

A Novel Method for Identifying and Treating Erectile Dysfunction

Ram Ajay Gupta¹ and Aditya Shiven*

¹*Department of Pharmaceutics, University Institute of Pharma Sciences (Uips), Chandigarh University, Gharuan, Mohali, Punjab- 140413, India.

Abstract: Sexual or erectile dysfunction (ED) is the ineptitude to get or keep a hard penile erection. ED can have a detrimental effect on physical and psychological health. This review helps in understanding the detailed etiology of ED and various approaches for the management of ED. The occurrence and incidence of erectile dysfunction are on the rise among men. Various other factors greatly impact the progression of ED, including individual general health and physiological conditions such as psychiatric or psychological problems, diabetes mellitus, genitourinary disease, cardiovascular disease, and chronic diseases. Erectile dysfunction occurs when the release of nitric oxide (NO) triggers the activation of the guanylate cyclase enzyme in the spongiosum and corpora cavernosa, leading to relaxation of the vascular smooth muscle and an increase in cyclic guanosine monophosphate (cGMP) levels. This physiological process is essential for achieving and maintaining a firm penile erection. Some common and advanced methods, such as the physical method, sexual history, laboratory testing, apomorphine test, NPTR test, and color duplex Doppler ultrasound test, are used to diagnose erectile dysfunction. This review also focuses on emerging treatments that address the medical need for effective ED management. This comprehensive review bridges gaps in the current literature, offering superior insights into ED management and improving the quality of life for individuals with ED.

Keywords: Erectile dysfunction; Nanotechnology; penile erection; emerging treatment; management of ED; NPTR test.

***Corresponding Author**

Aditya Shiven , Department of Pharmaceutics, University Institute of Pharma Sciences (Uips), Chandigarh University, Gharuan, Mohali, Punjab- 140413, India.

Received On 15 May, 2023

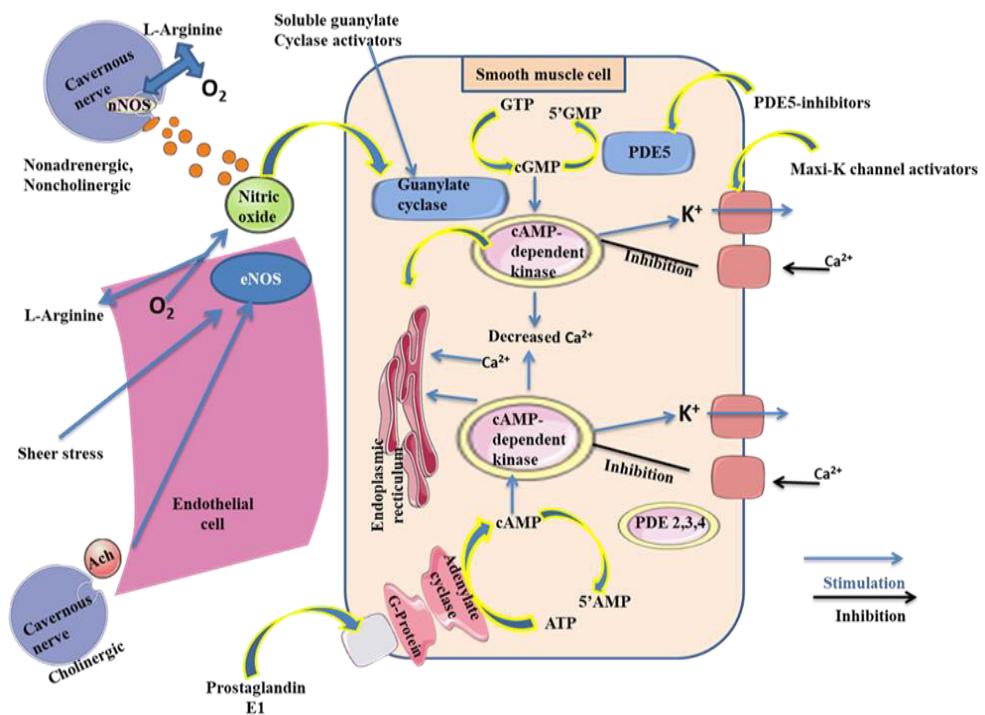
Revised On 1 August, 2023

Accepted On 4 September, 2023

Published On 1 November, 2023

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Ram Ajay Gupta and Aditya Shiven , A Novel Method for Identifying and Treating Erectile Dysfunction.(2023).Int. J. Life Sci. Pharma Res.13(6), P234-P252 <http://dx.doi.org/10.22376/ijlpr.2023.13.6.P234-P252>


I. INTRODUCTION

Erectile dysfunction (ED) is a widespread condition that affects a significant number of men globally. It is characterized by the inability to achieve or maintain a firm erection for satisfactory sexual intercourse, leading to frustration, dissatisfaction, and potential strain on relationships¹. The incapability to obtain or keep a hard penile erection for enjoyable sexual interaction is called erectile dysfunction (ED)². The origins of erectile dysfunction (ED) are typically attributed to its pathophysiology, which could be categorized as endocrinologic, vasculogenic, neurogenic and psychogenic, or drug-induced³. Due to its detrimental effect on both physical and psychological health, it can significantly affect patients' satisfaction as well as of their mates. It has been observed through epidemiological studies that the occurrence and incidence of erectile dysfunction are rising among men⁴. Data from the epidemiological studies concludes that approximately 35% of men aged above 60 and 50% above 70 yrs are diagnosed with ED⁵. It has been estimated that this condition affects approximately 150 million individuals globally⁶. Furthermore, findings from the ENIGMA study conducted in 2004 indicated a prevalence of approximately 17% among European men⁷. The study of erectile dysfunction has a rich history, dating back to early research exploring its physiological and psychological aspects. Previous studies have provided valuable insights into the vascular, neurological, hormonal, and psychological factors contributing to ED. However, these early research endeavors often lacked a comprehensive and integrated approach, focusing predominantly on a single aspect or limited treatment modalities⁸. Erectile dysfunction (ED) commonly coexists with medical conditions such as hypertension, diabetes mellitus, obesity, and atherosclerosis⁹. One of the significant limitations encountered in the early research on erectile dysfunction (ED) was the fragmented understanding of the condition. Previous studies often focused solely on physiological or psychological factors, neglecting the intricate interplay between these domains. Consequently, the available treatment options were frequently limited and failed to address the underlying causes of ED effectively. Consequently, there is a pressing need to develop a more comprehensive and innovative approach to identify and treat erectile dysfunction¹⁰ accurately. Despite advances in the field, erectile dysfunction remains a significant health concern with a profound impact on the quality of life for affected individuals and their partners. Existing treatment approaches, such as oral medications, injections, and devices, have limitations and do not adequately address the condition's root causes. Therefore, there is a pressing need for a novel method that integrates the latest scientific findings to provide a comprehensive and personalized approach to identifying and treating erectile dysfunction¹¹. The individual's general health and non-communicable diseases such as psychiatric/psychological problems, diabetes mellitus, genitourinary disease, cardiovascular disease, and chronic diseases are some major risk factors linked to erectile dysfunction¹². Mazzilli et al. (2022) proposed a methodology for investigating and evaluating erectile dysfunction. This approach involves conducting a thorough anamnestic inquiry that focuses on several aspects, including the time of onset of ED, interaction with a specific partner, degree of erection/rigidity, presence of couple discord, ejaculation

without an erection, and occurrence of nocturnal sudden erections. Additionally, specific questionnaires such as the IIEF 15 may be utilized to determine the total score for ED, which should be less than 26. Alternatively, the IIEF 5 questionnaire with a total score of less than 22 may be used, indicating ED. Specialized first-level studies, including biochemical and hormone tests, and second-level studies, such as the study of the neurogenic reflex, penile color Doppler, and monitoring of nocturnal penile erections, may also be necessary to diagnose and assess the condition¹³ accurately. Raheem et al., (2021) have given noble techniques for managing erectile dysfunction, such as stem cell therapy and platelet-rich plasma¹⁴. This review proposes a novel approach to identifying and treating erectile dysfunction by addressing research gaps. Vardenafil and tadalafil, newer medications than sildenafil, provide alternative treatment options. They differ in their chemical structures, particularly in ring configurations. Vardenafil's structural modifications enhance its binding to PDE-5, while tadalafil replaces the piperazine ring with a hydantoin ring. Clinical trials show a strong preference for tadalafil over sildenafil in men with erectile dysfunction¹⁵. The review article's findings and recommendations hold promise for transformative shifts in diagnosing and treating erectile dysfunction. Overcoming research limitations and adopting comprehensive approaches enable tailored interventions, potentially enhancing outcomes, patient satisfaction, and long-term understanding. This study also fosters further research and innovative strategies, revolutionizing erectile dysfunction management¹⁶. This review article introduces a pioneering approach to diagnosing and treating erectile dysfunction by integrating current scientific knowledge and addressing research limitations. It aims to review etiology and pathophysiology, identify research gaps, propose a new framework, and discuss the potential impact and future directions.

2. SCIENTIFIC RATIONALE

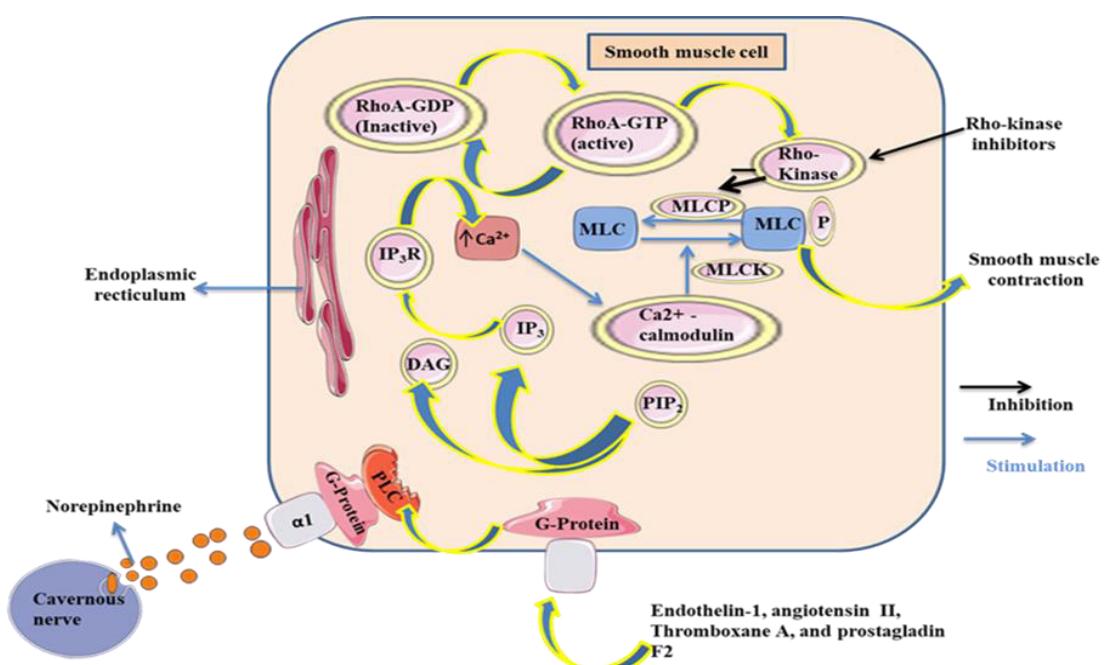

An erection involves vascular, neural, endocrine, and psychological factors. Sensory inputs from visual, olfactory, imaginative, and genital stimulation are integrated into the brain. 5-HT, Dopamine, Norepinephrine, and oxytocin are neurotransmitters that attach to receptors in the penile nerves. Dopamine induces erections indirectly via the D1 and D2 receptors¹⁷. Activating oxytocinergic neurons that release oxytocin, 5-HT has inhibitory effects on erections, with 5-HT1A inhibiting erection and facilitating ejaculation, while 5-HT1C stimulation induces erection^{18, 19}. Melanocortins interact with MC3R and MC4R, impacting dopaminergic neurons and activating the NO/cGMP pathway, leading to oxytocin release²⁰. The spinal cord, brain, and penile nerves receive the pro-erectile signal from melanocortins²¹. The sacral erection center comprises neurons in the spinal cord and cavernous nerves. Nonadrenergic-noncholinergic fibers release nitric oxide (NO) in the penis upon acetylcholine stimulation. NO activates sGC, increasing cGMP synthesis, inducing smooth muscle relaxation, and enhancing blood flow^{22, 23}. The cGMP pathway is essential for erection, while cAMP has a supportive role²⁴. Adenosine stimulates AC, generating cAMP and activating cAMP-dependent kinase (cAK). cAK phosphorylates targets in the downstream pathway, regulating specific functions²⁵.

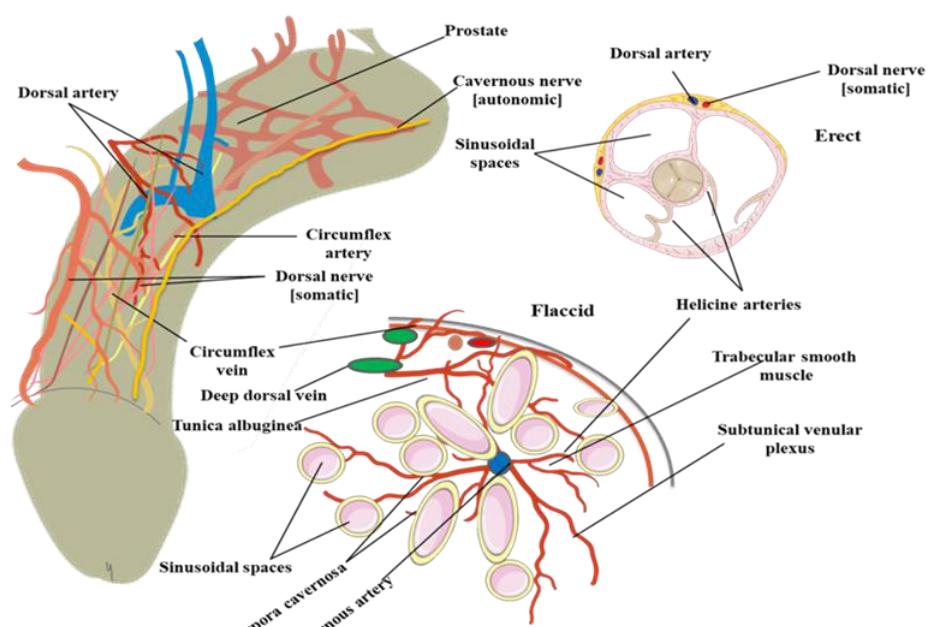
Fig. 1: - Molecular pathways that play a role in the relaxation response of penile smooth muscle²³.

(Fig. 1) illustrates the key molecular pathways engaged in the relaxation of penile smooth muscle. Activation of soluble guanylate cyclase (sGC) leads to increased cyclic guanosine monophosphate (cGMP) levels, which activate a specific protein kinase. This kinase inhibits intracellular calcium influx, resulting in smooth muscle relaxation. Additionally, cAMP contributes as a supporting factor in this process. Understanding these molecular mechanisms is crucial for elucidating the physiological basis of erectile function and developing targeted therapies for erectile dysfunction. Sympathetic adrenergic nerves primarily regulate the flaccid state and subsiding of the erect penis from sexual arousal. Norepinephrine stimulates α 1-adrenoceptors, which contract

the smooth muscle in penile trabeculae and arteries^{26, 27}. This contraction involves the mobilization of intracellular calcium ions (Ca^{2+}), which bind to calmodulin, activating myosin light-chain kinase (MLCK). MLCK phosphorylates myosin, initiating smooth muscle contraction. Reversal of contraction occurs through dephosphorylation of myosin light chain (MLC) by MLC phosphatase (MLCP) - Phosphorylation-regulating enzyme for myosin light chain (MLC) RhoA/Rho-kinase (ROCK) pathway - RhoA signaling pathway involving Rho-kinase, activated by RhoA, inhibits MLCP, sustaining smooth muscle contraction^{28, 29}. The ROCK pathway also influences cavernosal endothelial cell integrity and function and may be involved in apoptosis³⁰.

Fig 2: Molecular mechanisms implicated in the constriction of smooth muscle in the penis.³¹

Angiotensin II, prostaglandin F2, endothelin-1, and thromboxane A2 bind to G-PCR receptors, which activate phospholipase C which in turn hydrolyses phosphatidylinositol 4,5-bisphosphate to produce 1,2-diacylglycerol (IP3) and 1,4,5-triphosphate. IP3 adheres to dedicated (IP3R) on the smooth endoplasmic reticulum, releasing intracellular calcium stores ²². These vasoconstrictor agonists can bind to receptor-activated channels and release the stored calcium without changing membrane potential (Fig. 2) ³¹. Potassium channels in the smooth muscle of the cavernosal tissue play a crucial role in regulating erections. These channels come in various types. The most significant contributors are the participation of the (maxi-K), which are calcium-sensitive, and (K ATP) channels, which are controlled metabolically. Activation of these channels leads to hyperpolarization of the smooth muscle cells, resulting in the closure of voltage-dependent calcium channels. Consequently, the concentration of intracellular free calcium decreases, leading to the relaxation of the cavernosal smooth muscle.

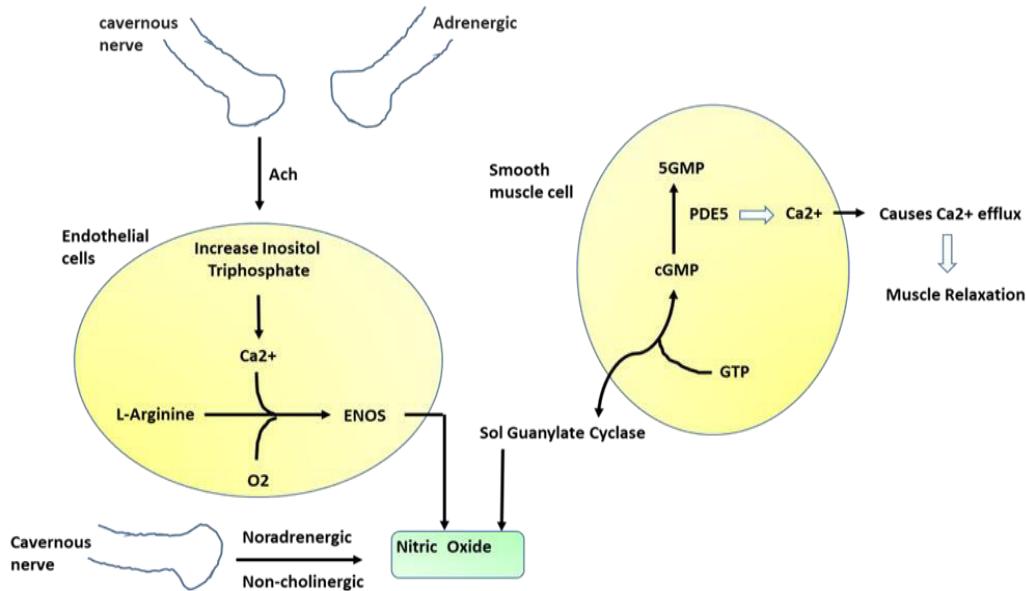

3. CURRENT RESEARCH GOALS

Ongoing research in erectile dysfunction (ED) drug development focuses on three main areas: enhancing the selectivity and effectiveness of current PDE5 inhibitors (PDE5-Is), exploring alternative signaling pathways underlying the erectile response, and advancing gene-related treatment strategies. Multiple FDA-approved PDE5-Is are available, and both existing international options and newly developed compounds show promising outcomes in clinical trials. Researchers are investigating the central modulation of dopamine, serotonin, and melanocortin receptors, while also

exploring peripheral approaches targeting pathways upstream of NO-dependent activation of sGC. Additionally, the Rho-kinase pathway has shown potential through its antagonism in inducing penile erections. Gene therapy has gained attention, with direct injection of genetic material into the easily accessible penis, utilizing the slow turnover rate of the tunica albuginea for prolonged effects ³². Initial clinical studies utilizing the Maxi-K ion channel for gene transfer have demonstrated encouraging results and a favorable safety profile ³³.

4. ANATOMY AND PHYSIOLOGY OF ERECTION

The neurological, circulatory, and endocrine systems are all involved in the multifactorial, complex pathway that leads to erectile dysfunction. Understanding the pathophysiology and the reasoning behind treatment options will be made easier with a complete understanding of the anatomy and physiology of erections (Fig. 3). The penis comprises the corpora cavernosa, which passes through the corpus spongiosum and encircles the urethra along the entire length of the penile shaft. The peripheral nervous system's somatic (sensory and motor) and autonomic (sympathetic and parasympathetic) branches supply the penile tissue. The sympathetic nerves, which have an anti-erectile effect and regulate ejaculation and detumescence, emerge from T11-L2. On the other hand, the parasympathetic nerves that support erection arise from S2-S4. To maintain blood flow during an erection, cavernous sympathetic and parasympathetic nerves infiltrate the corpus spongiosum, corpora cavernosa, and glans penis ³⁴.


Fig 3: - Anatomy and Mechanism of Penile Erection, displaying the main structures, blood vessels, and nerves ³⁵.

The autonomic cavernous nerves regulate penile blood flow during erection, while the somatic dorsal nerves are responsible for penile sensation. During an erection, smooth muscle relaxation and arteriolar vasodilation increase blood flow, expanding sinusoidal spaces and enlarging the penis. The expanded sinusoids compress the subtunical venular plexus against the tunica albuginea, reducing blood outflow. In the

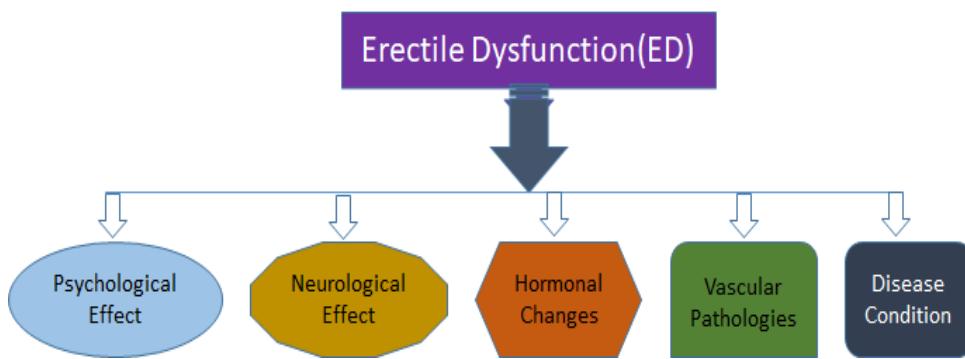
flaccid state, minimal inflow occurs through constricted helicine arteries, with free outflow via the subtunical venular plexus. The pudendal nerve gives motor capability to the pelvic floor, sphincters, stiffness muscles, and sensibility to the penis. The penis receives blood from the internal pudendal arteries, which divide into the bulbourethral, cavernosal, and dorsal arteries. The bulbourethral artery

supplies blood to the bulb of the penis and the penile urethra and runs through the deep penile fascia. Meanwhile, the dorsal artery gives off circumflex branches that support the veins and terminate in the glans, passing between the deep dorsal vein and the dorsal nerve. The deep penile or cavernosal artery supplies the specialized helicine arteries, which extend the length of the penile shaft and enter the corpus cavernosum at the crus³⁶. Acetylcholine

(Ach) is released by parasympathetic nerves in response to sexual stimulation (Fig. 4). Nitric oxide (NO) is produced within the endothelial cells lining penile arteries through the action of nitric oxide synthase (eNOS), which converts L-arginine into NO. The guanylate cyclase enzyme in the spongiosum and corpora cavernosa is activated by releasing NO, producing cGMP (cyclic guanosine monophosphate), and relaxing the vascular smooth muscle^{37,38}.

Fig 4: Physiology of Erection of penis³⁹.

The diagram depicts the process of sexual stimulation triggering the release of (Ach) liberated by the parasympathetic neural pathways, leading to the conversion of L-arginine into nitric oxide (NO) by nitric oxide synthase (eNOS) in endothelial cells. This NO release then activates guanylate cyclase, which increases cyclic guanosine monophosphate (cGMP) levels. Elevated cGMP levels subsequently relax the vascular smooth muscle in the spongiosum and corpora cavernosa, ultimately leading to penile erection. Understanding the role of NO in erections is important in developing effective treatments for erectile dysfunction.


5. PATHOPHYSIOLOGY OF ERECTILE DYSFUNCTION

ED is categorized into a combined psychogenic and organic form (drug-induced or neurogenic, hormonal, arterial, and cavernosal). The assorted psychogenic and organic form is the most prevalent. The causes of ED can be complex and varied. Depression, relationship problems, anxiety, and stress are some psychological factors that describe the fear of erectile dysfunction can all contribute to the condition. Neurological factors such as central or peripheral neurologic disease can also be a cause. Hormonal changes, particularly decreased testosterone levels, can lead to erectile dysfunction. Vascular pathologies, including hypertension and atherosclerosis, can negatively affect blood flow and

contribute to the condition⁴⁰. Certain conditions, such as cardiovascular disease, hyperlipidemia, diabetes, chronic kidney disease, and reproductive cancer, can also prompt erectile dysfunction. It is important for individuals experiencing erectile dysfunction to consult with a healthcare professional to determine the underlying cause and appropriate treatment options⁴¹. The following factors are responsible for erectile dysfunction (Fig. 5).

6. CAUSE OF ERECTILE DYSFUNCTION

The causes of ED can be complex and varied. Psychological factors such as anxiety, stress, depression, relationship problems, and fear of erectile dysfunction can all contribute to the condition. Neurological factors such as central or peripheral neurologic disease can also be a cause. Hormonal changes, particularly decreased testosterone levels, can lead to erectile dysfunction. Vascular pathologies, including hypertension and atherosclerosis, can negatively affect blood flow and contribute to the condition¹³. Certain conditions, such as cardiovascular disease, hyperlipidemia, diabetes, chronic kidney disease, and reproductive cancer, can also prompt erectile dysfunction. It is important for individuals experiencing erectile dysfunction to consult with a healthcare professional to determine the underlying cause and appropriate treatment options¹⁴. The following factors are responsible for erectile dysfunction (Fig. 3).

Fig. 5 :- The causative factors of Erectile dysfunction ⁴²

Various factors, including psychological effects such as anxiety, stress, depression, relationship problems, fear, neurological effects, hormonal changes, vascular pathologies, and disease conditions, can cause erectile dysfunction. Understanding these factors is crucial for effective diagnosis and treatment of erectile dysfunction.

7.1. Psychological effect

Psychological factors contributing to erectile dysfunction are not as simple to detect, diagnose and treat. The most common psychological factors for ED are as follows ^{43, 44}.

7.2. Anxiety

Real, tangible bodily ramifications of psychological problems. For instance, many people believe that they don't experience anxiety. However, anxiousness can result in a faster heartbeat, problems with blood pressure, and exhaustion. As a result, anxiety can impact sexual performance and is ED's most prevalent psychological cause.

7.3. Stress

Everybody experiences stress once or twice in their lives. Stress can occasionally serve as a potent motivator. The capacity to achieve and maintain sexual performance might be affected by stress.

7.4. Depression

An imbalance in brain chemistry is frequently the root cause of depression. Both sexual desire and sexual performance may be impacted.

7.5. Relationship problem

Suppose there is a bad relationship between the partners. Sexual relationships can be impacted by problems in a couple's relationship. Fury, poor communication, and arguments can affect sexual function and desire.

7.6. Fear of erectile dysfunction

First-time people experiencing erectile dysfunction; may become nervous that they will never recapture normal sexual function. This can steer to fear. Psychological factors such as stress, anxiety, depression, relationship issues, and fear can affect a person's ability to achieve or sustain an erection during sexual activity. These emotions may play a role in the onset of erectile dysfunction.

7.7. Neurological effect

Neurogenic erection dysfunction is caused by neurological factors mentioned in Table- 1. The incapability to attain or regulate erectile dysfunction caused by either central or peripheral neurological diseases can result in difficulty achieving or maintaining an erection ⁴⁵.

Table- 1: List of Neurological factors that cause erectile dysfunction

Sr. no.	Neurological factors	Cause	References
1	Spinal cord injury	Due to spinal cord injury, organic changes occur in men, and these changes cause erectile dysfunction.	46
2	Cerebrovascular accident	Acute ischaemic stroke in the brain causes erectile dysfunction.	47
3	Parkinson's disease (PD)	Erectile dysfunction can occur in people with Parkinson's disease due to testosterone deficiency.	48
4	Multiple sclerosis	Erectile dysfunction is the primary autonomic nervous system disease associated with a persistent disease that affects the myelin sheath surrounding nerve fibers in the central nervous system (CNS) and is known as demyelinating disease.	49
5	Epilepsy	Epilepsy is the common cause of erectile dysfunction.	40
6	Lumbar disc herniation (LDH)	LDH, a pathological condition, commonly causes radicular pain. Lumbosacral disc disease can affect nerve conduction related to erection through various somatic and autonomic pathways.	50

Table- 1. Represents various neurological conditions and their association with erectile dysfunction. Spinal cord injury, cerebrovascular accident, Parkinson's disease, multiple

sclerosis, epilepsy, and lumbar disc herniation are discussed as potential causes of erectile dysfunction due to organic changes or disruptions in neurological pathways. This

comprehension can be beneficial for healthcare professionals to recognize and manage the fundamental causes of erectile dysfunction in patients affected by these medical conditions⁵¹.

7.8. Hormonal Changes

Hormonal changes are also a crucial factor for erection. A few of the hormone which plays a major role in erection is listed below⁵².

7.9. Testosterone

Testosterone (T) is a well-known essential hormone that plays a core or peripheral role in influencing male sexual response. As men age, their testosterone levels gradually decrease, which leads to erectile dysfunction.

7.10. Vascular Pathologies

Vascular factors mainly consist of two factors responsible for erectile dysfunction⁵³.

7.11. Hypertension

Another common cause of erectile dysfunction is hypertension or high blood pressure. Angiotensin II, endothelin 1, and aldosterone are pro-contractile substances released persistently and widely during hypertension. This imbalance between vasoconstrictors and vasodilators adversely affects vascular and erection structures⁵³.

7.12. Atherosclerosis

The deposition of plaque (fats) into the arteries is called Atherosclerosis. It may cause a higher deficit in blood flow which steers to erectile dysfunction⁵⁴.

7.13. Medical need

Despite significant advancements in the therapeutic intervention of erectile dysfunction (ED), certain patient groups show poorer response rates to currently available therapies. These populations include individuals with diabetes, post-prostatectomy patients, those with hypogonadism, and individuals with veno-occlusive dysfunction. In diabetes, ED arises from endothelial dysfunction, reduced enzymatic function of endothelial nitric oxide synthase, heightened contractile sensitivity, and impaired nitrergic nerve signaling⁵⁵. Such disruptions occur before the target site of phosphodiesterase type 5 inhibitors, limiting their efficacy. Post-prostatectomy, damage to the neurovascular bundle impairs proper molecular signaling involved in smooth muscle relaxation, leading to hypoxia, tissue fibrosis, and programmed cell death⁵⁶. Hypogonadism patients require testosterone replacement therapy as testosterone regulates nitric oxide synthase and PDE5 expression, which is important for erectile function⁵⁷. Veno-occlusive dysfunction, characterized by structural abnormalities, presents challenges for pharmacologic therapy⁵⁸.

7.14. Related Disease States

Although PDE-5 inhibitors have proven effective, many patients, particularly those with chronic conditions like

diabetes mellitus (DM) and cardiovascular disease (CVD), still do not respond to this therapy due to impaired NO release. Exploring these disease states can offer valuable insights into the underlying causes of refractory erectile dysfunction (ED).

7.15. Cardiovascular Disease

Cardiovascular diseases (CVD) and erectile dysfunction (ED) share reduced vascular endothelial function and reduced nitric oxide bioavailability, leading to a high coexistence. Diabetes mellitus, smoking, hypercholesterolemia, and high blood pressure, related risk factors for both conditions, contribute to their coprevalence⁵⁹. ED has been substantially linked to (CVD), and (CVD) related deaths, but its predictive value for CVD is not superior to traditional risk factors⁶⁰. PDE-5 inhibitors are contra-indicated to patients prescribed with nitrates⁶¹. In hypertension, arterial stenosis, apart from high blood pressure, is linked to the development of ED⁶². Hypertensive patients may experience endothelial changes in the penis before systemic vascular dysfunction, with oxidative damage playing a role⁵⁹. Hypertension is correlated with impaired endothelium-mediated smooth muscle relaxation, potentially involving the synthesis of nitric oxide by endothelial nitric oxide synthase⁶³. Animal studies have shown that ischemia/hypertension models result in nerve and smooth muscle alterations in the penis⁶⁴. Given the association of endothelial dysfunction with various vascular diseases, ED serves as a warning sign for silent vascular disease⁶⁵.

7.16. Diabetes

The Massachusetts Male Aging Study (MMAS) discovered that diabetic men have a threefold higher risk of developing erectile dysfunction (ED) than non-diabetic men⁶⁶. ED in diabetes is associated with peripheral vasculopathy, neuropathy, and chronic hyperglycemia-induced micro- and macrovasculopathy, including endothelial dysfunction. The risk factors for diabetic ED are hypertension, advanced age, retinopathy, diabetes duration, obesity, poor glycemic control, and hyperlipidemia⁶⁷.

7.17. Priapism

An erection lasting longer than 4 hrs without any sexual stimulation is referred to as priapism⁶⁸. The sinusoidal endothelium and cavernosal smooth muscle cells are damaged as a result of prolonged erection caused due to ischemic and intermittent priapism⁶⁹. In (SCD) patients, priapism is prevalent, where free hemoglobin oxidizes nitric oxide (NO), leading to hemolytic endothelial dysfunction⁷⁰. Various vasoactive signaling molecules like Rho-kinase, nitric oxide, adenosine, etc., are affected, thus resulting in ED. Additionally, priapism can be caused by long-acting erectile function-promoting agents⁶⁸.

7.18. Drug-Induced erectile dysfunction (ED)

A fraction of newly reported cases, encompassing approximately 25%, diagnosed as erectile dysfunction (ED) cases may be attributed to the side effects of certain drugs⁷¹. Antihypertensive medications, particularly thiazide diuretics, are reported to have a higher incidence of ED than other antihypertensive agents. The exact mechanism is unclear, but it is speculated that diuretics may interfere with smooth muscle relaxation⁷². Calcium channel antagonists and ACE

inhibitors have fewer negative effects on sexual function than diuretics, centrally acting agents, and beta-blockers⁷³. Spironolactone, an aldosterone antagonist, can cause ED through an antiandrogenic mechanism⁷⁴. Due to the antiadrenergic effects of B-blocking agents like atenolol and propranolol, slight psychological depression has been linked to ED⁷⁵. ED can be managed by decreasing the adrenergic output caused by centrally acting antihypertensives such as methyldopa⁷⁶⁻⁷⁹. However, ED has been observed as a common side effect associated with the use of antidepressants⁶². Increased prolactin levels associated with the use of H2-antagonist cimetidine and phenothiazine antipsychotics (chlorpromazine and thioridazine) have also been linked to ED⁸⁰⁻⁸².

8. EMERGING TREATMENT FOR ERECTILE DYSFUNCTION

8.1. *Melanotan II and bremelanotide: MCR agonists*

Researchers have investigated the potential of melanocortin receptor (MCR) agonists, including melanotan II and bremelanotide, for treating erectile dysfunction (ED). Melanotan II, originally studied for tanning purposes, exhibited pro-erectile effects in a Phase I trial. Subsequent administering Melanotan II to men with erectile dysfunction (ED) produced substantial outcomes. Penile erections even without sexual stimulation, although notable side effects such as severe nausea and yawning were observed⁸³. In contrast, intranasal administration of bremelanotide showed clinically significant erectile responses compared to placebo, with an onset of erection within approximately 30 minutes⁸⁴. A Phase IIb trial of bremelanotide in patients with diabetes-induced ED found that the International Index of Erectile Function-Erectile Function domain scores improved significantly to⁸⁵. In patients who had failed treatment with PDE5 inhibitors, bremelanotide demonstrated superior IIEF scores and overall sexual satisfaction⁸⁶. Intranasal bremelanotide was discontinued due to side effects, and researchers are now focused on developing a subcutaneous form to enhance control and reduce adverse events. Phase III trials using the subcutaneous formulation are expected to be conducted⁸⁷.

8.2. *ABT-724 and ABT-670: Dopamine agonists.*

Selective dopamine D4 receptor agonists, ABT-724 and ABT-670, demonstrated promise in preclinical trials. ABT-724 induced erections in rats without typical dopamine-related side effects⁸⁸. Combining ABT-724 with sildenafil synergistically enhanced erections, suggesting potential benefits for severe erectile dysfunction⁸⁹. However, ABT-724 has no ongoing clinical trials due to strategic misalignment. ABT-670, another D4-selective agonist, exhibited superior oral bioavailability and comparable efficacy to ABT-724. Unfortunately, both ABT-724 and 670 were discontinued during Phase I and II regarding the expansion in their respective paths⁹⁰.

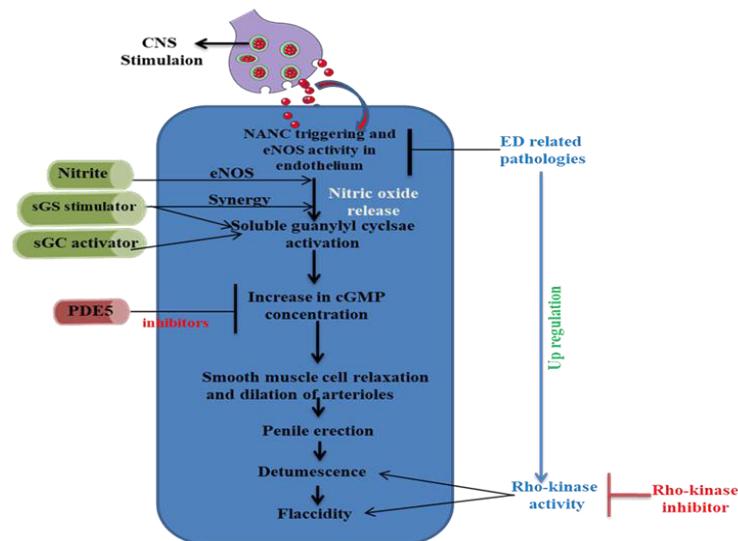
8.3. *Clavulanic acid (Zoraxel)*

Clavulanic acid has exhibited the ability to promote erections. In nonhuman primate studies, it demonstrated an increase in sexual arousal and penile erections by enhancing serotonin and dopamine activity⁹¹. Administering different

clavulanic acid doses over 14 days resulted in increased ejaculations, confirming its pro-sexual effects. A Phase IIa study in erectile dysfunction patients demonstrated dose-dependent improvements in Sexual performance and general quality of life. However, a planned Phase IIb trial in 2010 was subsequently suspended⁹².

9. PERIPHERALLY ACTING AGENTS

9.1. *BAY 60-4552: sGC stimulator/activator.*


The effectiveness of PDE5 inhibitors (PDE5-Is) in treating erectile dysfunction (ED) relies on cGMP production, which is dependent on NO-mediated activation of sGC. However, patients with impaired NO release, such as people with diabetes or post-prostatectomy individuals, may exhibit a limited response to PDE5-Is. Directly stimulating sGC, independent of NO availability, is a promising approach. The native form of sGC is galvanized by Heme-dependent stimulators like BAY 63-2521 and 60-4552 to synergize with nitric oxide, while heme-independent activators (BAY 58-2667) activate the pathologic form induced by oxidative stress⁹². Animal and in vivo studies have shown improved erectile function with BAY 60-4552 alone or combined with a PDE5-I^{93, 94}. However, a Phase II study comparing BAY 60-4552 (1 mg) and vardenafil (10 mg) combination to vardenafil alone did not demonstrate the superiority of the combination treatment⁹⁵.

9.2. *Rho-kinase inhibitors: fasudil, SAR407899*

Rho-kinase inhibitors have shown promise as potential treatments for erectile dysfunction in diabetic patients. The reduced NO production causing enhanced smooth muscle contractility is associated with neuronal and diabetes-related endothelial dysfunction. The upregulation of the ROCK pathway exacerbates this contraction. Fasudil and Y-27632, tested in diabetic rat models, restored relaxation responses and improved erectile function⁹⁶. SAR407899, a potent Rho-kinase inhibitor, demonstrated efficacy in relaxing corpora cavernosa in human and animal studies, particularly in diabetic animals^{97, 98}. However, a Phase II clinical trial with SAR407899 showed limited efficacy in increasing penile rigidity compared to placebo and sildenafil. Development of SAR407899 has been discontinued because of less efficiency⁹⁹.

9.3. *Maxi-K channel activators: NS-11021*

The maxi-K channel is a vital negative feedback system that links increased intracellular calcium levels to potassium currents, resulting in outward hyperpolarization. Researchers are studying compounds that activate these channels and increase erectile function. NS1619, an early activator, showed therapeutic potential for smooth muscle disorders, including erectile dysfunction (ED), but its clinical use was limited due to low potency and adverse effects¹⁰⁰. The development of NS11021, a more selective and potent activator, demonstrated its ability to induce relaxation in penile arteries and corpus cavernosum, producing erectile responses comparable to sildenafil^{101,102}. Andolast, currently in Phase III clinical trials, is the sole maxi-K channel-targeting drug candidate under development for mild/moderate asthma. At the same time, other studies explore its studies in bladder function and myocardial ischemia¹⁰⁰.

Fig. 6:- Pathway for control of penile erection ¹⁰³

The control of penile erection and detumescence involves complex pathways. Stimulation from higher brain centers triggers increased cholinergic and non-adrenergic non-cholinergic activity while reducing sympathetic activity in penile nerves. This increases nitric oxide release from the endothelium and NANC nerve terminals. NO binds to soluble guanylyl cyclase, boosting cyclic guanosine monophosphate (cGMP) synthesis. cGMP-dependent protein kinase activates potassium channels, reduces intracellular calcium levels, and relaxes smooth muscle cells. This promotes the flow of blood into the penis, causing an erection. Detumescence occurs when vasoconstrictors are released, and cGMP is broken down by phosphodiesterase 5. Novel treatment targets include Rho-kinase inhibitors,

sodium nitrite, and sGC stimulators/activators, which enhance NO-mediated effects and counteract erectile dysfunction.

9.4. Disease conditions

Erectile dysfunction can be prompted by some disease conditions, for example, cardiovascular disease, hyperlipidemia, diabetes, chronic kidney disease, and reproductive cancer ¹⁰⁴.

9.5. Diagnosis of Erectile dysfunction

ED can be diagnosed by several methods, (Table- 2.)

Table- 2: Diagnostic methods of erectile dysfunction

Sr. no.	Diagnostic method name	Procedure	References
1.	Physical examination	Diagnosing erectile dysfunction requires a thorough physical examination that evaluates various aspects of genital and prostate health. Medical professionals typically measure blood pressure, assess peripheral pulse, and examine the size and texture of the testicles. They also evaluate penile sensation and look for abnormalities in the penis or surrounding areas, such as Peyronie's plaque or hypospadias.	¹⁰⁵
2.	Sexual history	Clinician asks some questions from patients about their sexual history to diagnose erectile dysfunction, such as "How's your sex life?". A patient should respond to this kind of question with a loud, concise, and straightforward "Everything is fine." Any other reaction or a pause in communication should raise suspicions that the patient may have an ED.	¹⁰⁶
3.	Medical history	Medical history should obtain about any preceding surgical procedures or several medical disorders.	¹⁰⁷
4.	Laboratory testing	To confirm erectile dysfunction, fasting glucose level, fasting lipid profile, prostate-specific antigen test, and total testosterone level are performed.	¹⁰⁸
5.	Screening of ED	IIEF-5 questionnaires are utilized to screen the ED.	¹⁰⁹
6.	Apomorphine test	Streptozotocin is injected intraperitoneally to cause type 1 diabetes; after that apomorphine test is used to measure erectile function.	¹¹⁰
7.	NPTR test	The test for nocturnal penile tumescence and rigidity is an effective technique for diagnosing and treating erectile dysfunction. It assesses erectile function and is a crucial tool for separating organic from psychogenic causes of impotence.	¹⁰⁸
8.	Biothesiometry test	A method known as biothesiometry is used to assess the sensory power of the neurons in the penis. By vibrating the glans and both sides of the penile shaft using an electromagnetic test probe, ask the patient to describe when he feels the vibration.	¹¹¹
9.	Color duplex Doppler	The gold standard for identifying males with vascular ED is the color duplex	¹¹²

	ultrasound test	Doppler ultrasonography. Color Doppler imaging is performed for both cavernous arteries after intravenously delivering a vasoactive drug (such as 10 g of alprostadil). PSV (Peak systolic velocity) < 25 cm/s is used to diagnose arterial insufficiency, while PSV > 35 cm/s indicates adequate arterial function.	
10.	CTA	CTA is a useful diagnostic tool for detecting peripheral arterial lesions with the help of specific dye.	113
11.	Non-coding RNA as a biomarker	A biomarker is used to investigate erectile dysfunction caused by diabetes mellitus.	114
12.	Psychological assessment	Men with ED may benefit from psychological evaluation to learn more about the influence of their relationships, cultural and religious factors, depression, and other psychological problems.	115
13.	Neurophysiology test/ Electromyography (EMG)	Neurophysiology test examines the peripheral nerves by stimulating the nerves with safe tiny electrical pulses, like that of static shocks, and recording the response.	116
14.	Androgen symptoms of age (AMS)	AMS scale is widely used for screening men suspected of erectile dysfunction.	117
15.	Male copulatory function scale (MCF)	It is a scale for the total quantification of male copulative function that facilitates diagnosing and observing MCF abnormalities and controlling MCF amendment. The scale is based on normal values provided by statistical data on the sexual activity of males and its age-related changes.	117

Table- 2. Erectile dysfunction (ED) is a common problem that affects many men worldwide. Diagnostic methods are available to identify the underlying cause of ED and guide treatment. These include physical examination, sexual history, medical history, laboratory testing, screening questionnaires, and various specialized tests such as the apomorphine test, NPTR test, biothesiometry test, and color duplex Doppler ultrasound. Psychological evaluation and androgen symptoms of age and male copulatory function scales can also aid in diagnosing ED. Clinicians should consider utilizing these diagnostic methods comprehensively to diagnose and manage ED ¹¹⁸ accurately.

9.6. Management of ED

(ED) is a predominant disorder that makes it difficult for men to achieve or maintain an erection adequate for sexual intercourse. Physical, psychological, and lifestyle issues can cause ED for various reasons. The management of ED depends on the underlying cause of the condition (Fig. 7). But the following is some of the latest knowledge on the management of ED ¹¹⁹.

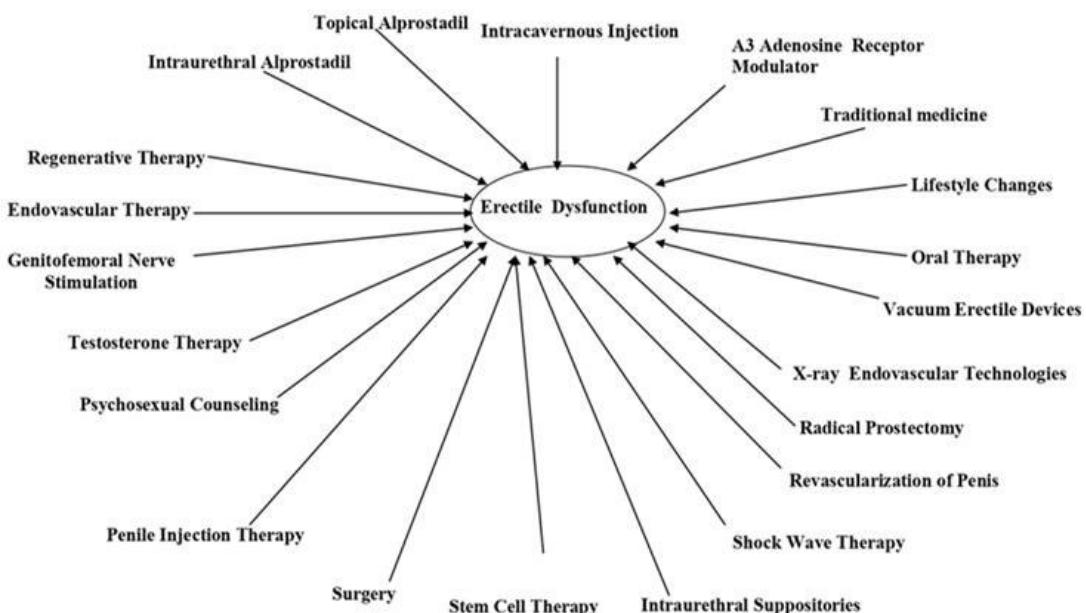


Fig. 7:- Management of Erectile Dysfunction ¹¹⁸.

A detailed summary of different approaches for managing erectile dysfunction. It's great that many options are available for patients, ranging from traditional medicine to high-tech procedures such as X-ray endovascular technologies. It's also interesting that lifestyle changes, such as reducing sedentary behavior and controlling calorie intake, may improve sexual performance. Overall, the field of erectile dysfunction management seems to be quite diverse and rapidly advancing.

9.7. Intracavernous injection

Bieri et al., (2020) use the Magellan devices two 12 in. to carry out the clinical study of intracavernous injection as an extraction of caverstem 1.0, a low dose of 3 ml, or a high dose of 6 ml of sterile bone marrow concentrate. They injected bone marrow concentration of about 1.5 or 3.0 ml with 25 gauze needles ¹⁰⁵.

9.8. A3 adenosine receptor modulator

Itzhak et al., (2022) found that an A3 adenosine receptor allosteric modulator rectifies the binding properties of endogenous adenosine to the receptor. Attaching to its receptor and activating a pathway that increases intracavernosal pressure, arterial blood flow, and adenosine play a crucial role in erection ¹²⁰.

9.9. Traditional medicine

Yang et al., (2022) used traditional hirudinto treat diabetic ED. Hirudin is an active ingredient obtained from the leech.

A novel strategy is intended for them to find out possible destinations based on the investigating tools of traditional Chinese medicine (TCM), and they found that MPO (myeloperoxidase) is a promising target of hirudin. Hirudin interacts with myeloperoxidase directly and blocks its function, further reducing the amount of oxidized low-density lipoprotein in serum. According to their findings, hirudin can help with the symptoms of diabetic erectile dysfunction ¹²¹. Sun et al., (2022) also used the traditional Chinese medicine Paeonol (pae) to treat diabetic erectile dysfunction ¹²².

Table- 3:Some herbal products used in the treatment of ED are listed

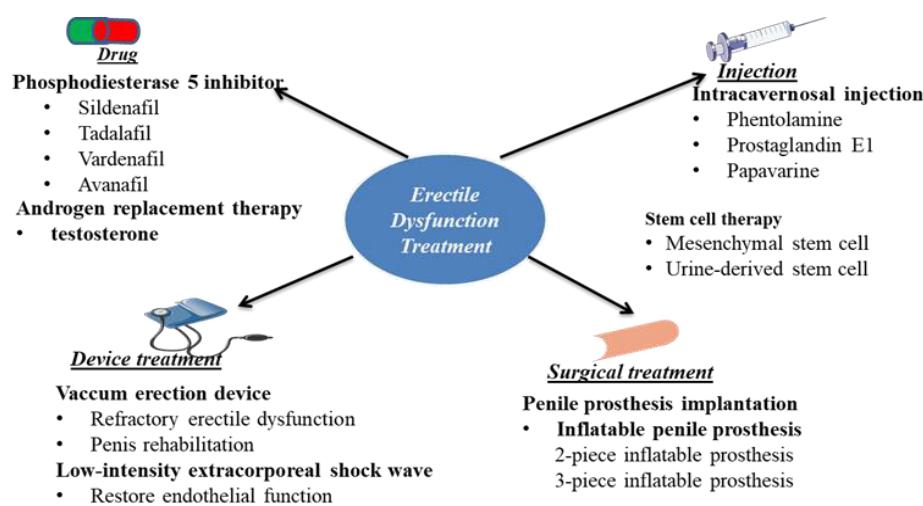
Sr.no.	Medicinal Plants	Traditional use	Potential benefits	References
1	<i>Panax ginseng</i>	Traditional Chinese medicine	It may improve sexual function and increase testosterone levels in men.	¹²³
2	Horny goat weed (Barrenwort)	Traditional Chinese medicine	It can potentially enhance blood circulation to the genital area and enhance sexual performance.	¹²⁴
3	Yohimbe obtain from (<i>Corynanthe yohimbe</i>)	Traditional African medicine	This may enhance penile blood flow and ameliorate sexual function.	¹²⁵
4	<i>Tribulus Terrestris</i>	Traditional medicine	It could potentially boost testosterone levels and enhance sexual function.	¹²⁶
5	<i>Ginkgo biloba</i>	Traditional Chinese medicine	It may improve blood flow, sexual function, and libido.	¹²⁷

Table- 3. Presents a selection of herbal products commonly used in traditional medicine for sexual health. *Panax ginseng*, a traditional Chinese medicine, may enhance sexual function and increase testosterone levels in men. *Horny goat weed* can improve blood circulation to the genital area and enhance sexual performance. *Yohimbe*, derived from traditional African medicine, may enhance penile blood flow and improve sexual function. *Tribulus Terrestris*, a traditional medicinal herb, shows promise in boosting testosterone levels and enhancing sexual function. *Ginkgo biloba*, another traditional Chinese medicine, may improve blood flow, sexual function, and libido.

9.10. Lifestyle changes

According to Defeudis et al., (2022), sedentary lifestyles, overweight/obesity, and higher calorie intake have all been

linked to the emergence of diabetes mellitus erectile dysfunction. And altering one's way of life might enhance sexual performance ¹²⁸.


9.11. Oral therapy

Salvio et al., (2022) utilized many therapies to manage erectile dysfunction. They introduced oral therapy as a Phosphodiesterase 5 inhibitor class of drugs like (SIL), (VAR), (TAD), and Avanafil. These medications prevent the vessel's smooth muscle cells from producing the enzyme phosphodiesterase-5 (PDE-5). PDE-5 inhibitor stops PDE-5 from degrading to the cGMP by blocking this enzyme. Protein kinase G may be activated by GMP, which will relax the vascular smooth muscle ¹²⁹. Some of the marketed products, active ingredients, and manufacturers are listed in Table - 4.

Table- 4: List of marketed products, active ingredients, and manufacturers.

Sr. no.	Marketed product	Active ingredient	Manufacturer
1	Manforce Tablet	Sildenafil	Mankind Pharmaceutical Ltd.
2	Esylnafil Tablet	Sildenafil	Avighana Medicare Pvt. Ltd.
3	Vigore 100 Tablet	Sildenafil citrate	German Remedies Ltd.
4	Varimax Tablet	Vardenafil	Macleods Pharmaceuticals
5	Tadalafil 5 Tablet	Tadalafil	Cipla Limited
6	Tadact 10 Tablet	Tadalafil	IPCA laboratories
7	Tazzale 5 Tablet	Tadalafil	Dr. Reddy's Laboratories Ltd.
8	Avanair 100 Tablet	Avanafil	Cipla Ltd.
9	Avanext 100 Tablet	Avanafil	Zydus Cadila Healthcare Ltd.

Table- 4. Showcases a range of commonly marketed erectile dysfunction (ED) medications, along with their respective active ingredients and manufacturers. Manforce Tablet by Mankind Pharmaceutical Ltd. contains Sildenafil. Esylnafil Tablet by Avighana Medicare Pvt. Ltd. also contains Sildenafil. Vigore 100 Tablet by German Remedies Ltd. contains Sildenafil citrate. Varimax Tablet by Macleods Pharmaceuticals contains Vardenafil. Tadalafil 5 Tablet by Cipla Limited contains Tadalafil. Tadact 10 Tablet by IPCA laboratories also contains Tadalafil. Tazzale 5 Tablet by Dr. Reddy's Laboratories Ltd. contains Tadalafil. Avanair 100 Tablet by Cipla Ltd. contains Avanafil. Avanext, 100 Tablet by Zydus Cadila Healthcare Ltd., also contains Avanafil.

Fig. 8:- Summary diagram of the treatment of erectile dysfunction

9.12. Vacuum erectile devices

Sultana et al., (2022) highlighted the use of the vacuum erection device (VED) in managing erectile dysfunction. The VED can be used before the insertion of a penile prosthesis to increase the stretched penile length and facilitate implant insertion. This device is the most commonly utilized therapy for male sexual function among all approved methods. The VED has been used for almost 150 years for treating ED, and it was approved by the U.S. Food and Drug Administration in 1982. The American Urological Association (AUA) recognized it as a standard of care in 1996 ¹³⁰. Vacuum erectile devices consist of a cylinder made of clear plastic and a vacuum device that can be operated manually or by battery. To keep an erection for penetration while using the VED, constriction rings may be employed. With a VED, a satisfactory erection can be obtained in 30 seconds to 7 minutes ¹³¹.

9.13. X-ray endovascular technologies

Popov et al., (2020) provided reliable data on the improvement in the quality of the erectile component of the copulatory cycle in the first 3 months after x-ray endovascular vein occlusion of the prostatic plexus ¹¹⁷.

9.14. Radical prostatectomy

Rho et al., (2022) described in their articles the ED treatment post radical prostatectomy followed by phosphodiesterase 5 inhibitor for the management of erectile dysfunction. A radical prostatectomy involves removing the prostate gland and its surrounding tissues. The seminal vesicles and a few adjacent lymph nodes are typically included in the radical prostatectomy ¹³².

9.15. Surgery

According to Anderson et al., (2022), microvascular arterial bypass surgery can be used to revascularize the penile in cases of arterial insufficiency. The dorsal penile artery is frequently revascularized and anastomosed with the inferior epigastric artery. Although anastomosis to the dorsal artery is desired, anastomosis to the deep dorsal vein can also revascularize the inferior epigastric artery. The AUA gives a grade C recommendation for penile arterial reconstruction.

To keep blood in the corpora cavernosa during erection, penile venous surgery seeks to obstruct venous drainage ¹³³.

9.16. Shockwave therapy

According to Yao et al., (2022), a low-intensity extracorporeal shockwave has been widely utilized to treat erectile dysfunction because it stimulates the function of angiogenesis-related factors like vascular endothelial growth factors ¹³⁴. Shockwave therapy, also known as extracorporeal shockwave therapy (ESWT), was initially used for clinical purposes to treat urologic problems in 1982. Gruenwald et al., (2013) also used low-intensity of extracorporeal shockwave for the management of erectile dysfunction. They applied shockwave therapy on five distinct sites of the penis by exposing 300 SWs (intensity of 0.09 ml/mm²), two at the crural level and three along the penile shaft. The treatment plan included two weekly therapy sessions for three weeks, a three-week break of no therapy, and another three-week stint of weekly therapy ¹³⁵.

9.17. Intraurethral suppositories

Hew and Gerriets et al., (2021) used an Intraurethral suppository of prostaglandin E1 (PGE1) via the intraurethral route. The suppository must be inserted immediately after urination. The applicator stem will get inserted into the urethra to deposit the medicinal suppository ¹³⁶.

9.18. Stem cell therapy

Manfredi et al., (2022) reported in their articles about stem cell therapy utilized for managing sexual dysfunction. It is a form of regenerative medicine designed to repair the damaged cells within the erectile system ¹³⁷.

9.19. Penile injection therapy

Islam et al., (2022) mentioned in their article about penile injection, such as platelet-rich plasma injection used in ED management ¹³⁸.

9.20. Psychosexual counseling

As Stainer et al., (2022) reported in their article, psychosexual counseling has long been an efficient part of the management strategy for treating ED. It can aid in improving

the result of penile rehabilitation of some managements and the compliance to stay on therapy¹³⁹.

9.21. Testosterone therapy

According to Corona and Maggi (2022), testosterone is key in controlling male sexual response, functioning centrally or peripherally. To treat erectile dysfunction, testosterone replacement therapy (TRT) has been employed¹⁴⁰.

9.22. Genitofemoral nerve stimulation

Dong et al., (2021) investigated that erectile function was saved by stimulation of the genitofemoral nerve stimulation to the pelvic nerve preserved erectile function¹⁴¹.

9.23. Endovascular therapy

Wang et al., (2022) studied endovascular therapy for treating erectile dysfunction associated with hypertension by targeting arterial insufficiency¹⁴².

9.24. Regenerative therapy

Kim et al., (2021) reported in their articles about regenerative therapy as an adipose-derived cell for managing sexual dysfunction¹⁴³.

9.25. Intraurethral alprostadil

Moncada et al., (2018) described in their article a combination therapy along with intraurethral alprostadil for the management of erectile dysfunction¹⁴⁴.

9.26. Topical alprostadil

Hamzehnejadi et al., (2022) mentioned in their articles about topical alprostadil cream, which was used for sexual dysfunction management¹⁴⁵.

9.27. Use of nanotechnology in erectile dysfunction

Nanotechnology-based vehicles show great potential for improving erectile function in individuals with ED. These vehicles can transfer beneficial substances like proteins and stem cells to the penis, which have been identified as promising agents for enhancing erectile function. Nanotechnology-based vehicles can amplify the effects of growth factors and other helpful agents by providing better release, penetration, bioavailability, and targeted administration. Injectable gels can prevent changes in penis morphology after prostate surgery, while hydrogels can promote regeneration and neuroprotection. Overall, these innovative vehicles hold tremendous promise for advancing ED research and offering effective translational therapy for patients with ED. Topical drug delivery for on-demand erectile function and drug encapsulation for ED treatment

are the four main applications of nanotechnology for ED treatment. Animal studies conducted in vitro and in vivo have produced promising results, demonstrating significant and measurable improvements in erectile function without any noticeable immune response. However, further toxicology and pharmacology studies are required to ensure that the breakdown and degradation of nanomaterials in small and large animal models do not have any adverse effects. Such studies are critical for future applications and translation of this technology to humans¹⁴⁶⁻¹⁴⁸. The toxicity of the nanomaterials being studied for ED research still needs to be understood. The experiments discussed in this review are cutting-edge regarding the delivery of biological materials, but pre-clinical toxicity testing has yet to be possible. This is a crucial next step for several of the nanomaterials shown. The hardest obstacle to clinical study and application will be the requirement of FDA approval. The process of obtaining FDA approval is drawn out and expensive, and most scientists working in the field need more guidance on how to make this move.

10. CONCLUSION

Erectile or sexual dysfunction is a familiar disease related to diminished personal satisfaction for men and their accomplices. Multiple physical, psychological, neurological, hormonal, and vascular pathogenesis factors cause erectile dysfunction. The initial symptoms of erectile dysfunction are endothelial dysfunction. ED can be diagnosed by several methods such as physical examination, laboratory testing, IIEF-5 questionnaires, and color duplex Doppler ultrasound test. Erectile dysfunction can be treated alone, through combination or psychological therapy. All these therapies are effective in treating or restoring sexual function. Overall, there is substantial agreement regarding the handling of ED. There are a few inconsistencies in chosen guidelines for ED.

11. ABBREVIATION

MCG -Medicated Chewing gum

PVP - Polyvinylpyrrolidone

GB - Gum base

VAR – Vardenafil

12. AUTHORS' CONTRIBUTION STATEMENT

Ram Ajay Gupta made substantial contributions to the initial draft of the manuscripts and played a crucial role in developing the Figure and Tables. Aditya Shiven played a significant role in the conceptualization and design of the manuscript and made substantial contributions to the editing process.

13. CONFLICT OF INTEREST

Conflict of interest declared none.

14. REFERENCES

- Althof SE, McMahon CG, Waldinger MD, Serefoglu EC, Shindel AW, Ganesan Adaikan P, et al. An update of the International Society of Sexual Medicine's guidelines for diagnosing and treating premature ejaculation (PE). *J Sex Med*. 2014;11(6):1392-422. doi: 10.1111/jsm.12504.
- Vlachopoulos C, Jackson G, Stefanadis C, Montorsi P. Erectile dysfunction in the cardiovascular patient. *Eur Heart J*. 2013;34(27):2034-46. doi: 10.1093/eurheartj/eht112, PMID 23616415.
- Cronenwett J, Johnston K. Erectile dysfunction. In: Cronenwett JL, Wayne Johnston K, editors.

Rutherford's vascular surgery. 8th ed. Philadelphia: Saunders; 2014. p. 1208-20.

4. Liu Q, Zhang Y, Wang J, Li S, Cheng Y, Guo J, et al. Erectile dysfunction and depression: a systematic review and meta-analysis. *J Sex Med.* 2018 Aug;15(8):1073-82. doi: 10.1016/j.jsxm.2018.05.016, PMID 29960891.
5. Yuan J, Desouza R, Westney OL, Wang R. Insights of priapism mechanism and rationale treatment for recurrent priapism. *Asian J Androl.* 2008;10(1):88-101. doi: 10.1111/j.1745-7262.2008.00314.x, PMID 18087648.
6. Ayta IA, McKinlay JB, Krane RJ. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. *BJU Int.* 1999;84(1):50-6. doi: 10.1046/j.1464-410x.1999.00142.x, PMID 10444124.
7. De Boer BJ, Bots ML, Lycklama A Nijeholt AA, Moors JPC, Pieters HM, Verheij TJM. Erectile dysfunction in primary care: prevalence and patient characteristics. The ENIGMA study. *Int J Impot Res.* 2004;16(4):358-64. doi: 10.1038/sj.ijir.3901155, PMID 14961062.
8. Gebremedhin HT, Mezgebo HM, Geberhiwot GT, Gebru TT, Tesfamichael YA, Ygzaw HB et al. Erectile dysfunction and its associated factors among the male population in Adigrat Town, Tigrai Region, Ethiopia: A cross-sectional study. *PLOS ONE.* 2021;16(3):e0242335. doi: 10.1371/journal.pone.0242335, PMID 33740010.
9. Hellstrom WJG, Bivalacqua TJ. Peyronie's disease: etiology, medical, and surgical therapy. *J Androl.* 2000;21(3):347-54. doi: 10.1002/j.1939-4640.2000.tb03415.x, PMID 10819440.
10. Rosen RC, Cappelleri JC, Gendrano N. The International Index of Erectile Function (IIEF): A state-of-the-science review. *Int J Impot Res.* 2002;14(4):226-44. doi: 10.1038/sj.ijir.3900857, PMID 12152111.
11. Moreira ED, Bestane WJ, Bartolo EB, Fittipaldi JA. Prevalence and determinants of erectile dysfunction in Santos, southeastern Brazil. *Sao Paulo Med J.* 2002;120(2):49-54. doi: 10.1590/s1516-3180200200005, PMID 11994773.
12. Corona G, Lee DM, Forti G, O'Connor DB, Maggi M, O'Neill TW. Age-related changes in general and sexual health in middle-aged and older men: results from the European Male Ageing Study (EMAS). *J Sex Med.* 2010;7(4 Pt 1):1362-80. doi: 10.1111/j.1743-6109.2009.01626.x.
13. Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility: diagnosis and management. *Int Braz J Urol.* 2012;38(5):576-94. doi: 10.1590/S1677-55382012000500002, PMID 23131516.
14. Lu Z, Lin G, Reed-Maldonado A, Wang C, Lee YC, Lue TF. Low-intensity extracorporeal shock wave treatment improves erectile function: A systematic review and meta-analysis. *Eur Urol.* 2017;71(2):223-33. doi: 10.1016/j.eururo.2016.05.050.
15. von Keitz A, Rajfer J, Segal S, Murphy A, Denne J, Costigan T et al. A multicenter, randomized, double-blind, crossover study to evaluate patient preference between tadalafil and sildenafil. *Eur Urol.* 2004;45(4):499-507; discussion 507. doi: 10.1016/j.eururo.2003.11.030, PMID 15041116.
16. Manchanda A, Soran O. Enhanced external counterpulsation and future directions. Step beyond medical management for patients with angina and heart failure. *J Am Coll Cardiol.* 2007;50(16):1523-31. doi: 10.1016/j.jacc.2007.07.024, PMID 17936150.
17. Hull EM, Eaton RC, Markowski VP, Moses J, Lumley LA, Loucks JA. Opposite influence of medial preoptic D1 and D2 receptors on genital reflexes: implications for copulation. *Life Sci.* 1992;51(22):1705-13. doi: 10.1016/0024-3205(92)90299-5, PMID 1359367.
18. Melis MR, Stancampiano R, Gessa GL, Argiolas A. Prevention by morphine of apomorphine- and oxytocin-induced penile erection and yawning: site of action in the brain. *Neuropharmacology.* 1992;6(1):17-21. doi: 10.1016/0893-133X(92)90003-3, PMID 1315136.
19. de Groat WC, Booth A. Neural control of penile erection. In: Maggi CA, editor. *The autonomic nervous system.* London: Harwood; 1993. p. 465-513. ISBN: 978-3718659452.
20. Gelez H, Poirier S, Facchinetto P, Allers KA, Wayman C, Alexandre L, et al. Neuroanatomical evidence for a role of central melanocortin-4 receptors and oxytocin in the efferent control of the rodent clitoris and vagina. *J Sex Med.* 2010;7(6):2056-67. doi: 10.1111/j.1743-6109.2010.01760.x, PMID 20345736.
21. Van der Ploeg LH, Martin WJ, Howard AD, Nargund RP, Austin CP, Guan X, et al. A role for the melanocortin 4 receptor in sexual function. *Proc Natl Acad Sci U S A.* 2002;99(17):11381-6. doi: 10.1073/pnas.172378699, PMID 12172010.
22. Dean RC, Lue TF. Physiology of penile erection and pathophysiology of erectile dysfunction. *Urol Clin North Am.* 2005;32(4):379-95, v. doi: 10.1016/j.ucl.2005.08.007, PMID 16291031.
23. Lue TF. Physiology of penile erection and pathophysiology of erectile dysfunction. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, et al., editors. *Campbell-Walsh urology.* 10th ed. Philadelphia: W B Saunders Company; 2012. p. 688-720. doi: 10.1016/b978-1-4160-6911-9.00020-2.
24. Dai Y, Zhang Y, Phatarpekar P, Mi T, Zhang H, Blackburn MR, et al. Adenosine signaling, priapism, and novel therapies. *J Sex Med.* 2009;6(Suppl 3):292-301. doi: 10.1111/j.1743-6109.2008.01187.x, PMID 19267852.
25. Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan M, Taylor SS. Dynamics of cAMP-dependent protein kinase. *Chem Rev.* 2001;101(8):2243-70. doi: 10.1021/cr000226k, PMID 11749372.
26. Andersson KE, Wagner G. Physiology of penile erection. *Physiol Rev.* 1995;75(1):191-236. doi: 10.1152/physrev.1995.75.1.191, PMID 7831397.
27. Simonsen U, Prieto D, Hernández M, Sáenz de Tejada I, García-Sacristán A. Adrenoceptor-mediated regulation of the contractility in horse penile resistance arteries. *J Vasc Res.* 1997;34(2):90-102. doi: 10.1159/000159206, PMID 9167641.
28. Rees RW, Ziessen T, Ralph DJ, Kell P, Moncada S, Cellek S. Human and rabbit cavernosal smooth muscle cells express Rho-kinase. *Int J Impot Res.* 2002;14(1):1-7. doi: 10.1038/sj.ijir.3900814, PMID 11896471.
29. Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: structure, regulation, and function. *Mol Cell Biochem.* 2004;259(1-2):197-209. doi: 10.1023/b:mcbi.0000021373.14288.00, PMID 15124925.

30. Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. *Am J Physiol Heart Circ Physiol.* 2007;292(6):H2598-606. doi: 10.1152/ajpheart.01393.2006, PMID 17220176.

31. Large WA. Receptor-operated Ca^{2+} -permeable nonselective cation channels in vascular smooth muscle: a physiologic perspective. *J Cardiovasc Electrophysiol.* 2002;13(5):493-501. doi: 10.1046/j.1540-8167.2002.00493.x, PMID 12030534.

32. Bivalacqua TJ, Hellstrom WJ. Potential application of gene therapy for the treatment of erectile dysfunction. *J Androl.* 2001;22(2):183-90. doi: 10.1002/j.1939-4640.2001.tb02296.x, PMID 11229791.

33. Melman A, Bar-Chama N, McCullough A, Davies K, Christ G. hMaxi-K gene transfer in males with erectile dysfunction: results of the first human trial. *Hum Gene Ther.* 2006;17(12):1165-76. doi: 10.1089/hum.2006.17.1165, PMID 17134370.

34. Lu Z, Lin G, Reed-Maldonado A, Wang C, Lee YC, Lue TF. Low-intensity extracorporeal shock wave treatment improves erectile function: A systematic review and meta-analysis. *Eur Urol.* 2017;71(2):223-33. doi: 10.1016/j.eururo.2016.05.050.

35. Nurnberg HG, Hensley PL, Gelenberg AJ, Fava M, Lauriello J, Paine S. Treatment of antidepressant-associated sexual dysfunction with sildenafil: a randomized controlled trial. *JAMA.* 2003;289(1):56-64. doi: 10.1001/jama.289.1.56, PMID 12503977.

36. Huffman LB, Hartenbach EM, Carter J, Rash JK, Kushner DM. Maintaining sexual health throughout gynecologic cancer survivorship: A comprehensive review and clinical guide. *Gynecol Oncol.* 2016;140(2):359-68. doi: 10.1016/j.ygyno.2015.11.010.

37. De Leonardis F, Colalillo G, Finazzi Agrò E, Miano R, Fuschi A, Asimakopoulos AD. Endothelial dysfunction, erectile deficit, and cardiovascular disease: an overview of the pathogenetic links. *Biomedicines.* 2022 Aug;10(8):1848. doi: 10.3390/biomedicines10081848, PMID 36009395.

38. Yerke AF, Mitchell V. Am I Man Enough Yet? A comparison of the body transition, self-labeling, and sexual orientation of two cohorts of female-to-male transsexuals. *Int J Transgend.* 2011;13(2):64-76. doi: 10.1080/15532739.2011.622125.

39. Andersson KE, Wagner G. Physiology of penile erection. *Physiol Rev.* 1995;75(1):191-236. doi: 10.1152/physrev.1995.75.1.191, PMID 7831397.

40. Kaya E, Sikka SC, Gur S. A comprehensive review of metabolic syndrome affecting erectile dysfunction. *J Sex Med.* 2015;12(4):856-75. doi: 10.1111/jsm.12828, PMID 25675988.

41. Esposito K, Giugliano F, Di Palo C, Giugliano G, Marfella R, D'Andrea F, et al. Effect of lifestyle changes on erectile dysfunction in obese men: a randomized controlled trial. *JAMA.* 2004;291(24):2978-84. doi: 10.1001/jama.291.24.2978, PMID 15213209.

42. Chew KK, Stuckey BG, Earle CM, Jamrozik K. Male erectile dysfunction: its prevalence in Western Australia and associated sociodemographic factors. *J Sex Med.* 2007;4(1):17-23. doi: 10.1111/j.1743-6109.2006.00333.x.

43. Kocjancic E, Iacovelli V. Penile prostheses. *Clin Plast Surg.* 2018;45(3):407-14. doi: 10.1016/j.cps.2018.03.012.

44. Dewitte M, Bettocchi C, Carvalho J, Corona G, Flink I, Limoncin E, et al. A psychosocial approach to erectile dysfunction: position statements from the European society of sexual medicine (ESSM). *Sex Med.* 2021;9(6):100434. doi: 10.1016/j.esxm.2021.100434, PMID 34626919.

45. Deforge D, Blackmer J, Garrity C, Yazdi F. A systematic review of the association between erectile dysfunction and cardiovascular disease. *Can J Cardiol.* 2016;32(4):492-8. doi: 10.1016/j.cjca.2015.07.755.

46. Tetreault LA, Singh A, Gholami F, Fehlings MG. Pathophysiology of erectile dysfunction following spinal cord injury. *Prog Neurobiol.* 2020;186:101732. doi: 10.1016/j.pneurobio.2019.101732.

47. Kim YJ, Lee DH, Cho ST, Kim KT. Association between acute ischemic stroke and erectile dysfunction: a population-based cohort study. *J Clin Med.* 2019;8(9):1349. doi: 10.3390/jcm8091349.

48. Silva TP, Giorelli G, Giometti IC, et al. The relationship between testosterone deficiency and erectile dysfunction in Parkinson's disease. *Aging Male.* 2021;24(1):46-52. doi: 10.1080/13685538.2019.1692662.

49. Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Terada H, Inaoka T. Autonomic dysfunction in multiple sclerosis: measurement and pathophysiology. *Clin Auton Res.* 2019;29(1):31-41. doi: 10.1007/s10286-018-0545-y.

50. Jha R, Sharma D, Das CJ, Sharma P, Gupta AK. Lumbosacral disc disease and erectile dysfunction: a review of possible etiologies and implications for evaluation and management. *Asian J Neurosurg.* 2019;14(3):730-6. doi: 10.4103/and.AJNS_5_19.

51. Rosenbaum TY, Owens JK. Erectile dysfunction in neurological disorders. *Sex Med Rev.* 2020;8(2):207-16. doi: 10.1016/j.sxmr.2019.07.001.

52. Khanna NN, Maindarkar M, Saxena A, Ahluwalia P, Paul S, Srivastava SK, et al. Cardiovascular/stroke risk assessment in patients with erectile dysfunction—a role of carotid wall arterial imaging and plaque tissue characterization using artificial intelligence paradigm: a narrative review. *Diagnostics (Basel).* 2022;12(5):1249. doi: 10.3390/diagnostics12051249, PMID 35626404.

53. de Oliveira AA, Nunes KP. Hypertension and erectile dysfunction: breaking down the challenges. *Am J Hypertens.* 2021;34(2):134-42. doi: 10.1093/ajh/hpaal43, PMID 32866225.

54. Chen L, Shi GR, Huang DD, Li Y, Ma CC, Shi M, et al. Male sexual dysfunction: a review of literature on its pathological mechanisms, potential risk factors, and herbal drug intervention. *Biomed Pharmacother.* 2019;112:108585. doi: 10.1016/j.bioph.2019.01.046, PMID 30798136.

55. Sopko NA, Hannan JL, Bivalacqua TJ. Understanding and targeting the Rho kinase pathway in erectile dysfunction. *Nat Rev Urol.* 2014;11(11):622-8. doi: 10.1038/nrurol.2014.278, PMID 25311680.

56. Magheli A, Burnett AL. Erectile dysfunction following prostatectomy: prevention and treatment. *Nat Rev Urol.* 2009;6(8):415-27. doi: 10.1038/nrurol.2009.126, PMID 19657376.

57. Traish AM, Munarriz R, O'Connell L, Choi S, Kim SW, Kim NN, et al. Effects of medical or surgical castration on erectile function in an animal model. *J Androl.* 2003;24(3):381-7. doi: 10.1002/j.1939-4640.2003.tb02686.x, PMID 12721214.

58. Mulhall JP, Morgentaler A. Penile rehabilitation should become the norm for radical prostatectomy patients. *J Sex Med.* 2007;4(3):538-43. doi: 10.1111/j.1743-6109.2007.00486.x, PMID 17498093.

59. Gratzke C, Angulo J, Chitale K, Dai YT, Kim NN, Paick JS, et al. Anatomy, physiology, and pathophysiology of erectile dysfunction. *J Sex Med.* 2010;7(1 Pt 2):445-75. doi: 10.1111/j.1743-6109.2009.01624.x, PMID 20092448.

60. Vardi Y. Microvascular complications in diabetic erectile dysfunction: do we need other alternatives? *Diabetes Care.* 2009;32(Suppl 2):S420-2. doi: 10.2337/dc09-S351, PMID 19875592.

61. Araujo AB, Travison TG, Ganz P, Chiu GR, Kupelian V, Rosen RC, et al. Erectile dysfunction and mortality. *J Sex Med.* 2009;6(9):2445-54. doi: 10.1111/j.1743-6109.2009.01354.x, PMID 19538544.

62. Lue TF. Erectile dysfunction. *N Engl J Med.* 2000;342(24):1802-13. doi: 10.1056/NEJM200006153422407, PMID 10853004.

63. Andersson K-E, Nehra A, Lue T, Burnett A, Goldstein I, Morales A. Erectile physiological and pathophysiological pathways involved in erectile dysfunction. *J Urol.* 2003;170(2 Pt 2):S6-13; discussion S13. doi: 10.1097/01.ju.0000077119.44445.a7.

64. Gongora Castillo C, Alvarez Gomez de Segura I, Bonet Furges H, de Miguel del Campo E. Impotence of arterial origin: experimental models and assessment of sexual behavior in rats. *J Urol (Paris).* 1993;99(3):122-6. PMID 7745268.

65. Jackson G, Rosen RC, Kloner RA, Kostis JB. The second Princeton consensus on sexual dysfunction and cardiac risk: new guidelines for sexual medicine. *J Sex Med.* 2006;3(1):28-36; discussion 36. doi: 10.1111/j.1743-6109.2005.00196.x, PMID 16409215.

66. Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. *J Urol.* 1994;151(1):54-61. doi: 10.1016/s0022-5347(17)34871-1, PMID 8254833.

67. Malavige LS, Levy JC. Erectile dysfunction in diabetes mellitus. *J Sex Med.* 2009;6(5):1232-47. doi: 10.1111/j.1743-6109.2008.01168.x, PMID 19210706.

68. Broderick GA, Kadioglu A, Bivalacqua TJ, Ghanem H, Nehra A, Shamloul R. Priapism: pathogenesis, epidemiology, and management. *J Sex Med.* 2010;7(1 Pt 2):476-500. doi: 10.1111/j.1743-6109.2009.01625.x, PMID 20092449.

69. Spycher MA, Hauri D. The ultrastructure of the erectile tissue in priapism. *J Urol.* 1986;135(1):142-7. doi: 10.1016/s0022-5347(17)45549-2, PMID 3941454.

70. Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. *JAMA.* 2005;293(13):1653-62. doi: 10.1001/jama.293.13.1653, PMID 15811985.

71. Slag MF, Morley JE, Elson MK, Trence DL, Nelson CJ, Nelson AE, et al. Impotence in medical clinic outpatients. *JAMA.* 1983;249(13):1736-40. doi: 10.1001/jama.1983.03330370050025, PMID 6827762.

72. Chang SW, Fine R, Siegel D, Chesney M, Black D, Hulley SB. The impact of diuretic therapy on reported sexual function. *Arch Intern Med.* 1991;151(12):2402-8. doi: 10.1001/archinte.1991.00400120064012, PMID 1746997.

73. Fogari R, Zoppi A. Effects of antihypertensive therapy on sexual activity in hypertensive men. *Curr Hypertens Rep.* 2002;4(3):202-10. doi: 10.1007/s11906-002-0008-3, PMID 12003702.

74. Loriaux DL, Menard R, Taylor A, Pita JC, Santen R. Spironolactone and endocrine dysfunction. *Ann Intern Med.* 1976;85(5):630-6. doi: 10.7326/0003-4819-85-5-630, PMID 984618.

75. Papatsoris AG, Korantzopoulos PG. Hypertension, antihypertensive therapy, and erectile dysfunction. *Angiology.* 2006;57(1):47-52. doi: 10.1177/00031970605700107, PMID 16444456.

76. Kolodny RC. Effects of alpha-methyldopa on male sexual function. *Sex Disabil.* 1978;1(3):223-8. doi: 10.1007/BF01101329.

77. Newman RJ, Salerno HR [letter]. Letter: sexual dysfunction due to methyldopa. *Br Med J.* 1974;4(5936):106. doi: 10.1136/bmj.4.5936.106-b, PMID 4414389.

78. Bansal S. Sexual dysfunction in hypertensive men: a critical review of the literature. *Hypertension.* 1988;12(1):1-10. doi: 10.1161/01.HYP.12.1.1, PMID 3294176.

79. Oster JR, Epstein M. Use of centrally acting sympatholytic agents in managing hypertension. *Arch Intern Med.* 1991;151(8):1638-44. doi: 10.1001/archinte.1991.0040080022004, PMID 1872668.

80. Goldstein I, Krane RJ. Drug-induced sexual dysfunction. *World J Urol.* 1983;1(4):239-43. doi: 10.1007/BF00326809.

81. Shader RI, Elkins R. The effects of antianxiety and antipsychotic drugs and sexual behavior. *Mod Probl Pharmacopsychiatry.* 1980;15:91-110. doi: 10.1159/000402338, PMID 6106892.

82. Wolfe MM. Impotence on cimetidine treatment. *N Engl J Med.* 1979;300(2):94. doi: 10.1056/NEJM197901113000219, PMID 758590.

83. Wessells H, Levine N, Hadley ME, Dorr R, Hruby V. Melanocortin receptor agonists, penile erection, and sexual motivation: human studies with Melanotan II. *Int J Impot Res.* 2000;12(Suppl 4):S74-9. doi: 10.1038/sj.ijir.3900582, PMID 11035391.

84. Diamond LE, Earle DC, Rosen RC, Willett MS, Molinoff PB. Double-blind, placebo-controlled evaluation of the safety, pharmacokinetic properties, and pharmacodynamic effects of intranasal PT-141, a melanocortin receptor agonist, in healthy males and patients with mild-to-moderate erectile dysfunction. *Int J Impot Res.* 2004;16(1):51-9. doi: 10.1038/sj.ijir.3901139, PMID 14963471.

85. Hellstrom W, Gittelman M, Zinner N, et al. Randomized, double-blind, placebo-controlled, at-home study to evaluate the efficacy and safety of intranasal Bremelanotide in men with erectile dysfunction with and without diabetes mellitus [abstract]. In: Proceedings of the 9th congress of the European Society for Sexual Medicine; Vienna, Austria; 2006. p. 117.

86. Safarinejad MR, Hosseini SY. Salvage of sildenafil failures with Bremelanotide: a randomized, double-blind, placebo-controlled study. *J Urol.* 2008;179(3):1066-71. doi: 10.1016/j.juro.2007.10.063, PMID 18206919.

87. Diamond LE, Earle DC, Garcia WD, Spana C. Co-administration of low doses of intranasal PT-141, a

melanocortin receptor agonist, and sildenafil to men with erectile dysfunction results in an enhanced erectile response. *Urology*. 2005;65(4):755-9. doi: 10.1016/j.urology.2004.10.060, PMID 15833522.

88. Cowart M, Latshaw SP, Bhatia P, Daanen JF, Rohde J, Nelson SL, et al. Discovery of 2-(4-pyridin-2-ylpiperazin-1-ylmethyl)-1H-benzimidazole (ABT-724), a dopaminergic agent with a novel mode of action for the potential treatment of erectile dysfunction. *J Med Chem*. 2004;47(15):3853-64. doi: 10.1021/jm030505a, PMID 15239663.

89. Brioni JD, Moreland RB, Cowart M, Hsieh GC, Stewart AO, Hedlund P, et al. Activation of dopamine D4 receptors by ABT-724 induces penile erection in rats. *Proc Natl Acad Sci U S A*. 2004;101(17):6758-63. doi: 10.1073/pnas.0308292101, PMID 15087502.

90. Patel MV, Kolasa T, Mortell K, Matulenka MA, Hakeem AA, Rohde JJ, et al. Discovery of 3-methyl-N-(1-oxy-3',4',5',6'-tetrahydro-2'H-[2,4'-bipyridine]-1'-ylmethyl)benzamide (ABT-670), an orally bioavailable dopamine D4 agonist for the treatment of erectile dysfunction. *J Med Chem*. 2006;49(25):7450-65. doi: 10.1021/jm060662k, PMID 17149874.

91. Chan JS, Kim DJ, Ahn CH, Oosting RS, Olivier B. Clavulanic acid stimulates sexual behavior in male rats. *Eur J Pharmacol*. 2009;609(1-3):69-73. doi: 10.1016/j.ejphar.2009.03.009, PMID 19285063.

92. Rexahn pharmaceuticals, Inc. efficacy study of RX-10100 to treat erectile dysfunction (ED). ClinicalTrials.gov. National Library of Medicine. Bethesda; 2009.

93. Oudot A, Behr-Roussel D, Poirier S, Sandner P, Bernabé J, Alexandre L, et al. Combination of BAY 60-4552 and vardenafil exerts pro-erectile facilitator effects in rats with cavernous nerve injury: a proof of concept study for the treatment of phosphodiesterase type 5 inhibitor failure. *Eur Urol*. 2011;60(5):1020-6. doi: 10.1016/j.eururo.2011.07.052, PMID 21839578.

94. Albersen M, Linsen L, Tinel H, Sandner P, Van Renterghem K. Synergistic effects of BAY 60-4552 and vardenafil on relaxation of corpus cavernosum tissue of patients with erectile dysfunction and clinical phosphodiesterase type 5 inhibitor failure. *J Sex Med*. 2013;10(5):1268-77. doi: 10.1111/jsm.12095, PMID 23421435.

95. Bayer Healthcare AG. A prospective, randomized, double-blind, double-dummy, placebo and active-controlled, multicenter study assessing the efficacy and safety of the combination BAY 60 4552/ vardenafil compared to vardenafil (20 mg) for the treatment of erectile dysfunction not sufficiently responsive to standard therapy with PDE5 inhibitors. ClinicalTrials.gov. National Library of Medicine. Bethesda; 2014.

96. Buyukafsar K, I. Effects of the Rho-kinase inhibitors, Y-27632, and fasudil, on the corpus cavernosum from diabetic mice. *Eur J Pharmacol*. 2003;472(3):235-8. doi: 10.1016/s0014-2999(03)01838-3.

97. Lasker GF, Maley JH, Kadowitz PJ. A review of the pathophysiology and novel treatments for erectile dysfunction. *Adv Pharmacol Sci*. 2010;2010:1-10. doi: 10.1155/2010/730861.

98. Guagnini F, Ferazzini M, Grasso M, Blanco S, Croci T. Erectile properties of the Rho-kinase inhibitor SAR407899 in diabetic animals and human isolated corpora cavernosa. *J Transl Med*. 2012;10:59. doi: 10.1186/1479-5876-10-59, PMID 22444253.

99. Sanofi. Avenis. Randomized, double-blind, placebo, and active-controlled study of the activity of SAR407899 single-dose on the ability to increase the duration of penile rigidity, under experimental conditions, in patients with mild to moderate erectile dysfunction. National Library of Medicine. ClinicalTrials.gov. Bethesda; 2009.

100. Bentzen BH, Olesen SP, Rønn LC, Grunnet M. BK channel activators and their therapeutic perspectives. *Front Physiol*. 2014;5:389. doi: 10.3389/fphys.2014.00389, PMID 25346695.

101. Kun A, Matchkov VV, Stankevicius E, Nardi A, Hughes AD, Kirkeby HJ, et al. NS11021, a novel opener of large-conductance Ca(2+)-activated K(+) channels, enhance erectile responses in rats. *Br J Pharmacol*. 2009;158(6):1465-76. doi: 10.1111/j.1476-5381.2009.00404.x, PMID 19845682.

102. Király I, Pataricza J, Bajory Z, Simonsen U, Varro A, Papp JG, et al. Involvement of large-conductance Ca(2+)-activated K(+) channels in both nitric oxide and endothelium-derived hyperpolarization-type relaxation in human penile small arteries. *Basic Clin Pharmacol Toxicol*. 2013;113(1):19-24. doi: 10.1111/bcpt.12059, PMID 23414060.

103. Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. *Nat Rev Drug Discov*. 2006 Aug;5(8):689-702. doi: 10.1038/nrd2030, PMID 16883306.

104. Park B, Jeon BG, Kim HJ, Kim JJ. The association between hyperlipidemia and erectile dysfunction: a systematic review and meta-analysis. *J Mens Health*. 2019;15(3):e33-43. doi: 10.1016/j.jomh.2019.04.001.

105. Kalyvianakis D, Mykoniatis I, Pyrgidis N, Kapoteli P, Zilotis F, Fournarakis A, et al. The effect of low-intensity shock wave therapy on moderate erectile dysfunction: a double-blind, randomized, sham-controlled clinical trial. *J Urol*. 2022;208(2):388-95. doi: 10.1097/JU.0000000000002684, PMID 35830338.

106. Cilio S, Pozzi E, Fallara G, Belladelli F, Corsini C, d'Arma A, et al. Premature ejaculation among men with erectile dysfunction—findings from a real-life cross-sectional study. *Int J Impot Res*. 2022;1-6. doi: 10.1038/s41443-022-00601-4, PMID 35915329.

107. McMahon CG. Current diagnosis and management of erectile dysfunction. *Med J Aust*. 2019;210(10):469-76. doi: 10.5694/mja2.50167, PMID 31099420.

108. Carson CC, Osbon JH, Bennett NE. Ambicor two-piece inflatable penile prosthesis: background and contemporary outcomes. *Sex Med Rev*. 2018;6:319-27. doi: 10.1016/j.sxmr.2017.07.010.

109. Gray RE, Klotz LH. Restoring sexual function in prostate cancer patients: an innovative approach. *Can J Urol*. 2004;11(3):2285-9. doi: 10.1002/j.1939-4640.2004.tb02991.x, PMID 15287995.

110. Liu J, Zhou F, Yang Y, Zhao J, Zhao Z, Tian H. A novel method to assess rat erectile function using a new device for continuous measurement of intracavernous pressure: the apomorphine test combined with the sustained erection test. *Int J Impot Res*. 2015;27(3):89-94. doi: 10.1038/ijir.2015.3.

111. Salvio G, Ciarloni A, Cordoni S, Cutini M, Delli Muti ND, Finocchi F, et al. Homocysteine levels correlate with velocimetric parameters in patients with erectile

dysfunction undergoing penile duplex ultrasound. *Andrology*. 2022;10(4):733-9. doi: 10.1111/andr.13169, PMID 35224883.

112. Wang M, Dai Y, Jiang H, Sansone A, Jannini EA, Zhang X. Application of dual-energy CT angiography in the diagnosis of arterial erectile dysfunction: new scanning technology, new scanning area. *Aging Male*. 2022;25(1):257-65. doi: 10.1080/13685538.2022.2121815, PMID 36102620.

113. Xu W, Jiang H, Liu J, Li HN-C. Non-coding RNAs: a new dawn for diabetes mellitus induced erectile dysfunction. *Front Mol Biosci*. 2022;9:888624. doi: 10.3389/fmolb.2022.888624, PMID 35813828.

114. Pedraza AM, Pandav K, Menon M, Khera M, Wagaskar V, Dovey Z, et al. Current strategies to improve erectile function in patients undergoing radical prostatectomy-postoperative scenario. *Urol Oncol*. 2022;40(3):87-94. doi: 10.1016/j.urolonc.2021.12.002, PMID 35012822.

115. Yang B, Hong Z, Luse DC, Han Y, Sun G, Feng Y, et al. The diagnostic role of neurophysiological tests for premature ejaculation: a prospective multicenter study. *J Urol*. 2022;207(1):172-82. doi: 10.1097/JU.0000000000002198, PMID 34455861.

116. Popov SV, Orlov IN, Grin' YA, Malevich SM, Gul'ko AM, Topuzo TM et al. Erectile dysfunction: new technologies and approaches in diagnostics and treatment. *Vestn Urol*. 2020;8(2):78-92. doi: 10.21886/2308-6424-2020-8-2-78-92.

117. Itzhak I, Cohen S, Fishman S, Fishman P. A3 adenosine receptor allosteric modulator CF602 reverses erectile dysfunction in a diabetic rat model. *Andrologia*. 2022;54(9):e14498. doi: 10.1111/andr.14498, PMID 35732294.

118. Hatzimouratidis K, Amar E, Eardley I, et al. Guidelines on male sexual dysfunction: erectile dysfunction and premature ejaculation. European Association of Urology; 2010. Available from: <https://uroweb.org/wp-content/uploads/EAU-Guidelines-Male-Sexual-Dysfunction-2010.pdf>.

119. Nehra A, Jackson G, Miner M, Billups KL, Burnett AL, Buvat J, et al. The Princeton III consensus recommendations for the management of erectile dysfunction and cardiovascular disease. *Mayo Clin Proc*. 2012;87(8):766-78. doi: 10.1016/j.mayocp.2012.06.015, PMID 22862865.

120. Yang R, Liu C, Li Q, Wang W, Wu B, Chen A, et al. Artificial intelligence-based identification of the functional role of hirudin in diabetic erectile dysfunction treatment. *Pharmacol Res*. 2021;163:105244. doi: 10.1016/j.phrs.2020.105244, PMID 33053440.

121. Sun T, Xu W, Wang J, Song J, Wang T, Wang S, et al. Paeonol ameliorates diabetic erectile dysfunction by inhibiting the HMGB1/RAGE/NF- κ B pathway. *Andrology*. 2022;11(2):344-57. doi: 10.1111/andr.13203.

122. Defeudis G, Mazzilli R, Tenuta M, Rossini G, Zamponi V, Olana S, et al. Erectile dysfunction and diabetes: a melting pot of circumstances and treatments. *Diabetes Metab Res Rev*. 2022;38(2):e3494. doi: 10.1002/dmrr.3494, PMID 34514697.

123. Chen X, et al. Panax ginseng in randomized controlled trials: a systematic review. *Phytoster Res*. 2017;31(4):531-8.

124. Shindel AW, Xin ZC, Lin G, Fandel TM, Huang YC, Banie L, et al. Erectogenic and neurotrophic effects of icariin, a purified extract of horny goat weed (Epimedium spp.) in vitro and in vivo. *J Sex Med*. 2010;7(4 Pt 1):1518-28. doi: 10.1111/j.1743-6109.2009.01699.x, PMID 20141584.

125. Ernst E, Pittler MH. Yohimbine for erectile dysfunction: a systematic review and meta-analysis of randomized clinical trials. *J Urol*. 1998;159(2):433-6. doi: 10.1016/s0022-5347(01)63942-9, PMID 9649257.

126. Neychev VK, Mitev VI. The aphrodisiac herb *Tribulus terrestris* does not influence androgen production in young men. *J Ethnopharmacol*. 2005;101(1-3):319-23. doi: 10.1016/j.jep.2005.05.028.

127. Cohen AJ, Bartlik B. Ginkgo biloba for antidepressant-induced sexual dysfunction. *J Sex Marital Ther*. 1998;24(2):139-43. doi: 10.1080/00926239808404927, PMID 9611693.

128. Salvio G, Ciarloni A, Cordoni S, Cutini M, Delli Muti ND, Finocchi F, et al. Homocysteine levels correlate with velocimetric parameters in patients with erectile dysfunction undergoing penile duplex ultrasound. *Andrology*. 2022;10(4):733-9. doi: 10.1111/andr.13169, PMID 35224883.

129. Sultana A, Grice P, Vukina J, Pearce I, Modgil V. Indications and characteristics of penile traction and vacuum erection devices. *Nat Rev Urol*. 2022;19(2):84-100. doi: 10.1038/s41585-021-00532-7, PMID 34764451.

130. Rho BY, Kim SH, Ryu JK, Kang DH, Kim JW, Chung DY. Efficacy of low-intensity extracorporeal shock wave treatment in erectile dysfunction following radical prostatectomy: A systematic review and meta-analysis. *J Clin Med*. 2022;11(10):2775. doi: 10.3390/jcm11102775, PMID 35628901.

131. Hoyland K, Vasdev N, Adshead J. The use of vacuum erection devices in erectile dysfunction after radical prostatectomy. *Rev Urol*. 2013;15(2):67-71. PMID 24082845, PMCID PMC3784970.

132. Gruenwald I, Appel B, Kitrey ND, Vardi Y. Shockwave treatment of erectile dysfunction. *Ther Adv Urol*. 2013 Apr;5(2):95-9. doi: 10.1177/1756287212470696, PMID 23554844.

133. Anderson D, Laforge J, Ross MM, Vanlangendonck R, Hasoon J, Viswanath O, et al. Male sexual dysfunction. *Health Psychol Res*. 2022 Sep 1;10(3):37533. doi: 10.52965/001c.37533, PMID 35999971.

134. Yao H, Wang X, Liu H, Sun F, Tang G, Bao X et al. Systematic review and meta-analysis of 16 randomized controlled trials of clinical outcomes of low-intensity extracorporeal shock wave therapy in treating erectile dysfunction. *Am J Mens Health*. 2022 Mar-Apr;16(2):15579883221087532, PMID 35319291.

135. Falcone M, Garaffa G, Gillo A, Dente D, Christopher AN, Ralph DJ. Outcomes of inflatable penile prosthesis insertion in 247 patients completing female to male gender reassignment surgery. *BJU Int*. 2018 Jan;121(1):139-44. doi: 10.1111/bju.14027, PMID 28940910.

136. Gruenwald I, Appel B, Vardi Y. Low-intensity extracorporeal shock wave therapy – A novel effective treatment for erectile dysfunction in severe ED Patients Who Respond Poorly to PDE5 Inhibitor Therapy. *J Sex Med*. 2013;10(2):596-603. doi: 10.1111/j.1743-6109.2012.12954.x.

137. Manfredi C, Castiglione F, Fode M, Lew-Starowicz M, Romero-Otero J, Bettocchi C, et al. News and future perspectives of non-surgical treatments for erectile dysfunction. *Int J Impot Res.* 2022;1-7. doi: 10.1038/s41443-022-00602-3, PMID 35896717.

138. Islam MM, Naveen NR, Anitha P, Goudanavar PS, Rao GS NK, Fattepur S, et al. The race to replace PDE5i: recent advances and interventions to treat or manage erectile dysfunction: evidence from patent landscape (2016-2021). *J Clin Med.* 2022;11(11):3140. doi: 10.3390/jcm11113140, PMID 35683526.

139. van de Grift TC, Pigot GLS, Boudhan S, Elfering L, Kreukels BPC, Gijs LACL, et al. A longitudinal study of motivations before and psychosexual outcomes after genital gender-confirming surgery in transmen. *J Sex Med.* 2017;14(12):1621-8. doi: 10.1016/j.jsxm.2017.10.064, PMID 29128275.

140. Corona G, Maggi M. The role of testosterone in male sexual function. *Rev Endocr Metab Disord.* 2022;23(6):1159-72. doi: 10.1007/s11154-022-09748-3, PMID 35999483.

141. Dong C, Xie Z, Wang P, Dong Z. Erectile functional restoration with a genital branch of genitofemoral nerve to pelvic nerve transfer after spinal root transection in rats. *Urology.* 2021;148:179-84. doi: 10.1016/j.urology.2020.09.029, PMID 33010291.

142. Wang TD, Lee CK, Chia YC, Tsoi K, Buranakitjaroen P, Chen CH, et al. Hypertension and erectile dysfunction: the role of endovascular therapy in Asia. *J Clin Hypertens (Greenwich).* 2021;23(3):481-8. doi: 10.1111/jch.14123, PMID 33314715.

143. Kim S, Cho MC, Cho SY, Chung H, Rajasekaran MR. Novel emerging therapies for erectile dysfunction. *World J Mens Health.* 2021;39(1):48-64. doi: 10.5534/wjmh.200007, PMID 32202086.

144. Moncada I, Martinez-Salamanca J, Ruiz-Castañ E, Romero J. Combination therapy for erectile dysfunction involves a PDE5 inhibitor and alprostadil. *Int J Impot Res.* 2018;30(5):203-8. doi: 10.1038/s41443-018-0046-2, PMID 30050072.

145. Hamzehnejadi M, Tavakoli MR, Homayouni F, Jahani Z, Rezaei M, Langarizadeh MA, et al. Prostaglandins as a topical therapy for erectile dysfunction: A comprehensive review. *Sex Med Rev.* 2022;10(4):764-81. doi: 10.1016/j.sxmr.2022.06.004, PMID 36210096.

146. Wang R. Is there still a role for vacuum erection devices in contemporary sexual medicine? *J Sex Med.* 2022 May;19(5):682-5. doi: 10.1016/j.jsxm.2022.02.013, PMID 35321831.

147. Mishra AK, Pandey M, Dewangan HK, SI N, Sahoo PK. A comprehensive review on liver targeting: emphasis on nanotechnology-based molecular targets and receptors mediated approaches. *Curr Drug Targets.* 2022;23(15):1381-405. doi: 10.2174/138945012366220906091432, PMID 36065923.

148. Yadav D, Semwal BC, Dewangan HK. Grafting, characterization, and enhancement of the therapeutic activity of berberine-loaded pegylated PAMAM dendrimer for cancerous cells. *J Biomater Sci Polym Ed.* 2022;14:1-14. doi: 10.1080/09205063.2022.2155782.