metformin remains the commonest oral antidiabetic drug used in the world. It is managed in all kinds of diabetes as a first choice treatment, but more important with type 2 diabetes mellitus.¹ The incidence of Type-2 Diabetes Mellitus (T2DM) is increasing rapidly worldwide. Clinically, metformin plays an essential role in the reduction of glucose level in (T2DM) patients. Many diabetic patients may develop cardiovascular complications such as myocardial infarction; metformin may contribute in preventing or delaying these complications.²⁻⁴ Also, metformin has advantages for nondiabetic patients, for example decreasing the prevalence of diabetes, management of hyperandrogenism, dyslipidaemia and obesity.^{5,6} Low-grade inflammation is highly associated with (T2DM), which confirmed by an elevation of C-reactive protein (CRP), an inflammatory biomarker in diabetic patients. Several studies suggested that inflammation may be involved in the pathogenesis of long-term complications of diabetes mellitus, especially cardiovascular diseases.^{7,8,9} C-reactive protein is presented as a pentameric protein circulated in blood; this mediator increased in response to infection and inflammation.⁹ Clinical evidence displayed higher CRP levels in (T2DM) patients compared with non-diabetic people. In addition, elevated levels of CRP levels were positively correlated with atherosclerosis in (T2DM). Since the previous studies investigated the role of the antidiabetic drug on inflammatory process, type-2 Diabetes Mellitus patients showed a decreased level of CRP after taking the metformin.¹⁰ Overall, metformin plays a crucial role to reduce the CRP concentration which contributes to reduce the inflammation and prevent the development of cardiovascular complications.^{11,12} Negligible inflammation can trigger classical pathway of the complement system, which is composed of subunits protein found in the blood. The proteins such as complement 3 (C3) and complement 4 (C4) play an essential role in inflammation through their functions in innate and adaptive immunity. However, the cellular and molecular mechanisms which induced inflammation and organ damage in diabetic complications are related to increased activation of complement system via the inhibition of CD59 molecules. High glucose levels in diabetic patients inactivated this Cluster Differentiation 95, prototype death receptor (CD95) molecules. Also, high glucose levels may

affect the complement proteins leading to activating more membrane attack complex (MAC) deposition on the cells which developing the inflammatory process in diabetic patients.¹³⁻¹⁵ We supposed that metformin has a potential role to regulate the markers of inflammation like CRP, in addition, to other inflammatory marker, such as immunological marker C3 and C4. However, there is relatively little information regarding the effects of metformin. Therefore, this study focused on measuring inflammatory and immune biomarkers in Iraqi diabetic patients and on evaluating the effects of metformin to understand better how antidiabetic drugs could influence CRP, C3 and C4.

MATERIALS AND METHODS

Patient's sample collection

140 male patients have been included in this study; patients were divided into five categories according to the specific criteria. Again, 150 male patients were classified into five groups (40 diabetic metformin users only, 40 diabetic non-metformin users, 25 diabetic insulin users only, 25 diabetic insulin plus metformin users and 20 nondiabetic healthy groups). Clinical samples (blood) were collected according to¹⁶ from five groups of patients. The patient's sample was taken from the people referred for treatment at National Center for Diabetes Research and Treatment / Baghdad / Al-Yarmook and from private medical laboratory between the periods of October 2016 until June 2017. Written informed consent was obtained from every patient giving blood samples for the study. The study was approved by the Ethics National Center for Diabetes Research and Treatment/ Baghdad. Patient agreements to participate in scientific research have been taken.

Serum Preparation

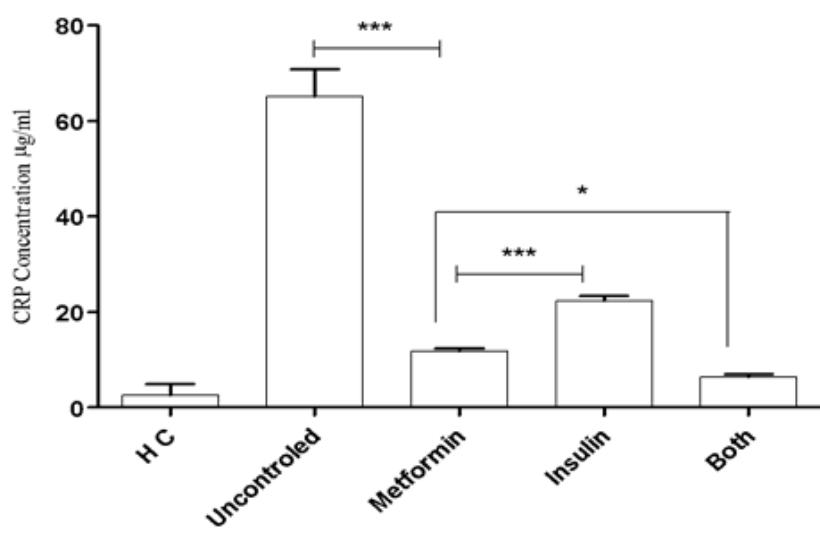
Blood samples have been collected aseptically by venipuncture into a dry clean and sterile tube without anticoagulant substances and allow it to clot. The name, gender, age, medication have been written on the tube from the provided patient's list history. Blood samples allowed to stand for 20-30 min for clot formation and centrifuged. The supernatant serums were stored in Eppendorf tube at (-20 C to -80 C) for subsequent analysis or use.

Laboratory measurements of indicated proteins

On the day of the laboratory analysis, patient's information, including the age, the personal medical, family history were documented by interviewer-administered questionnaire form.

Assays for serum CRP, C3 and C4 levels achieved as routine clinical tests by clinical laboratory staff. CRP levels were assessed by automated nephelometric immunoassay by Beckman Coulter SYNCHRON LX-20 (Beckman Coulter, Inc. America).^{17,18} While the determination of the C3 and C4 protein was made by radial immunodiffusion plate (C3 & C4 RID) according to Mancini & coll.-Immunochemistry manufactured by the Meridian Healthcare Srl Company.¹⁹

STATISTICAL ANALYSIS

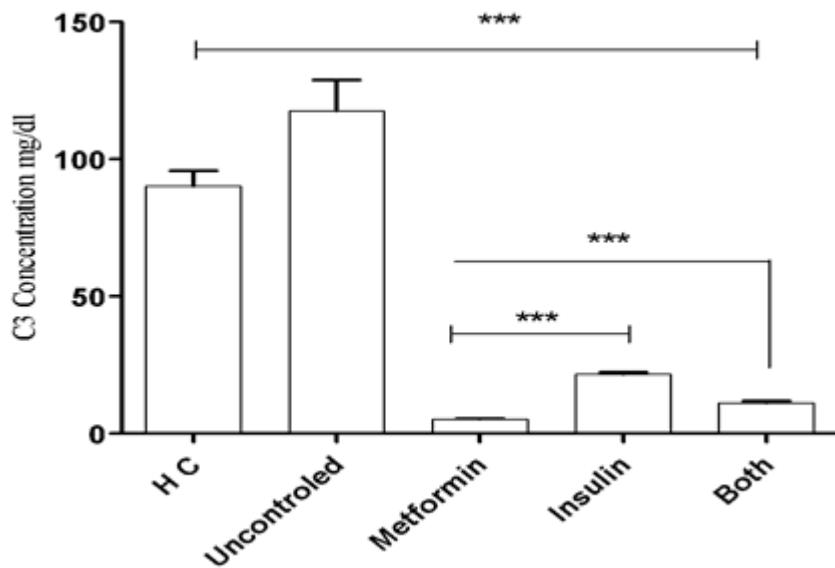

Statistical meaning of variances among means values from control and treated groups applied by specific (ANOVA) test via Graph Pad Prism® Version 5.0 software or Bonferroni Multiple Comparison test. $p < 0.05$ established as significant.²⁰

RESULTS

Comparison of serum CRP following treatment with Metformin, Insulin and both

To assess the potential action of metformin in

diabetic patients on inflammatory biomarkers, a CRP, C3 and C4 concentration's measurement was utilised. This was initially tested for effect upon the serum levels of mentioned biomarkers specifically for uncontrolled diabetic patients. However, a serum concentration in healthy control was suggestively undetectable. While, serum CRP concentrations in the uncontrolled group were significantly higher in patients with type 2 DM as compared to healthy controls (mean \pm SEM 2.50 ± 2.454 versus 65.113 ± 5.639 , $p = 0.001$). We also sought to determine the effect of metformin on endogenous inflammatory proteins production. As expected, patients with metformin group had significant lower serum concentrations for CRP ($p = < 0.001$). Figure 1 illustrates the variability of CRP levels among different groups of patients in this study. CRP levels in patients receiving therapeutic agents (metformin, insulin, or both) have been declined. The high reduction was in patients treated with both agents (mean \pm SEM 6.400 ± 0.577). Figure 1 also demonstrated that metformin decrease CRP levels more than insulin (mean \pm SEM 11.733 ± 0.577 versus 22.400 ± 0.881 , metformin; insulin respectively, $p = < 0.5$).


Figure 1
The effect of metformin, insulin and both on serum CRP concentration in type 2 DM patients.

Serum samples were analysed for CRP concentration for indicated group. Preparation of samples, latex agglutination methods used for proteins detection, are outlined in Section 2.3.

Characterization of serum C3 following treatment with Metformin, Insulin and both

The serum C3 concentration has been considered in response to metformin, insulin and both as shown in (Figure 2) a strong reduction in C3 level

in patients on metformin therapy (mean \pm SEM 4.993 ± 0.340). In contrast, healthy control (H C) represents a substantial normal value of C3 concentration as expected (mean \pm SEM 90.0 ± 5.773). Further significant reduction in C3 levels was observed in patients using insulin alone or both insulin and metformin therapy (Insulin= mean \pm SEM 21.553 ± 0.709 , both= mean \pm SEM 11.130 ± 0.554).

Figure 2
The effect of metformin, insulin and both on serum C3 concentration in type 2 DM patients.

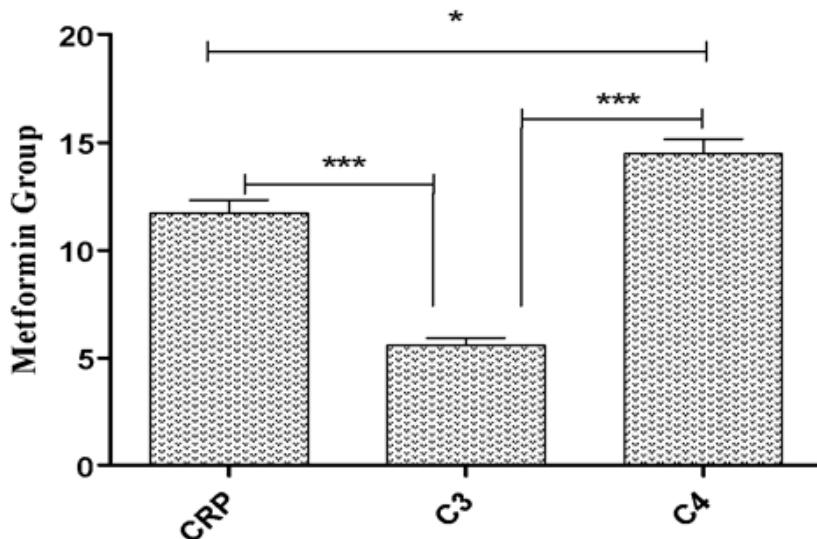
Serum samples were analysed for C3 concentration for indicated group. Preparation of samples, Radial immunodiffusion plate used for proteins detection, are outlined in Section 2.3.

Characterization of serum C4 following treatment with Metformin, Insulin and both

Having established that from the previous figure the metformin reduced the C3 level, the effect of metformin on the C4 level was examined in the same manner. Figure 3 shows the reducing effect

of metformin upon C4, and there was a little more reduction in response to insulin alone (Metformin= mean \pm SEM 14.423 ± 0.674 , insulin= mean \pm SEM 11.466 ± 0.726). In contrast, treatment with both agents doesn't induce the same effect of decreasing in C4 which was approximately 50 % (Both= mean \pm SEM 28.450 ± 0.695). Under these conditions, metformin alone or insulin alone caused a significant decrease in C4 level at all established samples, which was not notable decreased by patients used both agents.

Figure 3
The effect of metformin, insulin and both on serum C4 concentration in type 2 DM patients.

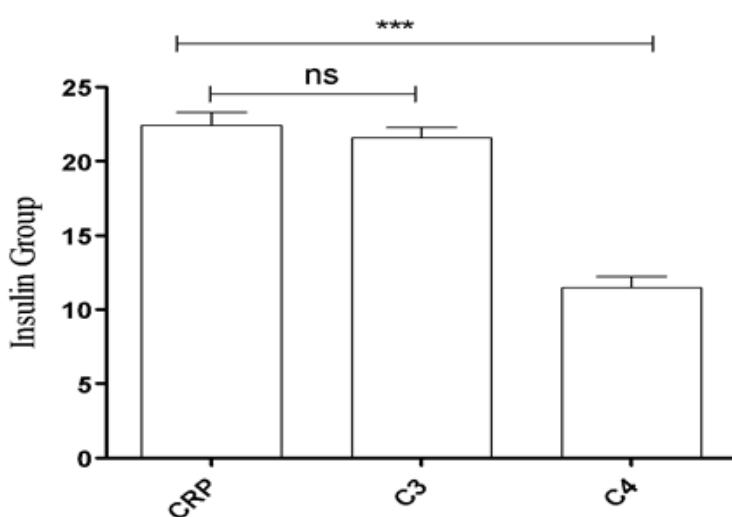

Serum samples were analysed for C3 concentration for indicated group. Preparation of

samples, radial immunodiffusion plate used for proteins detection, are outlined in Section 2.3.

The assessment of metformin effect on serum CRP, C3 and C4 in type-2 DM

Having established that metformin could reduce the activity of inflammatory biomarkers, the effects of metformin on CRP, C3 and C4 in (T2DM) patients were evaluated. Figure 4 shows the effect of metformin upon all mentioned

markers above in response to treatment. C3 levels reduction by the same group was much more and highly significant compared to CRP and C4. Again, metformin reduced CRP much more than C4 level (CRP= mean \pm SEM 11.733 ± 0.577 , C4= mean \pm SEM 14.493 ± 0.674 and C3= mean \pm SEM 5.580 ± 0.340).

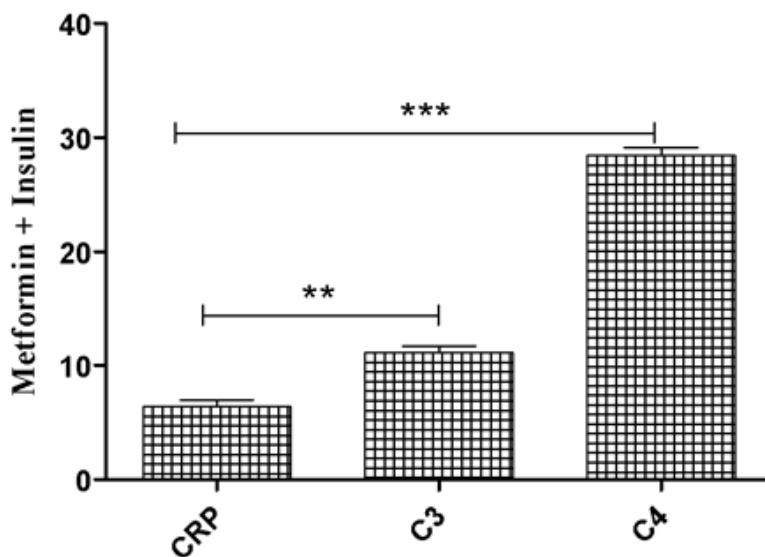

Figure 4
The effect of metformin on serum CRP, C3 and C4 concentration in type 2 DM patients.

Serum samples were analysed for proteins above concentration as indicated group. Preparation of samples, radial immunodiffusion plate used for proteins detection, are outlined in Section 2.3.

The estimation of insulin effect on serum CRP, C3 and C4 in type-2 DM

The effect of insulin on inflammatory biomarkers in different groups was demonstrated. Figure 5

shows amazing outcomes in biomarkers concentration following insulin therapy. C4 levels were extremely decreased. While no significant reduction showed in CRP and C3 respectively, (CRP= mean \pm SEM 22.400 ± 0.881 , C3= mean \pm SEM 21.553 ± 0.709 , (C4= mean \pm SEM 11.466 ± 0.726). ***p < 0.001.


Figure 5
The effect of insulin on serum CRP, C3 and C4 concentration in type 2 DM patients.

Serum samples were analysed for proteins above concentration as indicated group. Preparation of samples, radial immunodiffusion plate used for proteins detection, are outlined in Section 2.3.

The estimation of metformin and insulin effect on serum CRP, C3 and C4 in type-2 DM

The evidence of variation among CRP, C3 and C4 levels in patients using metformin or insulin were also considered. Metformin plus insulin caused a

marked effect on CRP and C3 levels. While surprisingly, analysis of the C4 level, in the same manner, was less impact. However, both therapeutic agents have significantly different alleviation regarding C4 concentration (Figure 6). This evidence is confirmed by high reduction of CRP and C3 compared to the reduction of the C4 level (CRP= mean \pm SEM 6.40 ± 0.577 , C3= mean \pm SEM 11.13 ± 0.554 and C4= mean \pm SEM 28.45 ± 0.695).

Figure 6
The effect of insulin on serum CRP, C3 and C4 concentration in type 2 DM patients.

Serum samples were analysed for proteins above concentration as indicated group. Preparation of samples, radial immunodiffusion plate used for proteins detection, are outlined in Section 2.3.

DISCUSSION

The role of metformin in diabetic patients has been poorly studied relative to other antidiabetic agents in particular insulin. However emerging studies indicate a possible role in some cardiovascular diseases including atherosclerosis. In this study, diabetic patients controlled on metformin therapy were used as an approach to determine the role of metformin in inflammatory biomarkers in diabetic patients. This is the first study in our country in which the effects of metformin on serum CRP, C3 and C4 concentration with type-2 DM patients have been investigated. The main findings were a significant reduction of CRP concentrations during metformin therapy and, conversely a significant elevation in uncontrolled patients or without metformin therapy. CRP is an identified as an

inflammatory biomarker; its elevation in the blood is considered risk factors for several clinical disorders such as cardiovascular diseases and other acute systemic inflammation.²¹ The nonpharmacological management like lifestyle changes including increased exercise, weight reduction, smoking cessation and improved nutrition produced a minor reduction in CRP concentrations.²² Some medications like antidiabetic and antihyperlipidemic may also decrease CRP levels.²³ This research aimed to investigate the effect of antihyperglycemic agents on CRP, C3 and C4 concentrations besides to their central indication for either glucose regulator. In vitro studies confirmed that CRP has a pro-inflammatory effect on endothelial cells. By its increasing the endothelial expression of some chemokines, CRP may be considered as an inflammatory mediator rather than marker.²⁴ Our data presented that the baseline CRP levels remained pointedly higher in uncontrolled than metformin therapy subjects with type-2 DM. This suggests that the increased CRP levels found in type-2 DM due to tissues damage. These findings were in agreement with the previous study on

women with PCOS.²⁵ Again, our consequences are in agreement with other studies outcomes.²³ which also demonstrates an association between metformin control and CRP concentrations. Numerous studies on diabetic patients illustrated that the metformin therapy together with glycemic control has promising effect in preventing or delaying cardiovascular complications mainly via alleviation of inflammatory process reflected by a reduction of CRP concentrations.^{6,12,26} The underlying mechanism may be the interaction of metformin with the synthesis and secretion of CRP. On the other hand, the concentration of another inflammatory marker, complement factor C3 not affected by metformin therapy¹², which was in contrast with our results that showed significant reduction of C3 levels. Central question may be involved in this research, as to why we have examined the effect of metformin on the other marker such as C3 and C4. Many studies demonstrated the role of metformin to regulate the immunological mediators like macrophage migration inhibitory factor (MIF), a cytokine contributed to innate and adaptive immunity. Also, the antiatherogenic effect of metformin may be associated with the reduction of MIF.²⁷

Regarding the group of patients using insulin and metformin; our data demonstrated a significant decline in CRP and C3 levels, these findings were in agreement with other previous findings. In addition to the beneficial effect of metformin, insulin also has an anti-inflammatory effect. Good outcome concerning reduction of CRP concentration has been recognized after intravenous infusion of insulin.²⁷⁻²⁹ The results of our research showed that the significant effect of metformin alone or combined with insulin in the C3 and C4 concentrations. Patients with metformin alone showed an excellent response to the primary component of complement system C3,

while showed less effect on C4 protein. The complement system has a pivotal role in the pathogenesis of diabetic complications.³⁰⁻³² So, controlling activated complement parameters by metformin, insulin or both may alleviate these complications.

CONCLUSION

Patients with type 2 DM among Iraqi population without metformin therapy displayed higher CRP, C3, and C4 levels comparing to the normal levels in healthy peoples. Also, this research confirmed a potential role for metformin in alleviation of some of the inflammatory and immunological markers in Iraqi diabetic patients. Variable reduction in concentrations of these biomarkers in response to metformin, insulin or both was established. Further studies are needed to investigate more specific inflammatory biomarkers its correlation with diabetic complications. Finally, metformin is considered the best anti-inflammatory treatment with type 2 diabetic patients besides its glucose regulator function and has a potential role in alleviating these indicated biomarkers.

ACKNOWLEDGEMENTS

The authors thank Pharmacists Abdullah Omer, Omer Ibrahim and Rana Hazem for supplying a panel of samples. Appreciative thanks to the "National Center for Diabetes Research and Treatment / Baghdad / Al-Yarmook, Iraq" for supplying the blood samples of diabetic patients.

CONFLICT OF INTEREST

Conflict of interest declared none.

REFERENCES

1. Scarpello JH, Howlett HC. Metformin therapy and clinical uses. *Diab Vasc Dis Res.* 2008 Sep;5(3):157-67.
2. Malecki MT. Type 2 diabetes mellitus and its complications: from the molecular biology to the clinical practice. *Rev Diabet Stud.* 2004;1(1):5-8.
3. Del Barco S, Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, Bosch-Barrera J, et al. Metformin: multi-faceted protection against cancer. *Oncotarget.* 2011 Dec;2(12):896-917.
4. Tzanavari T, Varela A, Theocharis S, Ninou E, Kapelouzou A, et al. Metformin protects against infection-induced myocardial dysfunction. *Metab Clin Exp.* 2016 Oct 1;65(10):1447-58.
5. Smith MR. Osteoporosis and other adverse body composition changes during androgen deprivation therapy for prostate cancer. *Cancer Metastasis Rev.* 2002 Jun 1;21(2):159-66.
6. Eriksson A, Attvall S, Bonnier M, Eriksson JW, Rosander B, Karlsson FA. Short-term effects of metformin in type 2 diabetes.

Diabetes Obes Metab. 2007 May 1;9(3):330-6.

7. 7- Pepys MB, Hirschfield GM. C-reactive protein: a critical update. *J Clin Invest.* 2003 Jun 15;111(12):1805-12.

8. Garcia C, Feve B, Ferre P, Halimi S, Baizri H, Bordier L, Guiu G, Dupuy O, Bauduceau B, Mayaudon H. Diabetes and inflammation: fundamental aspects and clinical implications. *2010 Nov 1;36(5):327-38.*

9. Fronczyk A, Molęda P, Safranow K, Piechota W, Majkowska L. Increased concentration of C-reactive protein in obese patients with type 2 diabetes is associated with obesity and presence of diabetes but not with macrovascular and microvascular complications or glycemic control. *Inflammation.* 2014 Apr 1;37(2):349-57.

10. Gamit NC, Kantharia ND, Vaghasiya KB, Vataliya AJ, Shah AB. Study of effects of metformin on C-reactive protein level in type-2 diabetes mellitus. *Int J Basic Clin Pharmacol.* 2017 Jan 20;4(1):46-50.

11. Chu NV, Kong AP, Kim DD, Armstrong D, Baxi S, Deutsch R, Caulfield M, Mudaliar SR, Reitz R, Henry RR, Reaven PD. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. *Diabetes Care.* 2002 Mar 1;25(3):542-9.

12. Carter AM, Bennett CE, Bostock JA, Grant PJ. Metformin reduces C-reactive protein but not complement factor C3 in overweight patients with Type 2 diabetes mellitus. *Diabet Med.* 2005 Sep 1;22(9):1282-4.

13. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. *Nature.* 2001 Dec 13;414(6865):813-20.

14. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. *Diabetes.* 2005 Jun 1;54(6):1615-25.

15. Kinderlerer AR, Ali F, Johns M, Lidington EA, Leung V, Boyle JJ, Hamdulay SS, Evans PC, Haskard DO, Mason JC. KLF2-dependent, Shear Stress-induced Expression of CD59 a novel cytoprotective mechanism against complement-mediated injury in the vasculature. *Jo Biol Chem.* 2008 May 23;283(21):14636-44.

16. Tuck MK, Chan DW, Chia D, Godwin AK, Grizzle WE, Krueger KE, Rom W, Sanda M, Sorbara L, Stass S, Wang W. Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. *J Proteome Res.* 2008 Dec 12;8(1):113-7.

17. Hutchinson WL, Koenig W, Fröhlich M, Sund M, Lowe GD, Pepys MB. Immunoradiometric assay of circulating C-reactive protein: age-related values in the adult general population. *Clinic Chem.* 2000 Jul 1;46(7):934-8.

18. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon III RO, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N. AHA/CDC scientific statement. *Circulation.* 2003;107:499-511.

19. Mancini GA, Carbonara AT, Heremans JF. Immunochemical quantitation of antigens by single radial immunodiffusion. *immunochemistry.* 1965 Sep 1;2(3):235-6.

20. Motulsky HJ. Prism 5 statistics guide, 2007. Graph Pad Software. 2007;31:39-42.

21. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. *New England J Med.* 2002 Nov 14;347(20):1557-65.

22. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. *Circulation.* 2003 Jan 28;107(3):363-9.

23. Dandona P. Effects of antidiabetic and antihyperlipidemic agents on C-reactive protein. *Mayo Clin Proc.* 2008 Mar 1; 83(3):333-42.

24. Devaraj S, Du Clos TW, Jialal I. Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects. *Arterioscler Thromb Vasc Biol.* 2005 Jul 1;25(7):1359-63.

25. Kelly CC, Lyall H, Petrie JR, Gould GW, Connell JM, Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. *J Clin Endocrinol Metab.* 2001 Jun 1;86(6):2453-5.

26. Rodriguez-Moran M, Guerrero-Romero F. Elevated concentrations of C-reactive protein in subjects with type 2 diabetes mellitus are moderately influenced by glycemic control. *J Endocrinol Invest.* 2003 Mar 1;26(3):216-21.

27. Dandona P, Aljada A, Ghanim H, Mohanty P, Tripathy C, Hofmeyer D, Chaudhuri A. Increased plasma concentration of macrophage migration inhibitory factor (MIF) and MIF mRNA in mononuclear cells in the obese and the suppressive action of

metformin. *J Clin Endocrinol Metab.* 2004 Oct 1;89(10):5043-7.

28. Wong VW, McLean M, Boyages SC, Cheung NW. C-reactive protein levels following acute myocardial infarction: effect of insulin infusion and tight glycemic control. *Diabetes Care.* 2004 Dec 1;27(12):2971-3.

29. Takebayashi K, Aso Y, Inukai T. Initiation of insulin therapy reduces serum concentrations of high-sensitivity C-reactive protein in patients with type 2 diabetes. *Metab Clin Exp.* 2004 Jun 1;53(6):693-9.

30. Rosoklija GB, Dwork AJ, Younger DS, Karlikaya G, Latov N, Hays AP. Local activation of the complement system in endoneurial microvessels of diabetic neuropathy. *Acta Neuropathol.* 2000 Jan 1;99(1):55-62.

31. Zhang J, Gerhardinger C, Lorenzi M. Early complement activation and decreased levels of glycosylphosphatidylinositol-anchored complement inhibitors in human and experimental diabetic retinopathy. *Diabetes.* 2002 Dec 1;51(12):3499-504.

32. Fortpied J, Vertommen D, Van Schaftingen E. Binding of mannose-binding lectin to fructosamines: a potential link between hyperglycaemia and complement activation in diabetes. *Diabetes Metab Res Rev.* 2010 May 1;26(4):254-60.