

PREVALENCE OF METHICILLIN RESISTANT *STAPHYLOCOCCUS AUREUS* IN WESTERN TAMILNADU

GANDHIRAJ .D¹, WESELY E .G^{1*}, PALANISAMY.A², SAHANAPRIYA .S³

¹Department of Botany, Arignar Anna Govt., Arts College, Namakkal-637002, Tamilnadu, India

²Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram - 637408, Tamilnadu, India

³Department of microbiology, Dr.NGP Arts and Science college, Coimbatore - 641048, Tamilnadu, India

ABSTRACT

Humans are natural reservoir for *Staphylococcus aureus*, and asymptomatic colonization is far more common than infection. Colonization by *Staph.aureus* may be persistent and can last for years. Recent reports of strains of Methicillin Resistant *Staphylococcus aureus* (MRSA) isolated from community have led speculation that the epidemiology of *S. aureus* is changing. Usually, MRSA infections have been a concern among hospitals for decades now and the reports reveal that the community acquired MRSA is increasing. The community acquired strains could possibly have arisen as a consequence of resistance gene transfer from a hospital acquired (nosocomial) donor into a susceptible recipient. With appropriate analysis of donor and recipient chromosomes, it could be possible to determine whether these newly identified community acquired strains are wild or self-supporting. The present study was conducted with a total sample of 1296 wound and other skin infection samples that were collected from different hospitals in western Tamilnadu. The specimens were inoculated in blood agar for isolation and identified as *S.aureus* by using standard method based on colony morphology, Gram's stain, catalase and coagulase test. A total 258 isolates were confirmed as *S.aureus*. These strains were processed by the following three techniques, (i) oxacillin, Methicillin and cefoxitin disk diffusion method, (ii) cultured in MeRSA plate, (iii) Vitek 2 fully automated ID and AST system for detection *mecA* gene producer. 34 MRSA strains were identified out of 258 strains.

KEYWORDS: *Staphylococcus aureus*, MRSA, *mecA*, Nosocomial, Antibiogram

WESELY E .G*

Department of Botany, Arignar Anna Govt., Arts College,
Namakkal-637002, Tamilnadu, India

Received on: 25-04-2018

Revised and Accepted on: 26-06-2018

DOI: <http://dx.doi.org/10.22376/ijpbs/lpr.2018.8.3.L31-38>

INTRODUCTION

The genera *Staphylococcus* are normally present in normal skin or nasal colonizers of human beings¹. Conventionally the *Staphylococcus* is divided into two groups on the basis of the coagulase reaction. The *coagulase-positive staphylococci* is the most commonly isolated pathogenic species *S aureus*². The *coagulase-negative staphylococci* (CONS) are now known to comprise over 38 species. The CONS are common commensals of skin, although some species can cause opportunistic infections. Coagulase is a differential marker for *S aureus* but there is no direct indication as it is a virulence factor. Also, some natural isolates of *S aureus* are defective in coagulase. Variety of extracellular proteins and polysaccharides are secreted by *S. aureus*, few of which are virulent and result from the components expressed during infection. Usually antibodies will neutralize the toxins and enzymes secreted by staphylococcus. In many occasions both antibiotic therapy and surgical drainage are necessary to cure abscesses, large boils and wound infections. Staphylococci are common causes of infections associated with indwelling medical devices. These are difficult to treat with antibiotics alone and often require removal of the device. Some strains that infect hospitalized patients are resistant to most of the antibiotics used to treat infections. Glycopeptides are the only remaining antibiotics to treat the infections caused by *Staphylococcus aureus*^{1,3,4}. The antibiotic resistance is very common in *S aureus* and few of CONS. Methicillin resistance is indicative of multiple resistance. Methicillin-resistant *S aureus* (MRSA) causes outbreaks in hospitals among surgical patients and also now isolated from the community as well. Methicillin-resistant *Staphylococcus aureus* (MRSA) by definition harbors a gene, *mecA*, for methicillin resistance. The *mecA* gene codes for penicillin binding protein (PBP) 2a allows MRSA to continually synthesize its cell wall in the presence of β -lactam antibiotics⁵. The emergence of methicillin resistant *staphylococcus aureus* (MRSA) has posed a serious therapeutic challenge^{6,7}. MRSA strains are difficult to eradicate as they are multi- drug resistant, leaving glycopeptides as the only drug of choice, resistance has been reported to those drugs also from various parts of the country^{8, 9}. The knowledge of prevalence of MRSA and their antimicrobial susceptibility pattern is an absolute necessity for appropriate treatment and to avoid the cross infections. The present study was conducted

to know the prevalence of MRSA in western Tamilnadu Hospitals. Laboratory diagnosis and susceptibility testing are crucial steps in treating and preventing MRSA infections. Therefore, methods used to detect MRSA in clinical samples should have high sensitivity and specificity and, most importantly, the result should be available within a short period of time. Various methods have evolved for rapid detection of methicillin-resistant staphylococci, but the optimal method for the detection remains controversial¹⁰. The most commonly used method in the laboratories is culture and antibiotic sensitivity test (AST) [Methicillin, oxacillin and Cefoxitin screen by disk diffusion (DD)⁹⁻¹³. Other methods available for diagnosing MRSA include mannitol salt agar (MSA) with oxacillin (agar screening method), minimum inhibitory concentration (MIC) tests by automated identification(ID) and AST system, agar dilution tests, commercially available MeRSA Agar etc^{9-11,13}. All these tests are the conventional phenotypic methods of MRSA identification. Genotypic (molecular) method is the polymerase chain reaction (PCR) based method for detecting *mecA* gene, which remains the "gold standard" for diagnosing MRSA⁹⁻¹³. In this study three conventional phenotypic methods were used for Identifying MRSA strains;

- Disc Diffusion method (Methicillin, Oxacillin and Cefoxitin)
- Commercially available MRSA screening agar
- Automated ID and AST system (Vitek 2)

MATERIALS AND METHOD

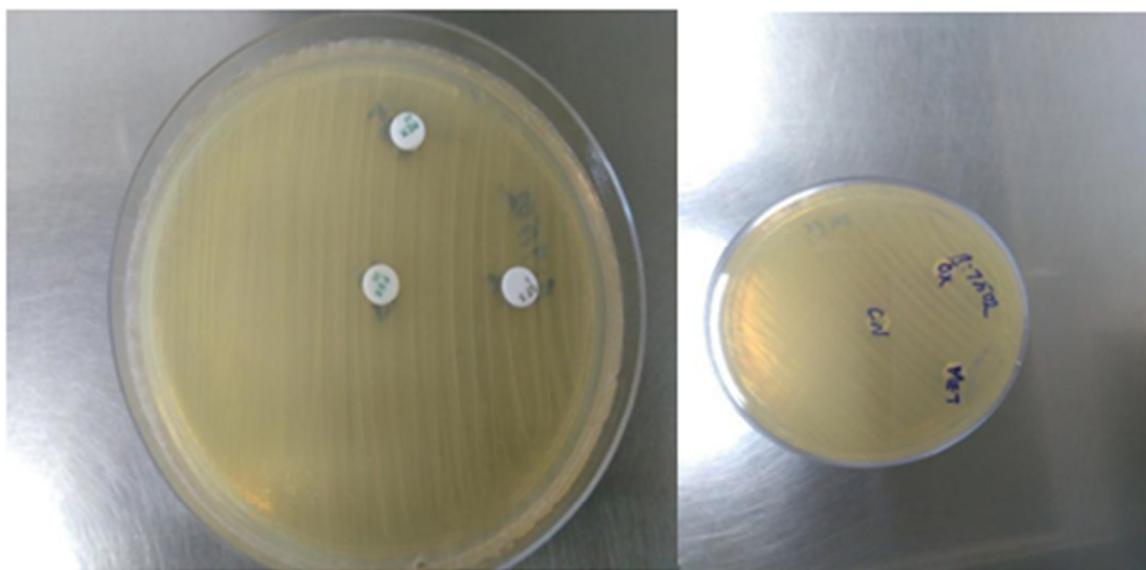
A total of 1296 Pus & samples were collected from wound and other skin infection from different hospitals in western Tamilnadu, non-duplicated, for the period between January 2016 and October 2016.

Bacterial identification and antimicrobial susceptibility testing

The clinical specimens were inoculated on 5% sheep blood agar and MacConkey's agar (HiMedia), incubated at 37°C for 24 h, and examined for bacterial growth. *S. aureus* was identified using standard methods based on colony morphology, Gram's stain, catalase test, and coagulase test. A total of 258 isolates were confirmed as *S. aureus*. They were tested for methicillin resistance based on modified Kirby-Bauer disk diffusion method using oxacillin,

Methicillin and Cefoxitin disks on Mueller-Hinton agar¹³ in accordance with the Clinical and Laboratory Standards Institute (CLSI) guidelines using the criteria of standard zone sizes of inhibition to define sensitivity or resistance. The *S. aureus* strains were processed by following three techniques for diagnosing MRSA:

- Oxacillin, Methicillin and Cefoxitin Disc Diffusion method ,
- Culture in MeRSA medium containing oxacillin (at a concentration of 6 μ g/ml of media) and 4% NaCl, and
- Vitek 2 Fully automated ID and AST system for the detection of possible *mecA* gene producer.


One MRSA ATCC (43300) and One MSSA ATCC (29213) were included in each batch of testing by all methods as a control.

STATISTICAL ANALYSIS

Statistical analysis was performed by GraphPad PRISM v5.0. All variables were recorded as number and percentage. Chi-Square test was performed to find the specific association between groups

RESULTS

The Pus (Skin and Soft tissue infection) samples of 1296 collected from different hospitals in and around Coimbatore district, Tamilnadu, were processed in different bacterial culture media and it was found that 766/1296 (59.1%) samples showed positivity for different Gram Positive and Gram Negative Bacteria, of which 85/127 (66.9%) were from out patients and 681/1169 (58.3%) were from in patients (Table 1) (fig:4). Out of 766 positive cultures 258 *Staphylococcus aureus* strains were isolated and identified by using Catalase, Coagulase and Mannitol fermentation Biochemical tests. All the 258 strains were encompassed for MRSA study according to CLSI guidelines, using Oxacillin, Methicillin, and Cefoxitin screen (Figure 1 & 2). The result show that 34 (13.2%) MRSA strains were identified out of 258 *S.aureus* strains (Table 2) (Figure 3). All the strains had been confirmed for their Methicillin resistance by the expression of possible *mec A* gene by automated Vitek2 ID and AST system (Figure 4). District wise distribution of MRSA district showed that highest percentage of resistance was seen in Coimbatore (19%) compared to other areas (Table: 3, Figure 5). The antimicrobial activity was tested for selected regularly used anti staphylococcal antibiotics and Glycopeptides and Macrolides, the result showed 100% sensitivity (Table 4).

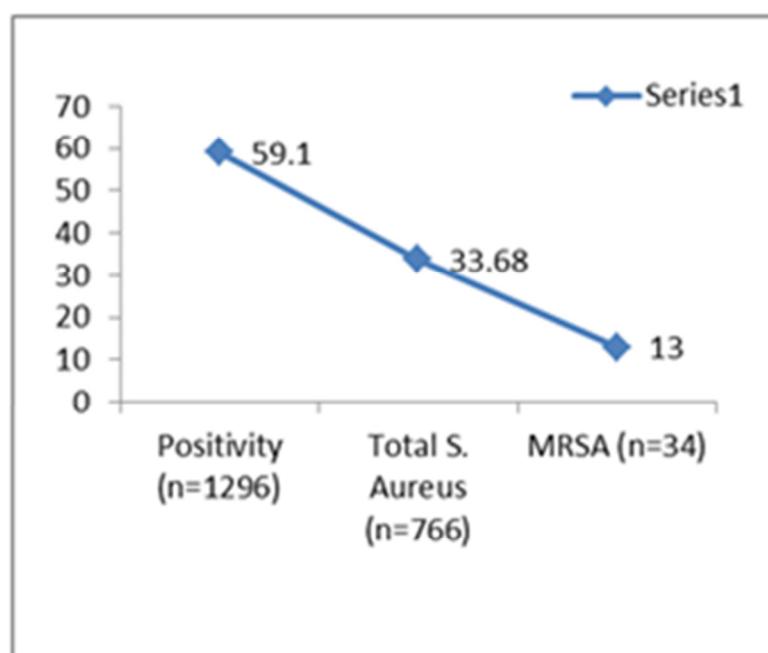
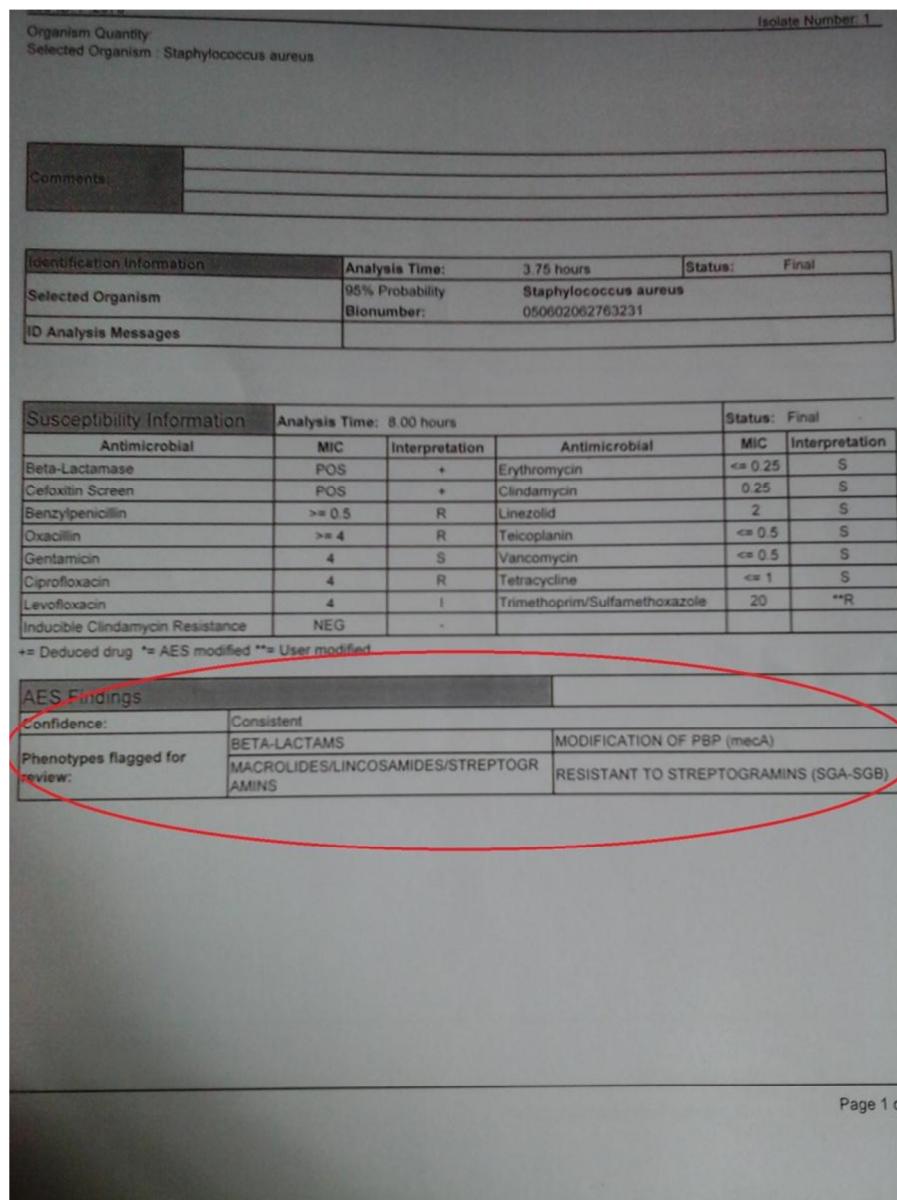


Figure 1
The resistance pattern of oxacillin (OX), cefoxitin (CN) and methicillin (M)


Figure 2

The appearance of greenish blue indicates the growth of MRSA in readily available MRSA plate.

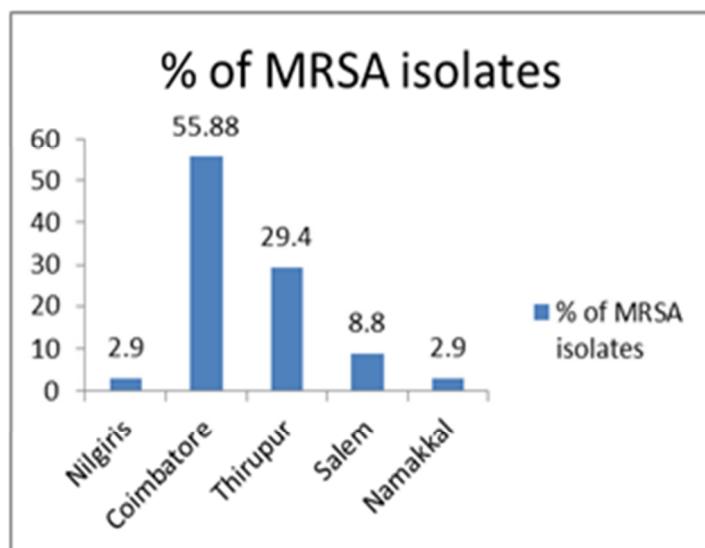


Figure 3

Percentage of culture positivity for S.aureus and MRSA

Figure 4
The VITEK 2 results indicates the detection of meca

Figure 5
District wise distribution of MRSA in percentage

Table 1
*Percentage of Positivity for *S. aureus**

S.NO	Samples from Out Patients	Samples from Admitted Patients	Positive Cultures - Out Patients	Positive Cultures - In Patients	Out Patient Positive%	In Patient Positive %
Total number	127	1169	85	681	66.9%	58.25%

Table 2
Percentage of Positivity for MRSA

sample type	Total sample	Positivity (n=1296)		Total <i>S.aureus</i> (n=766)		MRSA	
		no	%	no	%	no	%
PUS	1296	766	59.10	258	33.68	34	13

Table 3
District wise distribution of MRSA in percentage

S.NO	DISTRICTS	NO OF MRSA ISOLATES	
		No (n=34)	%
1	Nilgiris	1	2.90
2	Coimbatore	19	55.88
3	Thirupur	10	29.40
4	Salem	3	8.80
5	Namakkal	1	2.90

Table 4
*Antibiogram of Methillin Resistant *S.aureus* (MRSA)*

Name of Antibiotic	CA (n=18) (community acquired)	CA %	HCA (n=240) (Health care associated)	HCA %
Penicillin	11	61	213	89
Cefoxitin	11	61	213	89
Oxacillin	11	61	213	89
Methicillin	11	61	213	89
Gentamycin	18	100	240	100
Ciprofloxacin	17	94	232	97
Levofloxacin	17	94	232	97
Erythromycin	18	100	238	99
Clindamycin	18	100	238	99
Linezolid	18	100	240	100
Daptomycin	18	100	240	100
Teicoplanin	18	100	240	100
Vancomycin	18	100	240	100

*CA- Community Acquired
HCA- Health Care Associated*

DISCUSSION

Staphylococcus aureus has been known to cause complication both in community acquired and hospital acquired infection. *S. aureus* can lode in anybody site and can cause major complications. Longitudinal analysis shows, in industrialized countries, the incidence of *S. aureus* infection ranges from 10 to 30 per 100,000 person-years¹⁴. Between 1957 to 1990, the incidence of *S. aureus* infection has increased from 3 per 100,000 person-years in 1957 to 20 per 100,000 person-years in 1990¹⁵. In the setting we analyzed the prevalence of *S. aureus* was 19.9%. In Europe wide survey conducted to study the prevalence of *S. aureus* show a prevalence of 71%¹⁶. This stark difference could be due to the fact that, the region which we selected was not as industrialized as Europe and there are reports which state that, newly or emerging industrialized are has low *S. aureus* incidence¹⁷. The antibiotics that are developed against *S. aureus* targets, cell envelope, ribosome and nucleic acids. Methicillin belongs to the class of beta lactamase, which target cell envelope. The resistance to methicillin is developed by acquisition of genes which are not susceptible to drug action¹⁸. In this study, among 258 *S. aureus* positive patients, 34 (13.2%) are MRSA. This prevalence is very low compared to the study conducted in other settings in India such as Bangalore¹⁹, Chennai²⁰. The prevalence of

MRSA in community acquired infections was 66.9% and hospital acquired was 58.3%. The prevalence of community acquired infection was quite high compared to hospital acquired infection. This is contrast to the reports from other settings, wherein the prevalence of community acquired infection was low compared to hospital acquired infection. However, the prevalence of hospital acquired MRSA is quite high compared to the data collected from all over India²¹.

CONCLUSION

In this study, the MRSA prevalence of 13% may be considered to be high, the reason being that there has not been any previous epidemiological data on MRSA in that geographical zone. Although, MRSA prevalence is known to vary with geographical location, type of hospital, studied population and method of detection employed. However, on considering the clinical implication of MRSA infection and its rapid transmission capacity, periodic surveillance of MRSA strains needs to be done. Based on the periodic reports effective and efficient infection control and preventive measure has to be adopted.

CONFLICT OF INTEREST

Conflict of interest declared none.

REFERENCES

1. Dilnessa T, Bitew A. Prevalence and antimicrobial susceptibility pattern of methicillin resistant *Staphylococcus aureus* isolated from clinical samples at Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia. *BMC Infect Dis.* 2016;16(1). Available from: <http://dx.doi.org/10.1186/s12879-016-1742-5>
2. Saravanan M NA. Incidence of methicillin resistant *Staphylococcus aureus* (MRSA) from septicemia suspected children. *Indian J Sci Technol.* 2009;2(12):36–9.
3. Rahima T, Nafissa B AD. Prevalence of methicillinresistant *Staphylococcus aureus* and/or intermediate susceptibility to vancomycin isolated from private laboratories in Annaba" Algeria. *J Chem Pharm Res.* 2015;7(5):780–6.
4. Jayshree VK, Kumar A YS. PREV A LENCE OF METHICILLIN RE SIS TANT STAPH Y LO COC CUS AUREUS (MRSA) AT TER TIARY CARE HOS PI TAL OF MATHURA, INDIA. *Progress Res.* 2016;11((Spl VIII)):5495–8.
5. Shukla SK. Community-Associated Methicillin-Resistant *Staphylococcus aureus* and Its Emerging Virulence. *Clin Med Res.* 2005;3(2):57–60. Available from: <http://dx.doi.org/10.3121/cmr.3.2.57>
6. Pesewu GA, Dogbe R, Asmah RH, Olu-Taiwo MA AD. Prevalence and susceptibility profiles of methicillin-resistant *Staphylococcus aureus* (MRSA) in the University of Ghana Hospital, Legon, Accra, Ghana. *Int J Pharm Bio Sci.* 2014;5(3):185–93.
7. Sanjana RK, Shah R, Chaudhary N, Singh YI. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant *Staphylococcus aureus* (MRSA) in CMS-teaching hospital: a preliminary report. *J Coll*

8. Med Sci. 2010;6(1):1-6. Available from: <http://dx.doi.org/10.3126/jcmsg.v6i1.3595>
Shilpa Arora, Pushpa Devi, Usha Arora, and Bimla Devi. Prevalence of Methicillin- resistant Staphylococcus Aureus (MRSA) in a Tertiary Care Hospital in Northern India. J Lab Physicians. 2010 Jul-Dec;2(2):78–81.

9. Pandey S, Raza MS, Bhatta CP. Prevalence and Antibiotic Sensitivity Pattern of Methicillin- Resistant- Staphylococcus aureus in Kathmandu Medical College - Teaching Hospital. J Inst Med. 2013;34(1). Available from: <http://dx.doi.org/10.3126/jiom.v34i1.9117>

10. Leung ECM, Lee MKP, Lai RWM. Admission Screening of Methicillin-Resistant Staphylococcus aureus with Rapid Molecular Detection in Intensive Care Unit: A Three-Year Single-Centre Experience in Hong Kong. ISRN Microbiol [Internet]. 2013;1–5. Available from: <http://dx.doi.org/10.1155/2013/140294>

11. Lee C-S, Montalmont B, O'Hara JA, Syed A, Chaussard C, McGaha TL, et al. Screening for Methicillin-Resistant Staphylococcus aureus Colonization Using Sponges. Infect Control Hosp Epidemiol. 2015;36(01):28–33. Available from: <http://dx.doi.org/10.1017/ice.2014.4>

12. Thongmee A SP. Synergism between natural product extracts and antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). RJAS. 2015;4:19–25.

13. Datta P, Gulati N, Singla N, Rani Vasdeva H, Bala K, Chander J, et al. Evaluation of various methods for the detection of methicillin-resistant Staphylococcus aureus strains and susceptibility patterns. J Med Microbiol. 2011;60(11):1613–6. Available from: <http://dx.doi.org/10.1099/jmm.0.032219-0>

14. Laupland KB, Lyytikäinen O, Sgaard M, Kennedy KJ, Knudsen JD, et al. The changing epidemiology of Staphylococcus aureus bloodstream infection: a multinational population-based surveillance study. Clin Microbiol Infect. 2013;19(5):465–71. Available from: <http://dx.doi.org/10.1111/j.1469-0691.2012.03903.x>

15. Frimodt-Møller N, Espersen F, Skinhøj P, Rosdahl VT. Epidemiology of Staphylococcus aureus bacteremia in Denmark from 1957 to 1990. Clin Microbiol Infect. 1997;3(3):297–305. Available from: <http://dx.doi.org/10.1111/j.1469-0691.1997.tb00617.x>

16. Sader HS, Farrell DJ, Jones RN. Antimicrobial susceptibility of Gram-positive cocci isolated from skin and skin-structure infections in European medical centres. Int J Antimicrob Agents. 2010;36(1):28–32. Available from: <http://dx.doi.org/10.1016/j.ijantimicag.2010.03.016>

17. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin Microbiol Rev. 2015;28(3):603–61. Available from: <http://dx.doi.org/10.1128/cmr.00134-14>

18. Lim D, Strynadka NCJ. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol. 2002;9(11):870 Available from: <http://dx.doi.org/10.1038/nsb858>

19. Bouchiat C, El-Zeenni N, Chakrakodi B, Nagaraj S, Arakere G, Etienne J. Epidemiology of Staphylococcus aureus in Bangalore, India: emergence of the ST217 clone and high rate of resistance to erythromycin and ciprofloxacin in the community. New Microbes New Infect. 2015;7:15–20. Available from: http://dx.doi.org/10.1016/j_nmni.2015.05.003

20. Gopalakrishnan R SD. Changing trends in antimicrobial susceptibility and hospital acquired infections over an 8 year period in a tertiary care hospital in relation to introduction of an infection control programme. J Assoc Physicians India. 2010;58((Suppl)):25–31.

21. Ray P, Manchanda V, Bajaj J, Chitnis DS, Gautam V, Goswami P, Gupta V, Harish BN, Kagal A, Kapil A, Rao R. Methicillin resistant Staphylococcus aureus (MRSA) in India: Prevalence & susceptibility pattern. The Indian journal of medical research. 2013 Feb;137(2):363.