

Iatrogenic Ovarian Hyperstimulation Syndrome in Late Luteal Phase – A Rare Case Report

Dr. Nithya.R*^{ID} and Dr.ch. Yamini Uma Deepthi¹

*Assistant Professor, Department of Obstetrics and Gynaecology, Sree Balaji medical college and Hospital, Chennai

¹Junior resident, department of Obstetrics and Gynecology, Sree Balaji medical college and Hospital, Chennai.

Abstract: Ovarian hyperstimulation syndrome is an iatrogenic medical complication unique to stimulatory infertility treatment. Characteristics of the syndrome include cystic ovarian enlargement, increased capillary permeability resulting in extravascular fluid accumulation, and intravascular volume depletion. It is a self-limiting disease in mild cases but can cause renal failure, hydrothorax, and respiratory distress that can cause mortality in severe cases. In this case, we aimed to report moderate ovarian hyperstimulation (grade 3) syndrome, ultimately resulting in ovarian torsion and salphingo oophorectomy. Case presentation-A 29-year-old female known case of polycystic ovarian syndrome underwent ovulation induction 22 days later. She presented to our hospital with severe abdominal pain, abdominal distension, and vomiting. She was admitted and diagnosed with Grade 3 Ovarian hyperstimulation syndrome medical management, given the patient got better symptomatically. 10 days later, she presented in casualty with abdominal pain and was diagnosed with right ovarian torsion and right salphingo oophorectomy done. Conclusion: We should rule out risk factors for ovarian Hyperstimulation syndrome before treating any infertility patient. Patients with ovarian hyperstimulation syndrome must be identified early and referred urgently to a tertiary care hospital. Ovarian hyperstimulation syndrome can result in serious morbidity and mortality if left untreated.

Keywords: polycystic ovarian syndrome, ovarian torsion, ovulation induction, Hyperstimulation, Secondary Infertility.

***Corresponding Author**

Dr. Nithya.R, Assistant Professor, Department of Obstetrics and Gynaecology, Sree Balaji medical college and Hospital, Chennai

Received On 10 November, 2022

Revised On 30 May, 2023

Accepted On 12 June, 2023

Published On 1 November, 2023

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Dr. Nithya.R and Dr.ch. Yamini Uma Deepthi , Iatrogenic Ovarian Hyperstimulation Syndrome in Late Luteal Phase – A Rare Case Report.(2023).Int. J. Life Sci. Pharma Res.13(6), L280-L285 <http://dx.doi.org/10.22376/ijlpr.2023.13.6.L280-L285>

I. INTRODUCTION

Ovarian hyperstimulation syndrome (OHSS)¹ is a life-threatening clinical complication that manifests as massive ovarian enlargement. Most common iatrogenic cause following ovulation induction or ovarian hyperstimulation. Ovulation induction is done by various drugs like oral drugs like Letrozole, clomiphene citrate, Tamoxifen, injectables like gonadotropins (urinary), Recombinant gonadotropin analogs like agonists and antagonists, etc.; among these, Letrozole is the least common to cause hyperstimulation. The hypothalamus-pituitary-ovarian function decides the choice of medications for ovulation induction. If the hypothalamus is adequate oral regimen is preferred. If there is any dysfunction in the hypothalamus, injectable gonadotropin is preferred. Three different protocols for administering gonadotropins, like the step-up protocol in which 75IU is starting dose, and 75IU increases every 7 days until the follicles are recruited². Low dose step-up in which 37.5IU - 75IU is starting dose + 37.5IU increase every 7-14 days if follicles are not recruited^{3,4}. Step-down protocol in which 150IU until the dominant follicle is more than 10mm, then 112.5 IU for 5 days, and 75IU for 5 days until ovulation. Clomiphene citrate is known to cause hyperstimulation syndrome if used at more than 200mg daily. Gonadotropins have a high chance of developing hyperstimulation. Patients with clinical conditions like polycystic ovarian syndrome, young age, lower body mass index (BMI), previous history of ovarian hyperstimulation syndrome, and genetic predisposition have a higher chance of developing hyperstimulation. Biochemical indices like plasma estradiol, Insulin resistance, Anti Mullerian hormone (AMH), and follicular stimulation hormone (FSH) help predict hyperstimulation. Ultrasound indices like Polycystic ovarian pattern, High antral follicular count, and ovarian volume also help predict hyperstimulation. Incidence of moderate or severe OHSS 3% to 8%⁵. Symptoms vary from abdominal discomfort, nausea, vomiting, abdominal distension, pain in the abdomen, decreased urine output,

dyspnea, pleural effusion, electrolytes imbalance, and an increased tendency for thromboembolism due to an increase in permeability of capillaries leading to fluid leakage from peritoneal and ovarian surfaces due to ovarian stimulation. It is a rare iatrogenic complication of ovarian stimulation during the luteal phase^{6,7}.

2. CASE REPORT

29 years old PII woman came to the OPD of Gynecology with severe abdominal pain, vomiting, and mild abdominal discomfort. Her PR- 98/min, BP – 110/60 mmHg, SPO2 98% (room air), and RR – 20/min. The physical examination showed a palpable tender mass occupying the hypogastric region, right and left Iliac fossa corresponding to 16 weeks' gravid uterine size. There is no evidence of ascites or lung signs. She attained menarche at 13 years of age and had regular cycles. She conceived spontaneously 6 years back on first conception, delivered by normal vaginal delivery with no complications during delivery. The patient was on treatment for secondary infertility, for which she took one cycle of Letrozole followed by a second cycle of Clomiphene Citrate 100mg from day 3 to 7. After 22 days, she developed severe abdominal pain associated with vomiting. She went to a nearby hospital, was treated with analgesics, and was referred to our hospital.

2.1. Investigations

Laboratory tests showed a Complete hemogram, serum electrolytes, urea, and creatinine are in the normal range. Abdominal and transvaginal USG (figure 1) showed uterus- 8.1×5.2 × 4.1cm, endometrial thickness of 8.6mm. The right ovary appears enlarged- 12.3×7.3cm & Left ovary appears enlarged- 9.8×7.5cm. Bilateral ovaries appear enlarged and show multiple cysts of varying sizes; few cysts show hemorrhagic content. Minimal free fluid was noted in the peritoneal cavity. No evidence of pleural effusion.

Fig 1: A, B, C: Ultrasound Pictures of OHSS

Grade 3 OHSS was diagnosed based on the history of infertility treatment, enlarged ovaries (12.3× 7.3cm), and ultrasound evidence of ascites. She was given symptomatic management with close monitoring. Daily vitals monitoring with abdominal girth measurement, lung signs, and urine output. Advised fluid restriction. Medical management with Cabergoline 0.5mg for 10 days, injection of Cetrorelix

0.25mg for 5 days, and injection of Enoxaparin 0.4mg for 5 days. Prognosis Patient improved symptomatically and hence discharged at request. 10 days later, again, she presented with severe abdominal pain and was diagnosed with right ovarian torsion and right Salphingo oophorectomy. Histopathology revealed a normal fallopian tube and an infarcted surface with a viable focal lining in the ovary.

Fig 2: A and B: Intraoperative Pictures of Salphingo Oophorectomy

The arrow mark shows hemorrhage.

Arrow mark showing necrosis

Fig 3: Histopathology Pictures A & B

3. DISCUSSION

Ovarian hyperstimulation syndrome (OHSS)⁷ is characterized by multi-follicular development and ovarian enlargement. It is an iatrogenic complication of ovulation induction⁵. It usually occurs with gonadotropin therapy and rarely with clomiphene citrate⁸. A variety of chemical mediators like cytokines, vascular epidermal growth factor, and tumor

necrosis factor is thought to be stimulated due to human chorionic gonadotropin that leads to an increase in permeability of vessels and fluid accumulation in extravascular spaces in OHSS^{9,10}. Two patterns of OHSS⁴ onset have been described in Table 1. The proposed RCOG classification based on the severity of OHSS symptoms is given in Table 2^{1,7,12}. Table 3¹³ represents the medical management of different grades of OHSS¹⁸.

Table 1: Patterns of OHSS onset

Early onset	3-7 days following the trigger
Late-onset	12-17 days after the trigger

Table 2: Classification based on the severity of symptoms

RCOG	GOLAN	CHARACTERISTICS
Mild	Grade 1	abdominal bloating and pain
	Grade 2	Grade 1 + vomitings/diarrhea, size of the ovary < 8cm
Moderate	Grade 3	Moderate pain in the abdomen, nausea +, and vomiting. Ultrasonic proof of ascites, size of the ovary

Severe	Grade 4	clinical ascites +/- hydrothorax, respiratory distress syndrome
	Grade 5	Grade4+ Hematocrit (>55%), TLC>25000/ml, oliguria/Andria, thromboembolism hyponatremia(<135mmol/l), Hypo osmolality (<282mosm/l), hyperkalemia (>5mmol/l), hypo protinemia (<35g/l), Ovarian size >12cm

Table 3: Medical Management of different grades of OHSS

RCOG	Medical management
Mild	Outpatient management is appropriate. It includes information regarding fluid intake and output monitoring. Advised to review every 2-3 days
Moderate	Management of Mild + LMWH prophylaxis for Outpatient management. inpatients: analgesics and anti-emetics, diuretics only if oliguria persist
Severe	Mild +moderate +Paracentesis +intravenous colloid therapy

In most cases, OHSS disappears spontaneously after 6-8 weeks¹. Rarely it may turn fatal in patients who are having pleural effusion or pericardial effusion, hypovolemia¹⁴. The main treatment of OHSS is symptomatic and supportive. During the follow-up of the patients, Hemoglobin, hematocrit, electrolytes, renal function tests, and liver function tests are to be done¹⁵. Surgical management is indicated only in cases of ovarian torsion or ovarian rupture.

4. EPIDEMIOLOGY AND RISK FACTORS

Incidence is different for different regimens used. Both urinary or recombinant Gonadotropins have a higher incidence. The incidence of moderate or severe OHSS is 8% in patients induced by clomiphene citrate¹⁶. 2% of all IVF cycles will have OHSS¹⁷. Patients with PCOS have a higher risk of developing hyperstimulation¹⁵. If the number of follicles retrieved after ovulation induction is more than 14 risk of developing ovulation hyperstimulation syndrome increases. Younger patients, and women with low BMI, have a high risk of developing hyperstimulation. Pregnancy increases the risk of developing hyperstimulation and prolongs the symptoms' duration.

5. CONCLUSION

Before treating infertility with ovarian stimulation drugs like

9. REFERENCES

- Gul T, Ugurel V. A Case of Ovarian Hyperstimulation Syndrome in Patient With Polycystic Ovarian Syndrome. T Gul 2015. Available from: <https://cms.galenos.com.tr>.
- Palshetkar N, Roongta N. Protocols for ovulation induction. Mumbai Obstetric and Gynecological Society; 2011.
- Tarlatzis BC, Fauser BC, Kolibianakis EM, Diedrich K, Rombauts L, Devroey P. GnRH antagonists in ovarian stimulation for IVF. Hum Reprod Update. 2006;12(4):333-40. doi: 10.1093/humupd/dml001, PMID 16567347.
- Practice Committee of the American Society for Reproductive Medicine. Use of exogenous gonadotropins in anovulatory women: a technical bulletin. Fertil Steril. 2008;90(5);Suppl:S7-12. doi: 10.1016/j.fertnstert.2008.08.003, PMID 19007651.
- Kumar P, Sait SF, Sharma A, Kumar M. Ovarian hyperstimulation syndrome. J Hum Reprod Sci. 2011;4(2):70-5. doi: 10.4103/0974-1208.86080, PMID 22065820.
- Hugues j. ovarian stimulation for assisted reproductive technologies. Current practices and controversies in assisted reproduction. Geneva, Switzerland: WHO; 2001. p. 102-26.
- Vayena E, Rowe PJ, Griffin PD. Current practices and controversies in assisted reproduction: report of a meeting on medical, ethical, and social aspects of assisted reproduction, held at WHO, Headquarters, Geneva, Switzerland. World Health Organization; 2002.
- Whelan JG, Vlahos NF. The ovarian hyperstimulation syndrome. Fertil Steril. 2000;73(5):883-96. doi: 10.1016/S0015-0282(00)00491-X, PMID 10785212.
- Rizk B, Aboulghar M, Smitz J, Ron-El R. The role of vascular endothelial growth factor and interleukins in the pathogenesis of severe ovarian hyperstimulation syndrome. Hum Reprod Update. 1997;3(3):255-66. doi: 10.1093/humupd/3.3.255, PMID 9322101.
- Delbaere A, Bergmann PJM, Gervy-Decoster C, Camus M, de Maertelaer V, Englert Y. Prorenin and active renin concentrations in plasma and ascites during severe ovarian hyperstimulation syndrome.

clomiphene citrate and gonadotropin, physicians should evaluate the patient carefully to rule out risk factors like PCOS and young age, thereby preventing OHSS. The patient with OHSS should be identified early and treated urgently. If left untreated, it can result in serious complications.

6. COMPLIANCE WITH ETHICAL REQUIREMENTS

We declare that this article is original, not submitted for publication anywhere else, and was not published anywhere previously. Written and informed Consent was taken from the patient for publishing the article. If this article is published, it will be the property of the journal, and we surrender all rights to the editor.

7. AUTHORS CONTRIBUTIONS STATEMENT

Dr. Nithya. R, Assistant Professor, and Dr. Yamini, junior resident, were on duty the day the patient came to casualty. Dr. Yamini investigated, followed the case, collected the data, and discussed it with Dr. Nithya. Dr. Nitya operated on the case. All authors read and approved the final manuscript.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

Hum Reprod. 1997;12(2):236-40. doi: 10.1093/humrep/12.2.236, PMID 9070702.

11. Aubuchon M et al. Infertility and assisted reproductive technology. In: Berek DL, Timothy C, Barlie G, editors. *Berek & Novak's gynecology*. 15th ed. Philadelphia: Wolters Kluwer; 2012.

12. Golan A, Ron-El R, Herman A, Soffer Y, Weinraub Z, Caspi E. Ovarian hyperstimulation syndrome: an updated review. *Obstet Gynecol Surv*. 1989;44(6):430-40. doi: 10.1097/00006254-198906000-00004, PMID 2660037.

13. Royal College of Obstetrics and Gynaecology. Managing ovarian hyperstimulation syndrome, Green-top Guideline(5, Feb); 2016.

14. Todros T, Carmazzi CM, Bontempo S, Gaglioti P, Donvito V, Massobrio M. Spontaneous ovarian hyperstimulation syndrome and deep vein thrombosis in pregnancy: a case report. *Hum Reprod*. 1999;14(9):2245-8. doi: 10.1093/humrep/14.9.2245, PMID 10469688.

15. Delvigne A. Symposium: update on prediction and management of OHSS. Epidemiology of OHSS. *Reprod Biomed Online*. 2009 Jan 1;19(1):8-13. doi: 10.1016/s1472-6483(10)60040-5, PMID 19573285.

16. Avecillas JF, Falcone T, Arroliga AC. Ovarian hyperstimulation syndrome. *Crit Care Clin*. 2004;20(4):679-95. doi: 10.1016/j.ccc.2004.05.003, PMID 15388196.

17. Forman RG, Frydman R, Egan D, Ross C, Barlow DH. Severe ovarian hyperstimulation syndrome using agonists of gonadotropin-releasing hormone for in vitro fertilization: A European series and a proposal for prevention. *Fertil Steril*. 1990;53(3):502-9. doi: 10.1016/s0015-0282(16)53348-2, PMID 2106456.

18. Al Wattar BH, Fisher M, Bevington L, Talaulikar V, Davies M, Conway G, et al. Clinical practice guidelines on the diagnosis and management of polycystic ovary syndrome: a systematic review and quality assessment study. *J Clin Endocrinol Metab*. 2021 Jul 13;106(8):2436-46. doi: 10.1210/clinend/dgab232, PMID 33839790.

19. Aubuchon M, Burney RO, Schust DJ, Yao MW. Infertility and assisted reproductive technology. Berek & Novak's gynecology. 15th ed. Lippincott Williams & Wilkins, a Wolters Kluwer business; 2012. p. 1139.8. Abramov Y, Elchalal U, Schenker JG. Severe OHSS: an 'epidemic' of severe OHSS: a price we must pay? *Hum Reprod*. 1999;14(9):2181-3. doi: 10.1093/humrep/14.9.2181, PMID 10469676.