

EFFECT OF VARIOUS INORGANIC MICRO-NUTRIENTS ON GROWTH, BIOMASS AND HYDROCARBON YIELD OF EUPHORBIA LATHYRIS L. A HYDROCARBON YIELDING PLANT

JOLLY GARG AND ASHWANI KUMAR

**Dayanand Arya Kanya P.G. College, Moradabad- 244001, U.P. India.
Department of Botany, University of Rajasthan, Jaipur 302004, India.**

ABSTRACT

Energy security is one of the most pressing challenges of the 21st century. A shift to next-generational fuels and increased use of renewable source of energy are increasingly being considered as viable options. *Euphorbia lathyris* L. is one of the most-suitable species that falls into the category of hydrocarbon yielding plants. This plant is suitable to grow in arid and semiarid climate. Fertilizer application plays a major role in the universal need to increase in agricultural production. Different mineral nutrients like boron (boric acid), copper (copper sulphate), iron (ferrous sulphate), magnesium (magnesium sulphate), manganese (manganous sulphate), molybdenum (ammonium molybdate) and zinc (zinc sulphate), were sprayed over the plants. There was an increase in the Hexane Extractables, Methanol Extractables and total extractable (Hexane Extractables and Methanol Extractables) at Mn, Zn, Fe, Cu, Mo, Mg and B in decreasing order over the control.

Key words: Energy security, renewable source of energy, biofuel, *Euphorbia lathyris* L., hydrocarbons.

INTRODUCTION

Fuel plantations are a means of producing fuels by harvesting and storing solar energy in plants with a fuel value, for purposes. The hydrocarbons from petroleum plants have a molecular weight of about 10,000, which may be suitable for further cracking to gasoline materials. Such selected plants are grown for purposes of energy, either for direct use or as feedstock for more convenient liquid fuel or other energy chemicals. Following, this approach, plants may be either used to get diesel fuel or, after their conversion, for high quality fuel. Calvin Group has found that the family Euphorbiaceae in general, and the genus *Euphorbia* (2,000 species) in particular, is one that reduces Carbon Di Oxide beyond carbohydrates, and concentrated primarily on two species, the annual mass of 25

tonnes/hectare/year. *Euphorbia lathyris* and the perennial *Euphorbia tirucalli*, particularly. *Euphorbia lathyris* is a common weed in California. According to Nemethy et. al. (1981a, 1981 b), this species can produce biofuel on commercial level. The best solar converting machine available today is the green plant which can produce fuel and material on renewable basis (Szego and Kemp, 1973; Calvin, 1976, 1977, 1978a, 1979a, 1979b, 1980, 1983a, 1983b, 1984, 1985; Calvin et al., 1981, 1982; Buchanan and Otey, 1979; Buchanan et al., 1978a, 1978b; Vergara and Pimental, 1978; Weisz and Marshall, 1979; Bagby et al., 1980; Hall, 1980; 1982; Johnson and Hinman, 1980; Coffey and Halloran, 1981; Lipinsky, 1981; Lipinsky et al., 1980;

Tideman and Hawaker, 1981; Wang and Huffman, 1981; Khoshoo, 1982; 1984; McLaughlin and Hoffman, 1982; McLaughlin *et al.*, 1983; Stewart *et al.*, 1982; Adams and McChesney, 1983; Bhatia and Srivastava, 1983; Hoffman, 1983; Nemethy, 1984; Nemethy *et. al.*, 1981a; 1981b; Vimal, 1986; Garg and Kumar, 1989; 2011a; 2011b). Biomass energy is thus, environmentally a very acceptable resource. The wide use of biomass for development offers minimal ecological imbalance and provide means of recycle nutrients and carbon dioxide from the atmosphere (Dayal, 1986 and Vimal, 1986). Calvin (1977) conducted detailed investigations on the *E. lathyris* and *E. tirucalli*. Large scale cultivation of *E. lathyris* has been carried out in different parts of the world (Hinman *et al.*, 1980; Johnson and Hinman, 1980; Sachs and Nock, 1980; Sachs *et al.*, 1981; Peoples *et al.*, 1981; Kingsolver, 1982; McLaughlin and Hoffman, 1982; McLaughlin *et al.*, 1983; Ayerbe *et al.*, 1983a, 1983b, 1984a 1984b; Calvin, 1984 Nemethy, 1984; Garg and Kumar, 1989; 2011a; 2011b). When examined with local plant species in semiarid climatic conditions of Rajasthan in India, it showed maximum potential for per cent dry weight and latex yield. *Euphorbia lathyris* L. can be grown as biofuel crop in India (Garg and Kumar 1989; 2011a; 2011b).

Euphorbia lathyris can yield upto 20,000 kg dry matter per ha (Ayerbe *et al.*, 1983a, 1983b, 1984a, 1984b of which between 5 to 8 per cent are hydrocarbons and 20 per cent are fermentable sugars (Nemethy *et al.*, 1981a, 1981b). The process to recover terpenoids and sugars from *E. lathyris* has been calculated on a 1000 tons of dry matter/day basis (Calvin, 1983a). The product from 1000 tons is 80 tons of oil extract in the same way as soybean oil. In addition to oil the residue on extraction with methanol/water to remove fermentables, gives 200 tones of sugars. The 200 tons of sugars is equivalent to 100 tons of alcohol. Therefore, there are two liquid products obtainable from 1000 tons of dry matter, 80 tons of oil and 100 tons of alcohol. Besides this, 200 tons of bagasse is also obtained. Thus the combination of these products makes cultivation of hydrocarbon

yielding plants as attractive proposition (Calvin, 1977).

There are currently plantations of *E. lathyris* in mediterranean countries, Africa, the Canary islands and Australia (Coffey and Halloran, 1981). Its water requirement ranges from 30-37.5 cm annually and can grow in land which has poor soils not suitable for food production. The plant attains the harvest size in 5 to 7 months and the extraction process is standard for chemical industry. Besides oil, the plant contains a substantial quantity of sugars, fermentable to alcohol. It may give yield of 6 to 10 barrels of oil acre⁻¹ year⁻¹ using seeds of wild plants (Calvin, 1979a).

Fertilizer application plays a major role in the universal need to increase in agricultural production. The extent to which fertilizers are used, differs considerably between various regions of the world (Mengel and Kirkby, 1978). Rajasthan soils are generally poor in macro-and micro-nutrients as well as organic contents (Anonymous, 1970). Although a large number of *Euphorbia* species are able to grow on marginal soils with minimal supply of nutrients, addition of fertilizers is reported in increase their yield (Kumar and Kumar, 1985, 1986). However, higher dosages of nitrogen are reported to inhibit growth. But phosphorus favoured increase in dry matter production in *Euphorbia* species (Hinman *et al.*, 1980; Peoples *et al.*, 1981). Ayerbe *et al.* (1984a), suggested that moderate amounts of nitrogen enhanced the growth in *E. lathyris*. Similarly Kingsolver (1982) also recorded increase in growth and dry matter production due to nitrogen and phosphorus application in *Euphorbia* species. Increase in latex yield has also been reported due to nitrogen application (Sachs and Mock, 1980 and Sachs *et al.*, 1981). Although investigations on the role of mineral nutrients on the growth and latex yield of *Euphorbia* species are lacking, several studies have shown are lacking, several studies have shown positive effect of mineral nutrients on the oil yielding crops like coconut (Patel, 1938), linseed (Khan and Gupta, 1959), safflower (Soboleva 1959; Surajbhan, 1976), Sesamum (Singh, 1960), castor (Prashar and Benl, 1968) and

groundnut (Shiv Raj, 1978). The present investigations were undertaken with an object to study the influence of inorganic and organic fertilizers and mineral nutrients on growth and hydrocarbon production of *E. lathyris*.

METHODS

Different soil samples were analysed from experimental fields. Cationic and anionic fractions were separated. They were further analyzed for different elements in all the three soil fractions i.e. (a) in soil solution, (b) in absorbed ions and (c) fixed in colloids (Anonymous, 1979).

The humusless soil obtained from 1 to 2 m depth in the uncultivated regions was taken for the experiments. The detailed physical and chemical characteristics of soil were analysed. 4 kg of soil was filled in the thoroughly washed and cleaned earthen pots after mixing with the proper amount of nutrients. The pots were lined with the polythene and watered to the 60 to 80 per cent of the field capacity. Experiments of inorganic fertilizers were harvested after six months growth

period. Following mineral nutrients were applied as follows, boron (boric acid), copper (copper sulphate), iron (ferrous sulphate), magnesium (magnesium sulphate), molybdenum (ammonium molybdate), manganese (manganous sulphate) and zinc (zinc sulphate). 10 ppm solutions of these mineral nutrients were sprayed over the plants, at the age of one month. The control plants were sprayed with distilled water. Subsequent sprays were done at one-month intervals. In all, four sprays were done. Harvesting was done after 3 months of last spray. The plants were harvested after seven months periods.

RESULTS AND DISCUSSION

Analysis of soil: Soil has a texture of sand to loamy sand with a particle density ranging between 2.5 to 2.70 g/cc. Soil has a saturation percentage of 25 to 30 (on dry weight basis). The soil pH was about 7.4, electric conductivity was 0.58 mmhos/cm. The data obtained from soil analysis are given in Table 1.

TABLE- 1
*Analysis of typical
Sandy soil for experimental field of the department of botany, university of rajasthan, jaipur. India.*

DISTRIBUTION	NUTRIENTS IN SOIL (Mg/100 g)										
	K	Na	Ng	Ca	NH ₄	Cl	SO ₄	PO ₄	NO ₃	P ₂ O ₅	K ₂ O
a. Soil solution	1.46	15.01	8.99	3.36	-	6.09	2.10	-	1.01		
b. Absorbed ions	2.07	27.66	0.67	8.19	-	5.92	2.27	0.91	1.08		
c. Colloidal form	4.05	8.39	0.20	00.29	-	3.49	1.25	1.71	0.48		
Total	7.50	51.06	1.86	20.11	-	15.50	5.62	5.52	2.57	5.74	9.25
DISTRIBUTION	MICRO-NUTRIENTS IN SOIL (mg/100 g)										
	Cu	Zn	Mn								
a. Soil solution											
b. Absorbed ions											
c. Fixed in colloids											
Total											
	0.001										
		0.013									
			0.058								

Potassium: Total potassium was 7.58 mg/100 g of which the maximum was fixed in colloids (4.05 mg/100g), followed by absorbed ions (2.07 mg/100g) and soil solution (1.46 mg/100g).

Sodium: Total sodium was 51.06 mg/100g. Major part of it was in the form of absorbed ions (27.66 mg/100g), followed by soil solution form (15.01 mg/100g) and fixed in colloids from (8.39 mg/100g).

Magnesium: Total magnesium was 1.86 mg/100g soil. The soil solution phase contained the major part (0.99 mg/100g), followed by absorbed ions (0.67 mg/100g) and the remaining (0.20 mg/100 g) was fixed in colloids.

Calcium: The calcium was 20.11 mg/100g, maximum being fixed in colloids (8.29 mg/100g), while absorbed ions consisted of 8.19 mg / 100g, followed by soil solution (3.63 mg/100g).

Ammonium: Ammonium was not detectable in the soil samples in any of the three forms.

Chlorides: The chloride content was 15.50 mg / 100 g. The maximum chlorides (6.09 mg/100g soil) were dissolved in soil solution, 5.92 mg/100g in ionic form and 3.49 mg/100 g fixed in colloids form.

Sulphates: Total sulphate were 5.62 mg/100g soil, 2.27 mg/100g was in the form of absorbed ions, 2.10 mg/100g in soil solution and 1.25 mg/100g fixed in colloids form.

Phosphates: Phosphates were in the range of 2.52 mg/100g, 1.71 mg/100g was fixed in colloids, 0.81 mg/100 g was in absorbed ionic form, while phosphates were exclusively absent in soil solution phase.

Nitrates: Total nitrates were 2.57 mg/100g. Soil solution phase consisted of 1.01 mg/100g, followed by absorbed ions form (1.08 mg/100g) and fixed in colloidal form (0.48 mg/100g).

Various other nutrients recorded were as follows: Phosphorus pentaoxide (5.74 mg/100g), potassium dioxide (9.25 mg/100g), iron (0.21

mg/100g), copper (0.001 m/100g), zinc (0.013 mg/100 g) and manganese (0.058 mg/100g).

Effect of mineral nutrients: Sprays of B, Cu, Fe, Mg., Mn, Mo and Zn resulted in increased plant growth (Fig. 1). Maximum increase in the above ground and under-ground fresh weight and dry weight was recorded in Mg. followed by Cu, B, Fe, Mo., Zn and Mn, and control. In general, the plant height was correlated with fresh weight except in the case of Zn. There was an increase in the Hexane Extractables, Methanol Extractables and total extractable(Hexane Extractables and Methanol Extractables) at Mn, Zn, Fe, Cu, Mo, Mg and B in decreasing order over the control. In general, there was a direct correlation between increase in HE and ME (Fig. 2). There was an increase in chlorophyll contents on different mineral nutrients (Fig. 3). Mixed chlorophyll contents were recorded on Mn followed by B, Mo, Mg, Zn, Fe and Cu. The highest amount of chlorophyll b was recorded in Mn sprayed plants. The total sugars also showed increase on different mineral nutrients. Maximum sugars were recorded on Mn followed by Zn, Mg, Fe, Mo, Cu, B and control (Fig. 4).

Although several nutrients might be present in the soil, their absorption is influenced by various factors such as (i) growth rate of aerial parts, (ii) location and spread of root system, (iii) availability of nutrients in soluble phase and (iv) soil moisture. The plants require large amounts of N,P,K,Ca, Mg, S and significant amounts of minor elements (Verma and Bajpai, 1964). In general, there is lack of information about the role of nutrients in hydrocarbon yields of laticiferous plants but considerable work has been done on oil yielding plants. Sanjeevaiah (1969) obtained high yield of peanut with the application of N.,P.,K. in combination with Mn, Mg, S, Ca, Fe and Mo. Out of these Mn gave the highest yield followed by S. and B. whereas Ca. and Zn. brought about decrease in yield. Reddy and Rao (1965) obtained the highest yields by applying 40 lb each of N and P per acre in peanut. While N, P and K each at 20 lb. per acre increased the number of flowers, number of pods and the shelling percentage. The oil

content in groundnut was also increased by addition of P. and K. In contrast to this, nitrogen deficiency lead to a general chlorosis of leaves. Phosphorus increased the weight and per plant yield by 33 per cent. Reddy and Rao (1965) obtained high yields of groundnut with 40 lb P₂O₅ per acre applied in the form of super phosphate. Soboleva (1959) reported combined effect of the trace elements Mo, Mn And Co on photosynthesis and n content in the leaves of *Helianthus annus* and oil formation in seeds. Kumar and Kumar (1985, 1986) studied the role of N,P, K on the growth of *E. lathyris* and reported increase in growth due to addition of N,P and K. These investigations were further supported by the extensive work which also included characterization of hexane extractable, methanol, extractables, chlorophyll contents and sugars. *E. lathyris* seedlings showed a positive response to increased levels of both phosphorus and nitrogen in hydroponic nutrient solutions. When grown in nutrient solutions with 0, 1 and 2 mM phosphorus. the dry weight of plants increased linearly (Kingsolver, 1982). The increase due to nitrogen application was assigned to the increased growth of foliar parts namely leaves, rather than to the increased synthesis of hexane and methanol extractable. However, the present observations made on a soil type poor in nitrogenous matter, the possibility that exogenous supply of nitrogen promotes hydrocarbon yield cannot be ruled out. But a critical examination of the role of nitrogen in biosynthesis of hexane and methanol extractables deserves attention in further studies.

Indian soils are usually very poor in organic matter as well as nitrogen. The phosphate deficiency is less widespread and potash deficiency occurs in compact areas (Anonymous, 1970). During the present investigations the sandy soils of Rajasthan showed increased yields in terms of fresh weight and dry weight, hexane, methanol extractables, chlorophyll contents and sugar contents due to addition of P to a certain level followed by a decline at higher dosages. Apparently plants have high metabolic activities and rapid turnover of enzymatic reactions requiring ATP and possibly the phosphate translocator might

play in increasing the growth of the plants due to additional supplies of phosphorus. Although K. might play a direct role in plant metabolism, it is reported to increase contents of P, K and Ca in the leaves. Nakagawa (1966) and Roche (1956) reported that application of K influences oil contents. During the present investigations also K showed increased growth, H.E. and M.E. to certain level. Whether this was due to direct role of K in the plant or indirect role by affecting the uptake of ions which favoured growth and HE and ME needs to be further examined.

The response of Nitrogen also depend on how well the crop is supplied with other nutrients (Gartner, 1969). Without Phosphorus and potassium applications, the yield response to increasing Nitrogen levels was smaller than when adequate amount of P and K were applied. A combination of micronutrients may further promote growth and HE and ME by possible interaction of all these nutrients. This is also supported by large number of studies on oil yielding plants (Shiv Raj, 1978). Shankaran *et al.* (1973) reported the increase in chlorophyll contents of groundnut due to calcium and boron nutrition. Iron is essential for chlorophyll biosynthesis. Its deficiency leads to severe reduction in growth of plants and this could be correlated by spraying ferrous sulphate on the plants. Boron application reduced the chlorophyll components 'a', 'b' and total chlorophyll at higher concentrations in peanut (Shankaran *et al.*, 1973). However, application of six kg. of boric acid on sandy loam was found to increase yield significantly. Molybdenum is a metal constituent of nitrate reductase enzyme of all plants essential for the reduction of nitrate (Asokan and Raj, 1974). Khan and Gupta (1959) reported that application boron decreased, seed yield and oil percentage, while Mn increased seed yield and oil percentage in linseed. Jones and Tucker (1968) reported that oil content of safflower was little affected by N application. Application of Nitrogen with P₂O₅ is very effective in increasing the seed yield as well as total output of oil (Dhote and Ballal, 1964). Boron occurs in the soil primarily as boric acid or borate. The boron content of soils in arid and semi-arid climates is in general higher than in humid

climatic zones (Kanwar and Shah Singh, 1961). The borate ion influences plant metabolism reacting with OH – groups form sugars, alcohols and organic acids to form esters of boric acid (Mengel and Kirkby, 1978) Boron is of considerable importance in the synthesis of nucleic acids and proteins (Johnson and Albert, 1967).

Boron deficiency also influences phytohormone balance. Boron deficiency depressed the cytokinins synthesis (Wagner and Michael, 1971). Shkolnik (1974) proposed that accumulation of excess of auxins and phenols is the primary cause of necrosis in plants associated with B deficiency. Price and co-workers (1972) discussed the possible roles of B in auxin metabolism, protein synthesis and phosphate utilization. At less than 1 ppm water soluble B, soils may not supply sufficient Boron to support plant growth, whilst values above 5.0 ppm may be toxic (Reisenauer *et al.*, 1973). During the present investigation Boron showed positive effect.

Copper in earth crust occurs chiefly as sulphides and the most abundant mineral oil copper is chalcopyrite. Total copper in Indian soils varies between 1.8 to 960 ppm whereas the available copper is in the range of traces to 16.8 ppm (Katyay and Deb, 1982). In addition copper occurs in organic compounds, is present as an exchangeable cation on soil colloids and is a constituent of soil solution (Mengel and Kirkby, 1978). Copper is taken up by the plants in very small quantities. The content of most plants is generally between 2 to 20 ppm in the dry plant material. Copper strongly inhibits the uptake of Zn and vice-versa (Schmid *et al.*, 1965). Copper plays a part in photosynthesis (Arnon, 1950). It is a constituent of the chloroplast protein plastocyanin which forms part of the electron transport chain linking the two photochemical systems of photosynthesis (Bishop, 1966; and Boardman, 1975). In Copper deficient plants the protein N-compounds (Possingham, 1956; Possingham *et al.*, 1964). In young growing organs, where protein synthesis is most active, lower levels of DeoxyriboNucleic Acid have been observed in Copper deficient tissues (Ozolina and Lapina,

1965). The level of reducing sugars also declined, whilst organic acids and Asparagine accumulated (Brown *et al.*, 1958). Addition of Copper promoted growth and HE and ME, chlorophyll and sugar contents during the present investigations.

Magnesium content of sandy soils are around 0.05 per cent. The distribution of Mg. is divided into bound, colloidal and water soluble forms. Some Mg occurs in soil in association with organic matter. The content of the Mg in plant tissue is usually in the order of 0.5 per cent of the dry matter 15 to 20 per cent of the total Mg in plant material is associated with chlorophyll (Neales, 1955). Mg activates phospho-kinases and phosphorus transferases (Hewitt, 1958 ;1963; Hewitt and Agarwal;52). Werner (1959) reported lower starch contents in Mg. deficient potatoes and a decrease in carbohydrate content in the grain of Mg. deficient oats (Stenuit and Piot, 1957). Increase in Mg levels increased yield of potatoes on the sandy soils in Denmark (Dam Kofoed and Hjmark, 1971).

Manganese is relatively immobile in plants (Wittwer and Teubner, 1959). According to Bishop (1971), Mn is essential in photosystem II where it participates in photolysis of water (Anderson and Pyliotis, 1969). When Mn. is deficient, the structure of chloroplasts is markedly impaired even when other organelles show no visible alteration (Possingham *et al.*, 1964). Hewitt (1963) suggested that there is clear indirect relationship between the influence of Mn. on photosynthesis and NO₂ reductase. Chloroplasts are the most sensitive of all cell organelles to Mn. deficiency (Homann, 1967). However, most soils contain adequate levels of available Mn so that Mn applications are unnecessary. The total amount of Mn taken up by available crops is low and ranges from 500 to 100 g Mn. per ha. (Schachtschabel, 1955). However, during the present investigations Mn. application promoted growth, chlorophyll, HE, ME and sugars.

Zinc in the soils is usually present in the range 10 to 300 ppm. occurring in a number of different minerals. The levels of Zn in plant material are very low and generally in the order of up to 100 ppm in dry matter. Zn. plays important role in Zn. metallo enzymes like Glutamic acid

dehydrogenase as well as proteinases and peptidases (Vallee and Wacker, 1970). Zinc deficiency caused sharp decrease in the level of Ribonucleic acid and ribosome content of cells (Price *et al.*, 1972). Thus reduction in RNA synthesis leads to an inhibition of protein formation whilst glucose, non-protein Nitrogen and DNA are relatively increased (Price *et al.*, 1972). Praske and Plocke (1971) have observed extremely unstable cytoplasmic ribosomes in *Euglena gracilis* with Zinc deficiency. Zinc is required in the synthesis of tryptophan (Tsui, 1948), a precursor of Indole-3yl-acetic acid. In Zinc deficient tomato plants, Tsui (1948) observed low rates of stem elongation, low auxin activities and low tryptophan contents. Jyung and Co-workers (1975) suggested that Zinc has a possible role in plant metabolism involved in search formation. During the present investigations Zinc promoted growth, HE, ME, chlorophyll and sugars in *E. lathyris*.

Molybdenum(Mo) content of most agricultural soils is between 0.6 to 3.5 ppm (Swaine, 1955) with an average total Mo. content of 2.0 ppm and an average available content about 0.2 ppm (Cheng and Oullette, 1973). Mo largely occurs in the soil as an oxycomplex (MoO_4^{2-}) and is absorbed by soil minerals and colloids (Barrow, 1970). Mo content of the soil solution may vary considerably. Mo. is absorbed as molybdate in plants (Mengel and Kirkby, 1978) and is located primarily in the phloem and vascular parenchyma (Hewitt and Agarwal, 1952). The physiological requirement of Mo. is very low and less than 1 ppm in the dry matter (Stout and Meagher, 1948). Activity of the intratraductase in cauliflower was reported to be enhanced by increasing levels of Mo. supply (Candela *et al.*, 1957). Nicholas and Nason (1955) also observed that Mo. influenced the enzyme activity. Mulder (1948) suggested that Mo is essential for microbial denitrification. Mo deficiency can give rise to secondary effects such as the reduction in photosynthetic rate because of

low chlorophyll levels an enhanced respiration (Loneragam and Arnon, 1954). During the present investigation Mo. application increased the yield of *E. lathyris*.

EFFECT OF MINERAL NUTRIENTS: Different mineral nutrients like boron (boric acid), copper (copper sulphate), iron (ferrous sulphate), magnesium (magnesium sulphate), manganese (manganous sulphate), molybdenum (ammonium molybdate) and zinc (zinc sulphate), were sprayed in solution form over the plants.

Maximum increase in the above-ground, under-ground fresh and dry weights was recorded in magnesium treatment. Application of mineral nutrients favoured plant height and vegetative growth.

There was an increase in the hexane extractables, methanol extractables and total extractables(hexane extractables and methanol extractables) at Mn, Zn, Fe, Cu, Mo., Mg and B in decreasing order over the control. The hexane extractables and methanol extractables were directly correlated to each other.

Mineral nutrient application also increased the chlorophyll contents, maximum being in Mn followed by B, Mo, Mg, Zn, Fe. and Cu. Maximum chlorophyll b and total sugar contents were obtained by Mn application.

SOIL ANALYSIS : Analysis of the soil samples, collected from experimental field revealed that it was a sandy soil having a pH. 7.4, and electric conductivity 0.58 mmhos/cm. It consisted of 7.58 mg/100 g potassium, 51.06 mg/100g sodium, 1.86 mg/100 g magnesium, 20.11 mg/100 g calcium, 0.50 mg/100 g chloride,s 5.62 mg./100 g. nitrates, 5.74 mg./100 g. P_2O_5 , 9.25 mg/100 g K_2O , 0.21 mg/100 g iron, 0.001 mg/100 g copper, 0.013 mg/100 g Zinc and 0.058 mg/100 g manganese. The ammonium content was not detectable in the soil. Cu- copper, Fe- iron Mg – magnesium Mn – manganese; Mo – molybdenum and Zn – zinc.

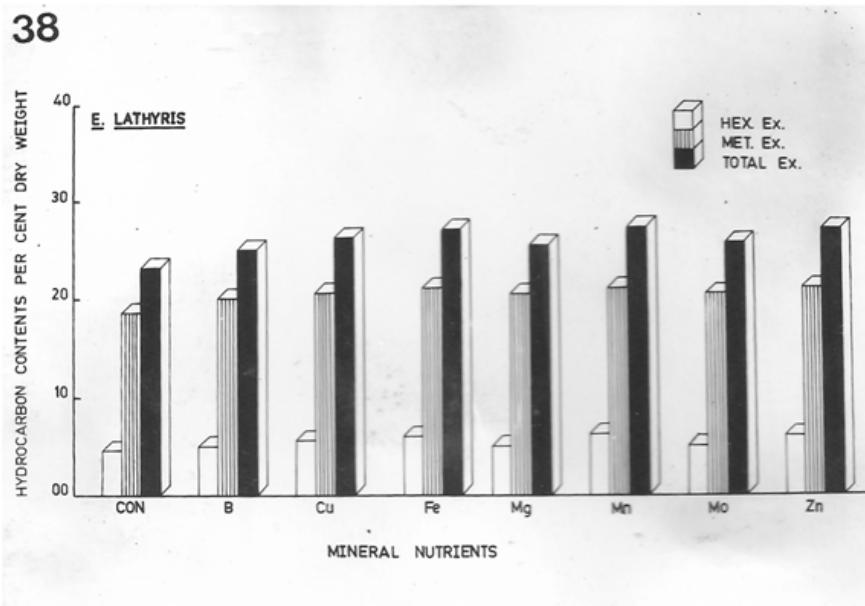


Fig.1 Effect of mineral nutrients (B, Cu, Fe, Mg, Mn, Mo and Zn), 10 ppm, on plant height, above-ground and under-ground fresh weight and dry weight of *E. lathyris* L. CON – Control, plants sprayed with distilled water.

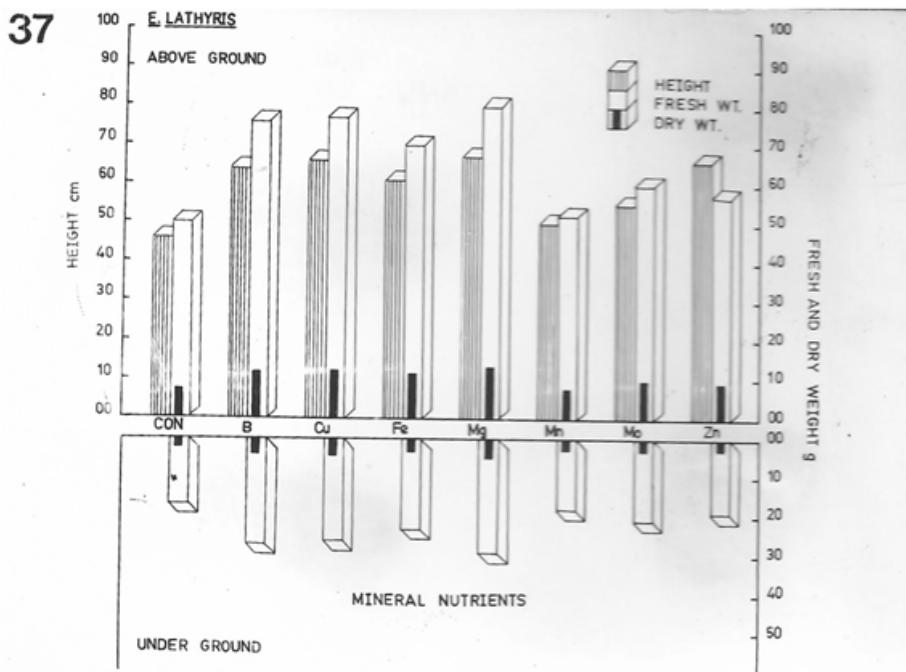
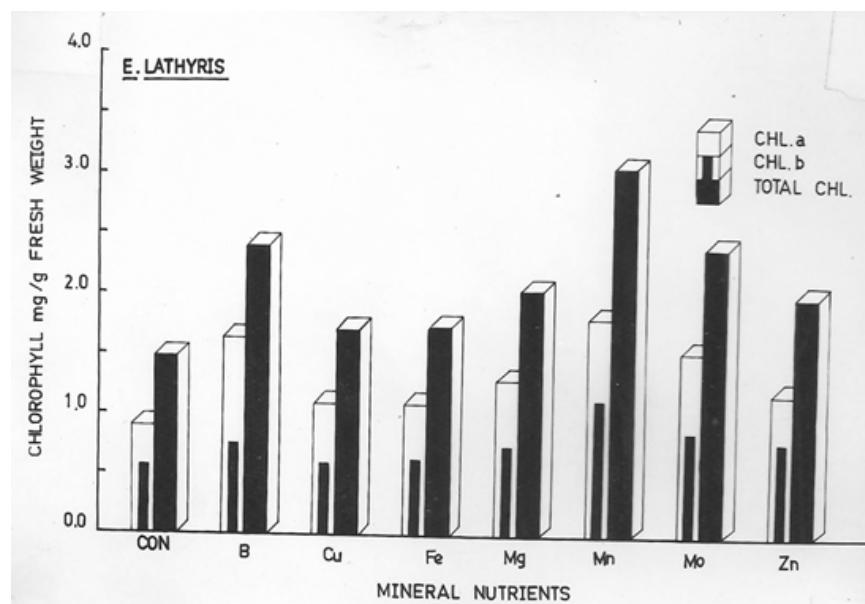
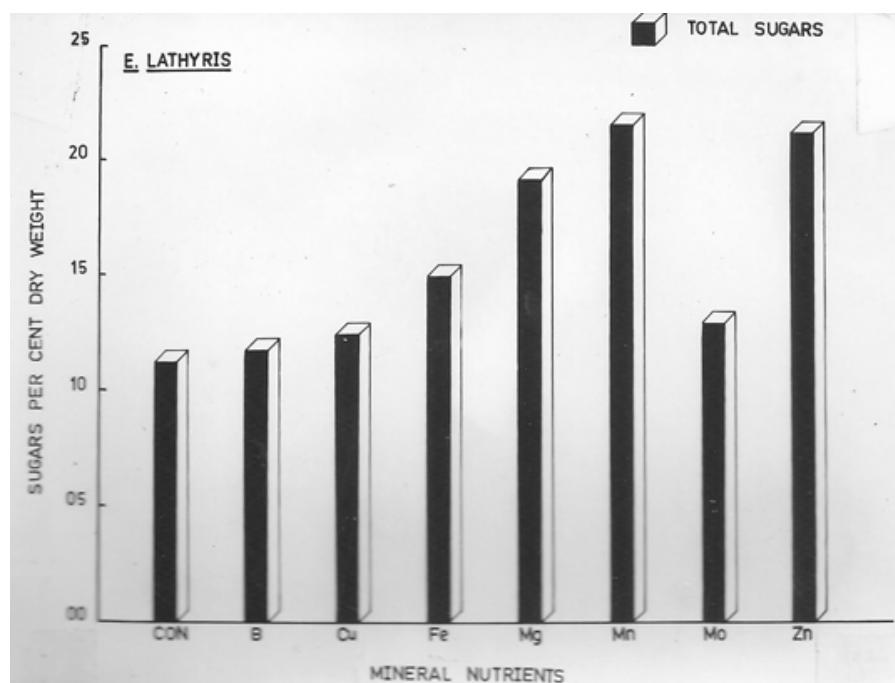




Fig. 2 Effect of mineral nutrients (B, Cu, Fe, Mg, Mn, Mo and Zn), 10 ppm, on hexane, methanol and total extractables in above ground parts of *E. lathyris* L. expressed in percent dry weight basis. CON – Control, plants sprayed with distilled water. B – boron; Cu – copper; Fe – iron; Mg – magnesium; Mn – manganese; Mo – molybdenum and Zn – zinc.

Fig. 3 Effect of mineral nutrients (B, Cu, Fe, Mg, Mn, Mo and Zn). 10 ppm, on chlorophyll a, chlorophyll b and total chlorophyll contents mg/g fresh weight basis. CON – Control, plants sprayed with distilled water.

Fig. 4 Effect of mineral nutrients (B, Cu, Fe, Mg, Mn, Mo and Zn) 10 ppm, on sugar contents in above-ground parts of *E. lathyris* L. expressed in percent dry weight basis. CON – Control, plants sprayed with distilled water. B – boron; Cu

REFERENCES

1. Adams, R.P. and J.D. McChesney, 1983. Phytochemicals for liquid fuels and petrochemical substitutions : extraction procedures and screening results. *Econ. Bot.* 37 : 207.
2. Anderson, J.M. and N.A. Pyliotis, 1969. Studies with manganese deficient chloroplasts. *Biochem. Biophys. Acta.* 189 : 280-293.
3. Anonymous, 1970. 20 years of agricultural research in Rajasthan : agricultural chemistry. Department of Agriculture, Rajasthan, Jaipur, pp. 141.
4. Anonymous, 1979. Biochemisches Praktikum Des Instituts fur Pflanzenernährung Der Justus Liebig Universität, Giessen, F.R. Germany.
5. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*. *Plant Physiol.* 24 : 1-15.
6. Asokan, S. and D. Raj. 1974. Effect of form and levels of boron application on groundnut. *Madras Agric. J.* 61 : 467-471.
7. Ayerbe, L., M. Gomez-Ramos, E. Funes, M. Bigeried and L. Mellado, 1983a. A preliminary estimate of *Euphorbia lathyris* fuel productivity. In Photosynthesis and plant productivity. Joint meeting of OEGD and Studienzentrum Weikersheim, Ettlingen Castle, Germany, 1981 (Ed.) H. Metzner, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart.
8. Ayerbe, L., J.L. Tenorio, P. Ventas, E. Funes and L. Mellado. 1983b. *Euphorbia lathyris* as an energy crop. Fuel productivity, I. Conference Internazionale Energia a Agricoltura (Ed.) E. Sasso, E. Vercesi, F.L. Bottio, B. Guerra and L. Tamperi, CESAT, Gruppo dell'Energia, Milano.
9. Ayerbe, L., E. Funes, J.L. Tenorio, P. Ventas and L. Mellado, 1984a. *Euphorbia lathyris* as an energy crop. II. Hydrocarbon and sugar productivity. *Biomass*, 51 : 37-42.
10. Ayerbe, L., J.L. Tenorio, P. Ventas, E. Funes and L. Mellado, 1984b. *Euphorbia lathyris* as an energy crop. I. Vegetative matter and seed productivity, *Biomass*, 41 : 283-293.
11. Bagby, M.O., R.A. Buchanan and F.H. Otey, 1980. Multiuse crops and botanochemicals production. In *Biomass as a non-fossil fuel source*. (Ed.) D.L. Class. American Chemical Society, Washington D.C. Chap. 6.
12. Barrow, N.J. 1970. Comparison of the adsorption of molybdate, sulphate and phosphate by soils. *Soil Sci.* 109 : 282-288.
13. Bhatia, V.K. and G.S. Srivastava, 1983. Introduction screening and cultivation of potential petro-crops and their conversion to petroleum hydrocarbons. Progress report phase-I, pp. 94.
14. Bishop, N.J. 1966. Partial reactions of photosynthesis and hotoreduction, *Ann. Rev. Plant. Physiol.* 17 : 185-208.
15. Bishop, N.J. 1971. Photosynthesis : The electron transport system of green plants. *Ann. Rev Biochem.* 40 : 197-226.
16. Boardman, N.K. 1975. Trace elements in photosynthesis. In *Trace Elements in Soil Plant – Annual Systems*. (Ed.) D.J.D. Engan and A.R. Egan. Academic Press, New York.
17. Brown, J.C., O.L. Tiffin and R.S. Holmes, 1958. Carbohydrate and organic acid metabolism with C-14 distribution affected by copper in Thatcher Wheat, *Plant Physiol.* 33 : 38-42.
18. Buchanan, R.A., I.M. Cull, F.H. Otey and C.R. Russell, 1978a. Hydrocarbon – and rubber-producing crops. Evaluation of U.S. Plant Species. *Econ. Bot.* 32 : 131.
19. Buchanan, R.A., I.M. Cull, F.H. Otey and C.R. Russell, 1978b. Hydrocarbon – and rubber – producing crops. Evaluation of 100 U.S. Plant species. *Econ. Bot.* 32 : 146-153.
20. Buchanan, R.A. and F.H. Otey, 1979. Multi-use oil – and hydrogen producing crops in adaptive systems for food, material and energy production, *Biosources Dig.* 1 : 176.
21. Calvin, M. 1976. Photosynthesis as a resource for energy and materials. *Photochem. Photobiol.* 23 : 425-444.

22. Calvin, M. 1977. Hydrocarbons via photosynthesis. *Energy Res.* 1 : 299-327.

23. Calvin, M. 1978a. Green factories. *Chem. Eng. News.* 50 : 30-36.

24. Calvin, M. 1979a. Petroleum plantations for fuel and materials. *Bioscience.* 29 : 533-537.

25. Calvin, M. 1979b. Peteroleum plantations. In *Solar Energy : Chemical conversion and storage* (Ed.) R.R. Hautalona, A.B. King and C. Katal. Human Press, Clifton, N.J.

26. Calvin, M. 1980. Hydrocarbons from plants : analytical methods and observations. *Die Naturwissen.* 67 : 525-533.

27. Calvin, M. 1983a. New sources for fuel and materials. *Science.* 219 : 24-26.

28. Calvin, M. 1983b. Oil from plants. *Photochem. Photobiol.* 37 : 349-360.

29. Calvin, M. 1984. Reweavable fuels for the future. *J. Appl. Biochem.* 6 : 3-18.

30. Calvin, M. 1985. Fuel oils from higher plants. *Ann. Proc. Phytochem. Soc. Eur.* 26 : 147-160.

31. Calvin, M., E.K. Nemethy, K. Redenbaugh and J.W. Otvos, 1981. Plants can be direct source of fuel. *Petroculture.* 2 : 26.

32. Calvin, M., E.K. Nemethy, K. Redenbaugh and J.W. Otvos, 1982. Plants as a direct source of fuel. *Experientia.* 38 : 18.

33. Candela, M.J., E.G. Fisher and E.J. Hewitt, 1957. Molybdenum as a plant nutrient, X. Some factors affecting the activity of nitrate reductase in cauliflower plants growth with different nitrogen sources and molybdenum levels in sand culture. *Plant Physiol.* 32 : 280-288.

34. Cheng, B.T. and G.J. Qullette, 1973. Molybdenum as a plant nutrient. *Soil and Fertilizers.* 36 : 207-215.

35. Coffey, S.G. and G.M. Halloran. 1981. *Euphorbia perspectives* and problems. In *Proc. Natl. Conf. on Fuels from Crops*, Melbourne, Australia Sep., 28-29.

36. Dam Kofoed, A. and J.V. Hojmark. 1971. Field experiments with magnesium fertilizers. *Tidsskrift for Planteavl.* 75 : 349-376.

37. Dayal, M. 1986. Production and utilization of petro crops. In. Pro. Work-shop on petro-crops. Dec. 20-21, Delhi.

38. Dhote, G.S. and D.K. Ballal, 1964. Effect of N, P and K on the yield and oil content of safflower, *Indian Oilseeds J.* 8 : 17-22.

39. Garg, J. and A. Kumar, 1989. Potential Petro -crops for Rajasthan. *J. of Indian Bot. Soc.* 68:199-200.

40. Garg, J. and A. Kumar, 2011a. Hydrocarbons from plants as renewable source of energy. *Bioherald, Int. J. of Biodiversity & Environment* 1 :(1)pp31-35.

41. Garg, J. and A. Kumar, 2011b. Laticiferous plants: renewable sources of energy. *Int. J. of Current Research.* 3. Pp56-59.

42. Gartner, J.A. 1969. Effect of fertilizer nitrogen on a dense sward of kikuyu, Paspalum and carpet grass. 2. Interactions with phosphorus and potassium, queensl. *J. of Agric. and Anim. Sci.* 26 : 365-372.

43. Dayal, M. 1986. Production and utilization of petro crops. In. Pro. Work-shop on petro-crops. Dec. 20-21, Delhi.

44. Hall, D.O. 1980. Renewable resources, hydrocarbons. *Outlook Agric.* 10 : 246-254.

45. Hall, D.O. 1982. Food versus fuel, A world problem ? In *Proc. Energy from biomass and E.C. Conference*. (Ed.) Strub, A.P.

46. Hewitt, E.J. 1958. The role of mineral elements in the activity of plant enzyme systems. *Encyclopedia of plant physiology*, Vol. IV. Verlag Springer, Berlin-Göttingen Heidelberg, pp. 427-470.

47. Hewitt, E.J. 1963. Essential nutrient elements for plant, In *Plant Physiology*, Vol. III, *Inorganic Nutrition of Plants*, Academic Press, New York, pp. 137-360.

48. Hewitt, E.J. and S.C. Agarwala, 1952. Reduction of triphenyltetrazolium chloride by plant tissue and its relation to the molybdenum status. *Nature*, 169 : 545-546.

49. Homann, P.E. 1967. Studies on the manganese of the chloroplast. *Plant Physiol.* 42 : 997-1007.

50. Hoffman, J.J. 1983. Arid land plants as feedstocks for fuels and chemicals. *Plant Science*, 1 : 95-116.

51. Hinman, C.W., J.P. Hoffman, S.P. McLaughlin and T.R. Peoples 1980. Hydrocarbon production from arid plant species. In Proc. Ann. Meeting of Am. Section Int. Solar Energy Soc. In., Navark, DE.

52. Johnson, D.L. and L.S. Albert, 1967. Effect of selected nitrogen bases and boron on the ribonucleic acid content, elongation and visible deficiency symptoms in tomato root tips. *Plant Physiol.* 42 : 1307-1309.

53. Johnson, J.D. and C.W. Hinman 1980. Oils and rubber from arid land plant. *Science*. 208 : 460-464.

54. Jones, J.P. and T.C. Tucker, 1968. Effect of nitrogen fertilizers on yield, nitrogen content and yield components of safflower. *Agron. J.* 60 : 363-364.

55. Jyung, W.H., A. Ehmann, K.K. Schlender and J. Scala, 1975. Zinc nutrition and starch metabolism in *Phaseolus vulgaris* L. *Plant Physiol.* 55 : 414-420

56. Kanwar, J.S. and S. Shah Singh, 1961. Boron in normal and salino-alkali soils of the irrigated areas of the Punjab. *Soil Sci.* 92 : 207-211.

57. Katyal, J.C. and D.L. Deb. 1982. Nutrient transformations in soils – micronutrients. In Proc. 12th International Congress of soil Science : Review of soil Science : Review of Soil Research in India. Part I : pp. 146-159.

58. Khan, A.R. and G.P. Gupta, 1959. Effect of some plant nutrient on yield of linseed and quality of its products. *Indian Oilseeds J.* 3 : 221-225.

59. Khoshoo, T.N. 1982. Energy from plants : Problems and prospects, Proc. 69th Ind. Sci. Congr. II, 1.

60. Khoshoo, T.N. 1984. Bio-energy : Scope and limitations. In Proc. Bio-Energy Soc. Ist Convention and symposium, '84. (Ed.) R.M. Sharma, O.P. Vimal and P.D. Tyagi, Bioenergy Society of India, New Delhi pp. 4-11.

61. Kingsolver, B.E. 1982. *Euphorbia lathyris* reconsidered its potential as an energy crop for arid lands. *Biomass*. 2 : 281-298.

62. Kumar, A. and P. Kumar 1985. Agronomic studies on growth of *Euphorbia lathyris*. In : Bio-energy 84. II. Biomass (Ed.) H. Egneus and H. Ellegard Elsevier Applied Science. Publishers, London, pp. 170-175.

63. Kumar, A. and R. Kumar 1986. Improving the productivity of petro-crops in Rajasthan. In Proc. Bio-Energy Soc. IIInd Convention and Symposium '85. (Ed.) R.N. Sharma and O.P. Vimal. Bio-Energy Soc. of India. New Delhi, pp. 125-129.

64. Lipinsky, E.S. 1981. Chemicals from biomass : petro-chemicals substitution opitions. *Science*. 212 : 1465.

65. Lipinsky, E.S., S.J. Kresovich and A. Scantland. 1980. Fuels from new crops. In Renewable resources, A systematic approach. (Ed.) E. Campos-Lopez. Academic Press, New York, pp. 307.

66. Loneragam, J.F. and D.I. Arnon. 1954. Molybdenum in the growth and metabolism of Chlorella. *Nature*, 174 : 427-459.

67. Mengel, K. and E.A. Kirkby. 1978. Principles of plant nutrition. International Potash Institute. Worblaufen-Bern/Switzerland. pp. 593.

68. McLaughlin, S.P. and J.J. Hoffman, 1982. Survey of biocrude-producing plants from the South-West. *Econ. Bot.* 36 : 323-339.

69. McLaughlin, S.P., B.E. Kingsolver and J.J. Hoffman 1983. Biocrude production in arid lands. *Econ. Bot.* 37 : 150-158.

70. Mulder, E.G. 1948. Importance of molybdenum in the nitrogen metabolism of microorganisms and higher plants. *Plant and Soil*. 1 : 94-119.

71. Nakagawa, J. 1966. NPK manuring, liming and foliar diagnosis of groundnuts. *Field Crop Abstr.* 21 : 985.

72. Neales, T.F. 1955. Relation of Mg supply to the growth and a.net assimilation rate of barley. *Nature*. 175 : 429-430.

73. Nemethy, E.K., J.W. Ottos and M. Calvin. 1981a. Hydrocarbons from *Euphorbia lathyris*. Pure Appl. Chem., 53 : 1001.

74. Nemethy, E.K., J.W. Ottos and M. Calvin. 1981b. Natural production of high energy liquid fuels from plants. In Fuel from Biomass and wastes. (Ed.) D.L. Klass. and G.H. Emert. Ann. Arbor Science, Ann. Arbor M.Ch., pp. 405.

75. Nemethy, E.K. 1984. Biochemicals as an energy source. CRC Critical Reviews in Plant Sciences, 2 : 117-129.

76. Nicholas, D.J.D. and A. Nason, 1955. Role of molybdenum as a constituents of nitrate reductase from soybean leaves. Plant Physiol. 30 : 135-138.

77. Ozolina, G. and L. Lapina. 1965. Effect of copper and nitrogen nutrition of maize and flax on dynamics of nucleic acids. Microelem. Prod. Rast. 75 : 102.

78. Patel, J.S. 1938. The coconut – a monograph. Govt. Press, Madras.

79. Peoples, T.R., S.M. Alcorn, H.E. Bloss, W.F. Clay, M. Flug, J.J. Hoffman, C.W. Lee, S. Luna, S.P. McLaughlin, M. Steinberg and M. Young. 1981. *Euphorbia lathyris* L. : A further source of extractable liquid fuel. Biosources Digest 3.

80. Possingham, J.V. 1956. Mineral nutrition and amino acids. In tomato, Aust. J. Biol. Sci. 9 : 539-551.

81. Possingham, J.V., M. Veski and F.V. Merceri. 1964. The fine structure of leaf cells of manganese – deficient spinach. J. Ultrastructure Res., 11 : 68-83.

82. Prashar, C.R. and N.K. Benl. 1968. The effect of different levels of nitrogen and phosphorus on growth and yield of linseed. Indian J. Agric. Sci. 2 : 49-54.

83. Praske, J.A. and D.J. Plocke. 1971. A role of zinc in the structural integrity of the cytoplasmic ribosomes of *Euglena gracilis*. Plant Physiol. 48 : 150-155.

84. Price, C.A., H.E. Clark and H.E. Funkhouser. 1972. Functions of micronutrients in plants. In : Micronutrients in Agriculture, Soil. Sci. Soc. of America, Madison/Wisconsin, pp. 731-742.

85. Reddy, G.P. and S.C. Rao. 1965. Fertilizers response in ground-nut. Indian oil Seeds. J. 9 : 274-279.

86. Reisenauer, H.M., L.M. Walsh and R.G. Hoeft. 1973. Testing soils for sulphur, boron, molybdenum and chlorine. In : Soil testing and plant analysis. (Ed.) L.M. Walsh and J.D. Beaton. Soil Sci. Soc. of America Inc. Medison, USA.

87. Roche, P. 1956. Investigation to determine the threshold levels of potassium deficiency in the soils in the plant. In : Proc. 6th Int. Congr. Soil Sci. Vol. D. 25.

88. Sachs, R.M. and T. Mock. 1980. *Euphorbia lathyris* : A preliminary guide to planting. Agri. Expt. Station Servie. University of California, Davis, Report No. 103.

89. Sanjeevaiah, B.S. 1969. Effects of micronutrients on groundnut. Mysore. J. Agric. Sci. 3 : 83-85.

90. Sanjeevaiah, B.S. 1969. Effects of micronutrients on groundnut. Mysore. J. Agric. Sci. 3 : 83-85.

91. Schmid, W.E., H.P. Haag and E. Epstein. 1965. Absorption of zinc by excised barley roots. Physiol. Plant 18 : 860-869.

92. Schachtschabel, P. 1955. (G) Manganese in the soil. Die Phosphorsaure, 15 : 133-139.

93. Shankaran, N., Y.B. Morachan and P. Semnin. 1973. Effect of calcium and boron on the chlorophyll components of groundnut. Madras AGric. J. 60 : 1022-1023.

94. Shiv Raj, A. 1978. An introduction to physiology of field crops. Oford and IBH Publishing Co., New Delhi, pp. 272.

95. Shkolnik, M.Y. 1974. General conception of the physiological role of boron in plants. Physiol. Rastenii 21 : 140-150.

96. Singh, H. 1960. Effect of N,P and K on the yield and oil content of season. Indian J. Agron. 4 : 176-181.

97. Soboleva, A.G. 1959. Combined effect of the trace elements Mo, Mn and Co on photosynthesis and N content in the leaves of *Helianthus annus* and on oil formation in seeds. *Field Crops Abstr.* 13 : 872.

98. Stenuti, D.F. and R. Piot. 1957. Magnesium an essential element for plant nutrition. *Revue de l'Agriculture Loe annee*. No. 7-8.

99. Stewart, G.A., J.S. Hawker, H.A. Nix, W.H.M. Rawlins and L.R. Williams. 1982. The potential for production of hydrocarbon. *Fuel from crops in Australia, A report*, pp. 86.

100. Stout, P.R. and W.R. Meagher. 1948. Studies of the molybdenum nutrition of plants with radio-active molybdenum. *Science* 108 : 471-473.

101. Surajbhan, 1976. Agronomic practices for sunflower in Uttar Pradesh. *Indian Fmg.* 26 : 21.

102. Swaine, D.J. 1955. The trace element content of soils. *Soil Sci. Techn. Comm.* 48. Herald Printing Works, Coney St., New York (England).

103. Szego, G.C. and C.C. Kemp. 1973. Energy forests and fuel plantations. *Chem. Tech.* 3 : 275.

104. Tideman, J. and J.S. Hawker, 1981. The hydrocarbon content of some latex bearing plants in Australea, *Search*. 12 : 364.

105. Tsui, C. 1948. The role of zinc in auxin synthesis in the tomato plant. *Amer. J. Bot.* 35 : 172-179.

106. Vallee, B.L. and W.E.C. Wacker, 1970. *Metalloprotein in Neurath. The Proteins*. 5, Academic Press, New York, pp. 192.

107. Verma, J.K. and M.R. Bajpai. 1964. A brief review of mineral nutrition of groundnut in relation to its growth yield and quality. *Indian oil seed. J.* 8 : 222-229.

108. Vergagara, W. and D. Pimental, 1978. Fuels from Biomass : comparative studies of the potential in five countries USA, Brazil, India, Sudan and Sweden, *Adv. Energy Syst. Technol.* 1 : 125.

109. Vimal, O.P. 1986. Strategies for use of petro-crops. In *Proc. workshop on Petro-crops*. Dec. 20-21, Delhi.

110. Wang, S. and J.B. Huffman. 1981. Botanochemicals : Supplements to petrochemicals. *Eco. Bot.* 35 : 369-382.

111. Werner, W. 1959. Effect of a magnesium application on potatoes in dependence of soil reaction and nitrogen from Kartoffelbau. X. pp. 13-14.

112. Wagner, H. and G. Michael. 1971. Effect of varied nitrogen supply on the synthesis of cytokinin in roots of sunflower. *Biochem. Physiol. Pflanzen*. 162 : 147-158.

113. Weisz, P.B. and J.F. Marshall. 1979. High grade fuel from biomass farming : potential and constraints. *Science*, 206 : 24.

114. Wittwer, S.H. and F.G. Teubner, 1959. Foliar absorption of mineral nutrients. *Ann. Rev. Plant Physiol.*, 10 : 13-32.