

Case Report of Tuberculous Anterior Chest Wall Abscess

Dr. Suprajaa Desingu^{1*} , Dr Karthikeyan Selvaraj² and Dr. Ravishankar ³

¹Junior Resident, Department of General Surgery, Sree Balaji Medical College and Hospital

²Department of General Surgery, Sree Balaji Medical College and Hospital

³HOD Of Department Of General Surgery, Sree Balaji Medical College and Hospital

Abstract: In developing nations such as India, tuberculosis is a problem for public health. Chest wall tuberculosis is uncommon and frequently manifests as a cold abscess or pseudo tumoral mass necessitating surgical biopsy. One to three percent of individuals with TB develop musculoskeletal tuberculosis (TB), and one to five percent of cases with musculoskeletal TB involve the chest wall. A 38-year-old female presented with anterior chest wall swelling. The patient reported history of pulmonary tuberculosis in childhood for which she was treated with anti-tuberculous drugs for a duration of six months. Examination revealed swelling, which was smooth, fluctuant with well-defined borders along with palpable axillary lymph nodes. Investigations revealed a thick-walled cystic lesion for which she was proceeded with incision and drainage. Caseous pus which was drained was positive for tuberculosis. The patient was started on anti-tuberculous treatment and continued for 6 months. Extrapulmonary TB is currently less common in immunocompetent patients than in non-immunocompetent ones. The location of the tuberculous abscess and the patient's immunocompetence both contribute to the rarity of the present instance. Clinicians still struggle to make the correct diagnosis of musculoskeletal tuberculous infection, which calls for a high degree of suspicion. The diagnosis is highly supported by the slow development of symptoms, positive tuberculin skin test, and congruent radiographic findings. However, TB must be shown by a positive culture or histological evidence. To avoid catastrophic bone and joint destruction, prompt diagnosis and therapy are crucial.

Keywords: Anterior chest wall abscess, chest wall tuberculosis, musculoskeletal TB, Tuberculosis, cold abscess

*Corresponding Author

Dr. Suprajaa Desingu , Junior Resident, Department of General Surgery, Sree Balaji Medical College and Hospital

Received On 9 June, 2022

Revised On 26 November, 2022

Accepted On 24 October, 2023

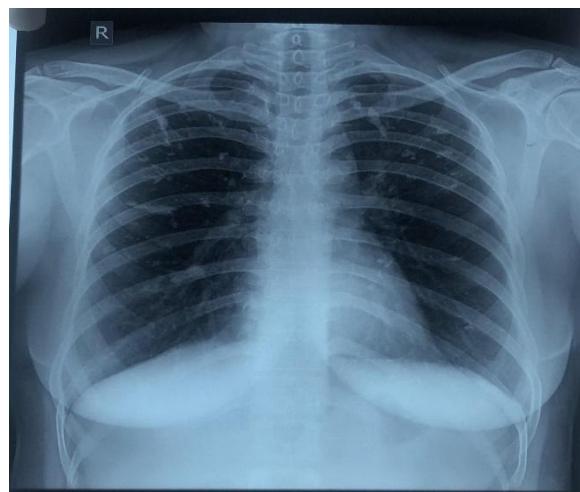
Published On 1 November, 2023

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Dr. Suprajaa Desingu, Dr Karthikeyan Selvaraj and Dr. Ravishankar , Case Report of Tuberculous Anterior Chest Wall Abscess.(2023).Int. J. Life Sci. Pharma Res.13(6), L450-L455 <http://dx.doi.org/10.22376/ijlpr.2023.13.6.L450-L455>

I. INTRODUCTION

In spite of excellent antituberculosis medications, the incidence of tuberculosis is still high in developing nations. *Mycobacterium tuberculosis* (MTB) is an airborne pathogen that causes the infectious disease tuberculosis (TB), which typically affects the lungs. While lung infection is the most typical symptom of tuberculosis, it can also affect the pleura, central nervous system, lymphatic system, genitourinary system, and musculoskeletal system. Although the lungs are the major site of infection in primary tuberculosis, 15-20% of cases are reportedly extrapulmonary. Tuberculosis (TB) that affects the bones and/or joints is referred to as skeletal tuberculosis. Around the world, 10 to 35 percent of extrapulmonary TB cases are caused by skeletal TB. There are reports of a higher occurrence in endemic countries like India. Comparable to the proportion of skeletal TB among people who do not have HIV infection, skeletal TB occurs more frequently in people with HIV infection¹⁻⁴. Pott disease, a spinal condition, is the most prevalent type of skeletal TB and accounts for around half of all cases of musculoskeletal TB. After extraspinal tuberculous osteomyelitis, tuberculous arthritis is the most prevalent kind of musculoskeletal TB. Being rare, chest wall tuberculosis remains difficult to diagnose and treat. The typical appearance of chest wall TB is a cold abscess, which denotes oedema without inflammation. It may appear as a single lesion with no main foci in the ribcage or lung parenchyma. Various indications and symptoms manifest depending on the location of the lesion. Tuberculosis of the chest wall typically manifests as an abscess, which is frequently cystic, doughy, or mushy.⁵⁻⁷. The pathophysiology of a chest wall abscess is explained by three different mechanisms: lymphadenitis of the chest walls, hematogenous dissemination of a latent tuberculous centre, and direct extension from pleural or pulmonary parenchymal illness. Primary tuberculosis of the chest wall is uncommon, and diagnosis is frequently difficult and time-consuming since the lesions superficially resemble pyogenic abscesses or tumours.⁸⁻¹⁰ The sites of extrapulmonary TB lesions are dispersed, and *Mycobacterium tuberculosis* is rarely seen there. Because of this, extrapulmonary TB patients' conditions are complicated and frequently overshadowed by other illnesses, which has a significant impact on diagnosis and therapy. Due to missing diagnoses, incorrect diagnoses, and the absence of normative


information on recommended treatment regimens, functional lesions in local organs frequently result in disabilities and even put lives in jeopardy. Chest wall TB, a frequent type of TB that affects the skin of the body, involves lesions that develop as a result of pulmonary or pleural TB infection and are located in the ribs, sternum, and soft tissue of the chest wall. The bulk of the lesions eventually manifest as cold abscesses and ulcers, which result in sinus tract or ulcer-induced fistulas. The lesions have a sizable surface area. Treatment options include oral anti-TB medicine combined with surgery when a diagnosis is clinically established, the abscesses have already developed and may have even ruptured, or the sinuses have formed.^{11,12}. Here, we show a case of a tuberculous ulcer over the chest wall without any lungs or bones, including the ribs, being affected.

2. CASE REPORT

A 38-year-old female presented with chief complaints of a swelling over the left chest wall. The mass had been present for 2 months. The swelling was insidious onset, had a slow progressive nature. She did have any history of trauma, fever, cough, or breathlessness, onset of the swelling was insidious while the progress was slow. She reported of childhood pulmonary tuberculosis for which she was treated with anti-tuberculous treatment for a duration of 6 months. The patient had a significant past history of cervical tuberculous lymphadenitis excision done 10 years back. There is no history of contact with tuberculosis. On examination the patient was afebrile and well nourished. A single 4 x 4 cm swelling was noted over left anterior chest wall, below the left clavicle (FIGURE 1). The surface of the swelling was smooth, non-tender, with no warmth, fluctuant, with well-defined borders, and not fixed to the chest wall. A 2 x 2 cm axillary lymph node was noted on the ipsilateral side which was non-tender. Both the breast was normal with no palpable mass, warmth, or tenderness. No palpable lymph nodes were found on the contralateral side. The white blood cell count was normal. All other investigations including erythrocyte sedimentation rate was normal. Chest X-ray revealed calcification in bilateral lung fields (FIGURE 2). Ultrasound of bilateral breasts showed a thick walled cystic lesion measuring 4.9 x 2.2 cm with echogenic components in the left upper inner quadrant, suggestive of abscess or hematoma with a BIRADS II. Two lymph nodes of size 3.0 x 1.8 cm and 1.0 x 0.8 cm noted in the left axilla.

Fig 1: Left anterior chest wall showing a swelling of size 4 x 4cm

Fig 2: Chest X-Ray – Showing Bilateral Calcification

The patient underwent Incision and Drainage of the swelling of Left Anterior Chest Wall under General Anesthesia. The mass was found anterior to the second rib. Caseous material was drained and sent for AFB staining, culture and CBNAAT. CBNAAT was found to be positive. The patient's Pus and Tissue for AFB were negative, and the HPE did not show any

organisms. Post-operative period was uneventful. The patient was registered and started on anti-tuberculous regimen for a period of 6 months consisting of isoniazid 300mg, rifampicin 600mg, pyrazinamide 2 grams and pyridoxine 50mg. Post-operative wound healing was good.

Fig 3: Intraoperative Finding Showing Caseous Material

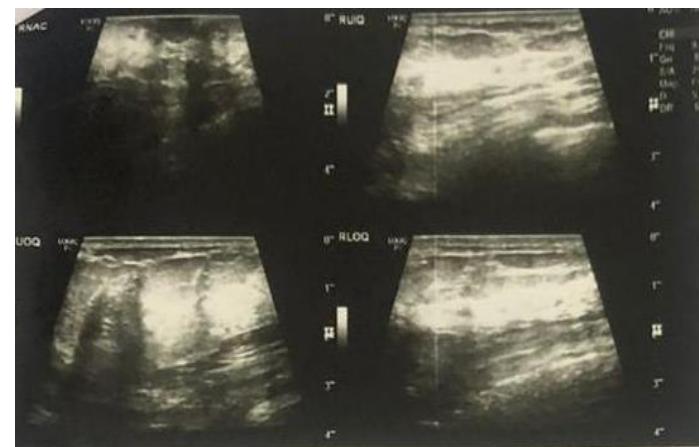


Fig 4: Ultrasound

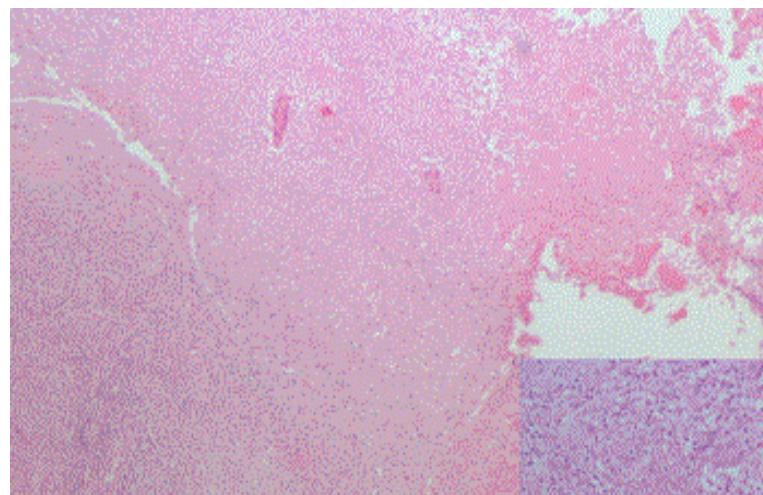


Fig 5: Histopathology

3. DISCUSSION

TB of the chest wall is a rare condition. It is typically a chronic infection, and chronic infections of the chest wall can occur in soft tissues, cartilage, and bones^{13,14}. It is related to the growth of a localised lesion on the chest wall that is restricted to the soft tissues in this case study. It accounts for 10% of all extrapulmonary TB cases and 1% to 5% of all musculoskeletal TB cases.^{15,16}. Consideration should be given to it in immunocompetent patients^{17,18}. The primary risk factor is a history of tuberculosis, which is reported in 70-80% of cases. Active TB has been reported in 20-60% of patients with TB of the chest wall. On this occasion, the patient presented with no history of exposure to individuals with pulmonary or extrapulmonary tuberculosis. The only relevant fact is that the patient had past history of pulmonary tuberculosis.^{19,20}. There are three pathophysiological mechanisms that may lead to the development of a chest wall abscess: the first is direct extension from a pleural or pulmonary condition. The second is a hematogenous spread in a substantial proportion of extrapulmonary TB, and the third is direct extension due to tuberculous mediastinal lymphadenitis²¹. In soft tissues of the chest wall, TB can manifest as an abscess or a tuberculoma. Infected muscles are described as follows: brachial biceps, right femoral rectum, psoas, rectus abdominis, gluteus maximus, and sub masseteric space^{22,23}. Infections in these structures are uncommon due to the high lactic acid content of the muscles, the absence of lymphatic tissue, the high blood flow, and the high proportion of muscle differentiation²⁴. Therefore, it is important to highlight the case presented here, which

involved only a chest wall soft-tissue lesion with pectoralis major permeation, ruling out any respiratory symptoms. The histopathology studies of the case revealed granuloma with caseous necrosis. Epithelioid granuloma with central caseation necrosis was also observed and is similar to the other reported studies³³. The presence of a single palpable mass is a common symptom of TB of the chest wall. The tuberculous abscess has a strong preference for the margins of the sternum. Infection of the internal mammary lymph nodes as a result of primary pulmonary disease has been hypothesised. The abscess may have a slow and generally asymptomatic evolution that can resemble a tumour because it is initially painless and becomes painful within two months, which is similar to the presentation of the case described in this study^{25,26}. CT scans and excisional biopsies aid in early diagnosis and treatment efficacy. The nature and extent of soft-tissue collections, as well as any intrathoracic lymphadenopathy and bone erosions, are revealed by CT scans. Typically, it is observed as a juxtacortical mass in soft tissues with low central attenuation and peripheral enhancement^{27,28}. With the use of MRI²⁹, soft tissues and intramuscular abscesses are more visible. In our case, ultrasound demonstrated that the lesion was limited to soft tissues; however, these studies not only provided the diagnosis, but also served as a guide for assessing the lesion's location and ruling out other associated lesions in lung and ganglion tissue. Molecular techniques with the polymerase chain reaction (PCR) enable a more rapid diagnosis of *M. tuberculosis* than conventional methods (staining for acid-resistant bacilli and the same culture)³⁰⁻³². PCR has also

demonstrated greater specificity and sensitivity than conventional methods. Therefore, in our case, PCR for TB was utilised, which provided us with a definitive diagnosis of the lesion's nature. The initial recommended medical treatment is a combination of rifampicin, isoniazid, pyrazinamide, and ethambutol for two months followed by rifampicin and isoniazid for 6 months. This treatment was administered to our patient over a six-month period, with complete regression of the lesion at six-month follow-up.³²

4. CONCLUSION

It is extremely uncommon for the anterior chest wall to be involved in the granulomatous inflammation of tuberculosis, which often affects the lungs and hilar lymph nodes. Additionally, immunocompetent people are now less likely than non-immunocompetent patients to have extra pulmonary TB. Clinicians still struggle to make the correct diagnosis of musculoskeletal tuberculous infection, which calls for a high degree of suspicion. The diagnosis is highly supported by the slow development of symptoms, positive tuberculin skin test,

7. REFERENCES

- Mathlouthi A, Merai S, Friaa T, Mestiri I, Miled B, Djenayah F. Tuberculosis of the thoracic wall. Presentation of 4 personal cases and review of the literature. *Rev Pneumol Clin.* 1998 Sep 1;54(4):182-6.
- Gupta R, Espinal MA, Raviglione MC. Tuberculosis as a Major Global Health Problem in the 21st Century: a WHO Perspective. *Seminars in Respiratory and Critical Care Medicine.* 2004;25(3):245-53. doi: 10.1055/s-2004-829520.
- Golden MP, Vikram HR. Extrapulmonary tuberculosis: an overview. *Am Fam Phys.* 2005 Nov 1;72(9):1761-8.
- Gaude GS, Reyas AK. Tuberculosis of the chest wall without pulmonary involvement. *Lung India Off Organ Indian Chest Soc.* 2008 Jul;25(3):135. doi: 10.4103/0970-2113.59597.
- Morris BS, Maheshwari M, Chalwa A. Chest wall tuberculosis: a review of CT appearances. *Br J Rad.* 2004 May;77(917):449-57. doi: 10.1259/bjr/82634045.
- Iseman MD. A clinician's guide to tuberculosis. Lippincott-Raven; 2000.
- Ozkara S, Kilicaslan Z, Ozturk F, Seymenoglu S, Erdogan AR, Tellioglu C et al. Tuberculosis in Turkey with regional data. *Toraks Derg.* 2002;3:178-87.
- Tatelman M, Drouillard EJ. Tuberculosis of the ribs. *Am J Roentgenol Radium Ther Nucl Med.* 1953 Dec;70(6):923-35.
- Bloom BR, Atun R, Cohen T, Dye C, Fraser H, Gomez GB et al. Tuberculosis. Major infectious diseases. 3rd ed. The International Bank for Reconstruction and Development. World Bank; 2017 Nov 3.
- Gröschel MI, van den Boom M, Migliori GB, Dara M. Prioritising children and adolescents in the tuberculosis response of the WHO European Region. *Eur Respir Rev.* 2019 Mar 31;28(151). doi: 10.1183/16000617.0106-2018.
- Cho KD, Cho DG, Jo MS, Ahn MI, Park CB. Current surgical therapy for patients with tuberculous abscess of the chest wall. *Ann Thorac Surg.* 2006 Apr 1;81(4):1220-6. doi: 10.1016/j.athoracsur.2005.10.044.
- Kuzucu A. The role of surgery in chest wall tuberculosis. *Interact Cardiovasc Thorac Surg.* 2004 Mar 1;3(1):99-103. doi: 10.1016/S1569-9293(03)00192-0.
- Bergeron EJ, Meguid RA, Mitchell JD. Chronic infections of the chest wall. *Thorac Surg Clin.* 2017 May 1;27(2):87-97. doi: 10.1016/j.thorsurg.2017.01.002.
- Lim SY, Pyon JK, Mun GH, Bang SI, Oh KS. Reconstructive surgical treatment of tuberculosis abscess in the chest wall. *Ann Plast Surg.* 2010 Mar 1;64(3):302-6. doi: 10.1097/SAP.0b013e3181b0bb03.
- Golden MP, Vikram HR. Extrapulmonary tuberculosis: an overview. *Am Fam Phys.* 2005 Nov 1;72(9):1761-8.
- Condos R, Rom WN, Weiden M. Lung-specific immune response in tuberculosis. *Int J Tuberc Lung Dis Off J Int Union Against Tuberc Lung Dis.* 2000 Feb;4;2 Suppl 1:S11-7.
- Hossain M, Azzad AK, Islam S, Aziz M. Multiple chest wall tuberculous abscesses. *JPMA J Pak Med Assoc.* 2010 Jul 1;60(7):589.
- Manicketh I, Panjwani P, Ravikumar G, Prince Mathan LP. Soft tissue tuberculosis – an unusual presentation of a common disease. *Indian J Tuberc.* 2018 Jan 1;65(1):96-7. doi: 10.1016/j.ijtb.2017.04.002.
- Abid H, Toujani S, Ammar J, Marghli A, Slim L, Hantous S et al. Chest swelling with adenopathy: don't forget tuberculosis. *Respir Med CME.* 2011 Jan 1;4(1):47-9. doi: 10.1016/j.rmedc.2010.04.001.
- Griesshammer I, Srivastava DS, Von Garnier C, Blaser TS, Exadaktylos A, Steib M. Tuberculosis and migration: a challenge for medical staff and public health. *Case Rep Emerg Med.* 2016 Nov 14;2016:1-3. doi: 10.1155/2016/8186036.
- Elshafie KT, Al-Hinai MM, Al-Habsi HA, Al-Hattali MS, Hassan O, Al-Sukaiti R. A massive tuberculosis abscess at the erector spinae muscles and subcutaneous tissues in a young man. *Sultan Qaboos University Medical Journal.* 2013 Nov;13(4):601.
- Alg VS, Demetriades AK, Naik S, Gunasekera L. Isolated subacute tuberculous spinal epidural abscess of the cervical spine: a brief report of a special case. *Acta Neurochir.* 2009 Jun;151(6):695-6. doi: 10.1007/s00701-009-0233-5.

and congruent radiographic findings. If the clinical suspicion is high, TB therapy is frequently started right away after the required microbiological and histological samples have been collected. However, TB must be shown by a positive culture or histological evidence. To avoid catastrophic bone and joint destruction, prompt diagnosis and therapy are crucial. With complete surgical resection of the abscess and multidrug therapy lasting an average of 6 months, the prognosis is typically better, lowering complications and recurrences.

5. AUTHORS CONTRIBUTION STATEMENT

Dr. Suprajaa Desingu proposed the concept, interpreted the data, and critically edited the article. Dr Karthikeyan Selvaraj and Dr. Ravishankar interpreted the data and reviewed the literature.

6. CONFLICT OF INTEREST

Conflict of interest declared none.

23. Abdelwahab IF, Kenan S. Tuberculous abscess of the brachialis and biceps brachii muscles without osseous involvement. A case report. *The Journal of Bone & Joint Surgery*. 1998 Oct 1;80(10):1521-4. doi: 10.2106/00004623-199810000-00014.
24. Alvarez-Moran AM, Avila-Sanchez PA, Fernández-Lara D. Chest wall soft-tissue tuberculosis: A case report. *HGMX*. 2020 Jun;83(2):70-4. doi: 10.24875/HGMX.20000094.
25. Stowell J, Martínez-Jiménez S. Imaging of nonneoplastic chest wall pathologies. In: *Diagnostic imaging for thoracic surgery 2018* (pp. 311-41). Berlin: Springer.
26. Lee G, Im JG, Kim JS, Kang HS, Han MC. Tuberculosis of the ribs: CT appearance. *J Comput Assist Tomogr*. 1993 May 1;17(3):363-6. doi: 10.1097/00004728-199305000-00004.
27. Morris BS, Maheshwari M, Chalwa A. Chest wall tuberculosis: a review of CT appearances. *Br J Rad*. 2004 May;77(917):449-57. doi: 10.1259/bjr/82634045.
28. Grover SB, Jain M, Dumeer S, Sirari N, Bansal M, Badgjar D. Chest wall tuberculosis – A clinical and imaging experience. *Indian J Rad Imaging*. 2011 Jan;21(1):28-33. doi: 10.4103/0971-3026.76051.
29. Masood S. Diagnosis of tuberculosis of bone and soft tissue by fine-needle aspiration biopsy. *Diagn Cytopathol*. 1992 Sep;8(5):451-5. doi: 10.1002/dc.2840080505.
30. van Mechelen M, van der Hilst J, Gyssens IC, Messiaen P. Mycobacterial skin and soft tissue infections: TB or not TB. *Neth J Med*. 2018 Aug 1;76(6):269-74.
31. Chang HE, Heo SR, Yoo KC, Song SH, Kim SH, Kim HB et al. Detection of *Mycobacterium tuberculosis* complex using real-time polymerase chain reaction. *Ann Lab Med*. 2008 Apr 1;28(2):103-8. doi: 10.3343/kjlm.2008.28.2.103.
32. American Thoracic Society. CDC; Infectious Diseases Society of America: treatment of tuberculosis. *MMWR. Morbidity and Mortality Weekly Report*. 2003;52(11):1-77.
33. Purohit MR, Mustafa T, Mørkve O, Sviland L. Gender differences in the clinical diagnosis of tuberculous lymphadenitis—a hospital-based study from Central India. *Int J Infect Dis*. 2009 Sep;13(5):600-605