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Abstract: Multiple sclerosis (MS) is an autoimmune disease in whsich a person’s immune system destroys the myelin around 
nerve cells in the central nervous system (CNS), yet the peripheral nervous system remains intact. The aim of this study is to 
investigate the bioinformatics of gene biomarkers in multiple sclerosis. In this study, after reviewing the texts and searching for 
the bioinformatics databases of NCBI, Gencards, Swiss-prot, Diseasome, etc. the genes involved in the disease based on at, least 
one of the methods in-vivo, in-vitro, and in-silico has been suggested to be extracted will be considered as candidate genes. In 
order to compare the results in case and control groups, the expression data obtained from each group was standardized 
compared to the control group. Then, the connection network of expression data of candidate genes in patients and healthy 
people was drawn separately with the help of MATLAB software (Version 9.1), and the correctness of these networks and 
determined biomarkers was checked using the rectome and diseasome database. All statistical calculations were done using R and 
Matlab software. In the present study, using 5 central criteria including: maximum neighborhood component, degree, closeness, 
radiality and betweeness, the set of essential genes of MS disease was identified. Based on the results of the central criteria method, 
TNF, CD40, IL2, IL2RA, IL 7 genes had the most repetitions. According to the identification of the most effective genes related 
to MS disease in the present study, it is suggested that further studies be designed at the in vitro and clinical levels on the identified 
effective genes as diagnostic biomarkers of MS disease. 
 
Keywords: Autoimmune Disease, Multiple Sclerosis, Gene Biomarkers, Central Nervous System. 

       ISSN 2250-0480

 Medicine for novel therapy

https://crossmark.crossref.org/dialog/?doi=10.22376/ijlpr.2023.13.6.L482-L488&amp;domain=www.ijpbs.net
https://orcid.org/0000-0001-6397-2390
https://orcid.org/0000-0002-6315-1098


 

ijlpr 2023; doi 10.22376/ijlpr.2023.13.6.L482-L488                                        Neurology 

 

L483 

 

1. INTRODUCTION 

 

Multiple sclerosis (MS) is an autoimmune disease in which a 

person’s immune system destroys the myelin around nerve 

cells in the central nervous system (CNS), yet the peripheral 

nervous system remains intact1,2. This damage impairs the 

ability of parts of the nervous system to transmit signals, and 

as a result, creates a wide range of physical, mental and 

sometimes psychiatric symptoms and problems3,4. Specific 

symptoms of MS include diplopia, blindness in one eye, feeling 

weak in muscles and coordination disorder5. Susceptibility to 

MS is multi-gene and each gene accounts for a relatively small 

amount of the overall risk. The strongest susceptibility signal 

in extensive genomic studies is related to the HLA-DRB1 gene 

in the MHC II region, accounting for approximately 10% of the 

risk of the disease. Most of the genes associated with MS play 

a role in the acquired immune system, and some affect the 

susceptibility to other autoimmune diseases6-8(Table 1). Viral 

infections or other disease-initiating factors facilitate the entry 

of T cells and antibodies into the CNS by disrupting the blood-

brain barrier. This increases the supply of cell-adherent 

molecules, matrix metalloproteinases and pro-inflammatory 

cytokines that call more immune cells to the site, and activate 

the immune response against antigens such as myelin main 

proteins, glycoproteins associated with myelin 

phosphodiesterase and S-100, resulting in the activation of 

autoimmune reaction via binding the target antigens by 

antigen-presenting cells, which includes cytokines, 

macrophages and complement10-12(Fig 1). The attack of the 

immune system on the myelin causes the axons to become 

bare, and as a result, nerve conduction slows down and 

neurological symptoms appear13. Today, a large group of drugs 

with different molecular mechanisms are used in the treatment 

of multiple sclerosis; they play a significant role in reducing the 

recurrence of the disease, prescribing MRI and preventing the 

permanent disability of patients14(Table 2). In terms of MS 

prevalence, among European countries, the highest prevalence 

is reported for Scotland and Northern Ireland (200 people per 

100,000 people)15,16. In Iran, there are different statistics of MS 

prevalence (5 to 74 people per 100 thousand), yet in general, 

the prevalence rate is higher in Tehran and Isfahan17. The 

disease-related biomarkers provide information about the 

possible effects of treatment on the disease (predictive 

biomarkers), the presence of the disease (diagnostic 

biomarkers) and how a disease develops regardless of the type 

of disease (prognostic biomarkers)18. Predictive biomarkers 

provide information about possible responses to a specific 

type of treatment, while prognostic biomarkers provide 

information about disease progression, whether the patient is 

treated or not19. The aim of this study is to investigate the 

bioinformatics of gene biomarkers in multiple sclerosis.

 

Table 1. MS-related genes that play a role in the acquired immune system and influence susceptibility to 

other autoimmune diseases.9 

Category GO ID Gene Ontology Term Adjusted p-

value 

Genes 

 

 

Biological Process 

GO:1902652 secondary alcohol metabolic process 0.0006 LDLRAP1;CLN8 

GO:0090181 regulation of cholesterol metabolic 

process 

0.0010 SP1;LDLRAP1 

GO:0016125 sterol metabolic process 0.0021 LDLRAP1;CLN8 

GO:0008203 cholesterol metabolic process 0.0028 LDLRAP1;CLN8 

GO:0090068 positive regulation of cell cycle process 0.0067 PKN2;DBF4B 

 

Cellular 

Component 

GO:0030665 clathrin-coated vesicle membrane 0.0039 LDLRAP1;VAMP3 

GO:0030136 clathrin-coated vesicle 0.0059 LDLRAP1;VAMP3 

GO:0030121 AP-1 adaptor complex 0.0080 LDLRAP1 

GO:0055037 recycling endosome 0.0083 LDLRAP1;VAMP3 

GO:0030130 clathrin coat of trans-Golgi network 

vesicle 

0.0103 LDLRAP1 

 

 

Molecular  

Function 

GO:0035612 AP-2 adaptor complex binding 0.0091 LDLRAP1 

GO:0035005 1-phosphatidylinositol-4-phosphate 3-

kinase activity 

0.0091 PIK3C2B 

GO:0035615 clathrin adaptor activity 0.0125 LDLRAP1 

GO:0098748 endocytic adaptor activity 0.0125 LDLRAP1 

GO:0016307 phosphatidylinositol phosphate kinase 

activity 

0.0182 PIK3C2B 
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Fig 1: mechanisms of pathogenesis in Multiple Sclerosis 

 

Table 2. The candidate drugs enriched by the differentially expressed genes were identified from the databases. 

Drug/Small Molecule P-value Genes 

Dorzolamide 0.0001 ZNF814;UPK3BL;NEAT1;VAMP3 

Iohexol 0.0005 NFATC3;UPK3BL;NEAT1 

Naringin 0.0009 NEAT1;VAMP3 

Benzylpenicillin 0.0009 UPK3BL;NEAT1 

Cicloheximide 0.0009 HN1L;NFATC3;KNOP1;PWP2;NEAT1 
Mycophenolic Acid 0.0011 UPK3BL;NEAT1 

Gsk461364 0.0012 PKN2;PIK3C2B 

Disopyramide 0.0014 HN1L;VAMP3 

H-89 0.0021 UPK3BL;VAMP3 

0175029–0000 0.0022 ZNF814;NFATC3;KNOP1;PKN2;DBF4B; 

 

2. MATERIALS AND METHODS 

 

The present study is an analytical one. The data were 

extracted from NCBI, SWISSprot, Genrcards and Disaesome 

bioinformatics databases from samples of 10,000 MS patients 

and 20,000 healthy individuals. The genes involved in the 

disease have been extracted based on at least one in vivo or 

in vitro and in silico methods, and they were considered as 

Candidate Genes. In order to investigate the network 

connection of genes involved in MS disease and to calculate 

essential factors, genes involved in the disease were 

determined using text mining method. Then, the set of target 

genes in this disease was ranked using the Gene-Disease-

Association-score (GDA score). After determining the 

candidate genes from related studies, expression data were 

collected, and in order to compare the results of the two 

experimental and control groups, the expression data 

obtained from each group was standardized compared to the 

control group (Table 3)(Fig 2). Then, the communication 

network of expression data of candidate genes was drawn in 

sick and healthy individuals separately using MATLAB (Version 

9.1), and the structural parameters of communication 

networks of expression data were calculated and compared20. 

Significant parameters were introduced as potential 

biomarkers, and using rectome and diseasome databases, the 

validity of these determined networks and biomarkers were 

checked for a second time. All statistical calculations in this 

research were done using R and Matlab. In order to analyze 

the data, advanced descriptive and analytical statistical 

methods were used. Moreover, machine learning methods 

based on advanced bioinformatics algorithms were used to 

calculate features and network data analysis to extract 

biomarkers related to the structural characters of the 

network. 

 

3. RESULTS 

 

The results of the present study showed that according to the 

Maximum-Neighborhood-Component (MNC) index, the most 

effective biomarker of MS disease network is related to TNF 

and the least effective is related to CD2. According to the 

Degree index, the most effective biomarker of the MS disease 

network is related to TNF and the least effective is related to 

IL7R. In terms of Closeness criterion, the most effective 

biomarker of the MS disease network is related to TNF and 

the least effective is related to TYK2. In terms of Radiality 

criterion, the most effective biomarker of the MS disease 

network is related to TNF and the least effective is related to 

TYK2. In terms of Betweeness criterion, a gene with the 

highest score is likely to have the greatest effect on the 
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transmission of information in the biological network 

compared to other vertices of the network, and removing 

them from the network will disrupt the entire network 

communication. Based on this criterion, the most effective 

biomarker of the MS disease network is related to TNF and 

the least effective is related to CD40LG (Table 4). 

 

Table 3. The expression levels of sorted candidate genes were extracted by Gene Enterz and Uniprot. In the 

next step, using the gephi platform, the communication network between the candidate genes was drawn, 

and while determining the communication structure network between the candidate genes, the structural 

concentration criteria of the network were calculated to determine the essential genes and proteins 

GDA Uniprot Gene 

0.5 PO1911 HLA-DRB1 

0.5 PO1589 IL2RA 

0.5 PLE871 IL7R 

0.5 P19456 TNFRSF1A 

0.5 Q2K1013 CLEC16A 

0.5 P25942 CD40 

0.5 P19256 CD58 

0.49 P29597 TYK2 

0.46 O60333 KIF1B 

0.44 PO1903 HLADRA 

 

 
 

Fig 2: Network of communication between proteins in MS disease 
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Table 4. Maximum Neighborhood Component, Degree, Closeness, Radiality and Betweeness for MS disease 

protein association network 

Betweeness Radiality Closeness Degree Maximum Neighborhood 

Component 

Criteria 

 

Rating 

TNF TNF TNF TNF TNF 1 

HLA-DRB1 CD40 CD40 CD40 CD40 2 

CD40 IL2 IL2 IL2 IL2 3 

IL2 IL2RA IL2RA IL2RA IL2RA 4 

CD74 IL7 IL7 CD40LG IL7 5 

IL2RA IL7R IL7R CD88 IL7R 6 

TYK2 CD40LG CD40LG TYK1 CD40IG 7 

IL7 HLA-DRB1 CD58 CD2 CD58 8 

IL7R CD58 HLA-DRB1 TYK2 TYK2 9 

CD40LG TYK2 TYK2 IL7R CD2 10 

 

4. DISCUSSION 

 

Today, the probability of developing chronic and incurable 

diseases has been on the rise. MS is the most common non-

accidental disabling disease in young adults. The onset age of 

the disease is usually 20 to 40 years old and it is known as a 

chronic disease with unpredictable symptoms and trends in 

the reproductive age of the individual21,22. The prognosis of 

this disease has improved in recent decades due to new 

available treatments and more people are aging with this 

disease23. The recently discussed biomarkers have helped to 

solve the difficulties and heterogeneities of MS disease 

pathophysiology and can be a way to improve clinical tools for 

researchers and doctors. In this study, bioinformatics methods 

were used to investigate the set of essential genes in the 

diagnosis and treatment of MS. Based on this, by using 5 

centrality criteria i.e. Degree, Closeness, Radiality, 

Betweeness and Maximum-Neighborhood-Component, the 

set of essential genes was identified. Among these, 5 genes 

including TNF-CD40-IL2-IL2RA-IL7 had the most repetition 

based on all the results of the above 5 central criteria methods. 

TNF encodes a multifunctional pro-inflammatory cytokine that 

belongs to the tumor necrosis factor superfamily24. The results 

of the present study showed that TNF is the most effective 

biomarker related to MS disease, which is consistent with the 

results of other studies25. It was also reported in the study 

conducted by Ribeiro et al. (2019), Soluble TNF receptor 

(sTNFR1) and age are the best predictive factors for the 

development of disability in MS patients26. CD40 biomarker is 

a member of the TNF receptor superfamily. The results of the 

present study indicate the key role of this biomarker after TNF 

in MS patients. In the study conducted by Titova et al. (2023), 

it was reported that the T-allele of the rs6074022 

polymorphism of the CD40 gene has a significant relationship 

with the average rate of MS disease progression, and the GA 

genotype of the rs1800629 polymorphism of the TNF-α gene 

will cause MS exacerbation with a higher frequency27. In the 

study conducted by Pope et al. (2020), it was reported that IL2 

biomarker in MS patients, in cooperation with other 

predisposing factors, will cause the activation of T cells and 

disease progression28. This is in line with the results of the 

present study. Interleukin-2 alpha (IL2RA) and beta (IL2RB) 

receptors together with the common gamma chain form the 

high-affinity IL2 receptor. The results of the present study 

showed that IL2RA is one of the effective genes in MS; this is 

in line with the results of other studies29,30. IL-7 is widely 

regarded as a key cytokine, which controls the differentiation 

and immune responses of several T cell subsets31. In the study 

by Simsek et al. (2019), which was conducted to investigate 

the relationship between L7R-Promoter-Polymorphisms and 

Multiple Sclerosis in Turkish population, it was reported that 

there is a significant relationship between IL7R promoter 

polymorphisms and the age of MS onset32; this is in line with 

the results of the present study.  

 

5. CONCLUSION 

 

The results of the present study showed that the most 

effective genes related to MS include: TNF-CD40-IL2-IL2RA-

IL7. Thus, in the future, additional studies at the laboratory and 

clinical levels can be designed on the determined effective 

genes as diagnostic biomarkers of MS disease. Besides, by 

investigating the communication paths in the gene 

communication network of MS disease, one can recognize and 

study the communication in the disease and the interaction of 

this disease with other diseases. This can help to understand 

more about the mechanism of the disease. 
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