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Abstract: Computer aided drug designing as well as drug repurposing implies the usage of molecular modelling techniques like 
analysis of the structures of receptor and ligand, molecular docking, pharmacokinetics and toxicity prediction, to explain the 
bioactivity of the synthetic molecules or plant secondary metabolites to design more efficient drug candidates or to repurpose 
an old drug in new diseases. Numerous studies have demonstrated that the low oxygen environment inside the cell is a key 
factor in developing breast cancer metastasis. To gain insight into the spread of breast cancer, hypoxia-inducible factor 1 (HIF-1), 
one of the master regulators of the hypoxic response, has been intensively explored. Our current research focuses on the in-
silico analysis and comparative study to evaluate the effects of different cancer drugs, analgesics, and plant-derived flavonoid 

compounds on HIF-1α regulation of breast cancer metastasis. According to the study, Quercetin shows the maximum binding 
affinity, i.e., -8.2 kcal/ mol. followed by Letrozole (-7.3 kcal/mol.), Naringenin (-7.11 kcal/mol), Tamoxifen (-7.07 kcal/mol), 
Phenacetin (-6.16 kcal/mol), and Aspirin (-5.7 kcal/mol). The study highlighted that Quercetin has the strongest binding affinity 

whereas Aspirin has the least binding affinity with HIF-1α protein. Hence the least toxic compound Quercetin can be a good 
candidate to control breast cancer metastasis by modulating the HIF-1 pathway. 
 

Keywords: Breast cancer metastasis, HIF-1α, Synthetic drugs, Flavonoids, Analgesics, Molecular docking, Pharmacokinetics. 

       ISSN 2250-0480

  Antagonist/S of HIF-1α from Flavonoids

https://crossmark.crossref.org/dialog/?doi=10.22376/ijlpr.2023.13.6.P12-P27&amp;domain=www.ijpbs.net
https://orcid.org/0000-0001-6281-4286


 

ijlpr 2023; doi 10.22376/ijlpr.2023.13.6.P12-P27                       Drug Design and Development  

 

 

P13 

 

1. INTRODUCTION 
 
Breast cancer is the number one cause of cancer and death in 
women worldwide. Still, sadly, many patients already have a 
secondary illness when they are first diagnosed, and some 
will develop metastasis during or after treatment.1 In some 
specific breast cancer subtypes, it is usually linked to bone 
metastases even if prevention is not always achievable (such 
as triple-negative, one of the most aggressive types).2 
Tumours can easily arise when breast cancer tissue migrates 
and fuses with lung tissue. When tumor cells produce the 
HIF proteins (HIF-1 and HIF-2), they become more 
aggressive and capable of metastasizing to other organs.3 
Healthy cells' survival and subsequent adjustment to low 
oxygen conditions depend on these HIF proteins. Tumor 
formation in healthy mice has been linked to the absence of 
HIF-1α, according to studies on the functionality of HIF. 

Moreover, when HIF-2α was absent, they produced even 
more.4 It was determined whether having more or less of 
each of these proteins would increase the likelihood of 
developing tumors by causing hypoxia (low oxygen situation) 

to activate HIF-1α or HIF-2α.5, 6 Hypoxia-inducible factors 

(HIF-1α) is controlled by oxygen-dependent hydroxylation.7 
Certain genes, including those that code for vascular 
endothelial growth factor and erythropoietin, increase 
transcription during hypoxia.8 It may be beneficial to alter the 
HIF-mediated hypoxia response in various diseases, such as 
cancer and cardiovascular conditions. 9 HIF-1α levels have 
been linked to aggressive tumor progression in several 
cancers, including cervical cancer, non-small cell lung 
carcinoma, and breast cancer. As a result, they have been 
suggested as a prognostic and predictive marker for 
resistance to chemotherapy and radiation therapy, as well as 
increased mortality. 10, 11 A schematic diagram shows the 
mechanism underlying the spread and progression of breast 
cancer cells (Figure 1). Based on the findings discussed above, 

it can be concluded that hypoxia-inducible factor 1α (HIF-1α) 
is a transcriptional factor with significant effects on the 
occurrence of cancers 9, 12, and metastasis disease, or the 
spread of tumor cells throughout the body, is accountable for 
the vast majority of cancer patient deaths and represents the 
key clinical challenge of solid tumor oncology. 13 

 

 
 

Fig 1: Process of Breast Cancer Metastasis 
 
1.1. Standard Synthetic Drugs 
 
AstraZeneca of the UK made Tamoxifen available for the 
first time. It is now commonly administered in Pakistani and 
Australian clinics as a hormonal therapy for estrogen-positive 
breast cancer.14,15 Tamoxifen is a well-known example of a 
pro-drug that must undergo metabolic activation to begin 
acting pharmacologically. 16 The research shows that the 
effectiveness of Tamoxifen treatment depends on both 
hereditary and environmental (drug-induced) factors that 
alter CYP2D6 enzyme activity. 17 According to a study on 
women who developed breast cancer after using Tamoxifen, 
the risk of breast cancer decreases with the drug, resulting in 
less breast tissue density. 18 Another over-the-counter 
medication used in chemotherapy is letrozole. Femera is the 
brand name of the product. It is categorized as an aromatase 
inhibitor and used in hormone therapy. 19, 20 For the most 
part, postmenopausal women are given it as an oral pill to 
prevent breast cancer. This medication frequently causes 
weight gain, nausea, elevated cholesterol, and bone and joint 
pain. Numerous model cellular endocrine and tumor systems 
that include aromatase were used to investigate the relative 
potency of letrozole. 21, 22 

 

1.2. Group of Analgesics 
 
According to several studies, taking aspirin regularly reduces 
the risk of developing cancer. Observational studies have also 
demonstrated aspirin's potential to prevent cancers other 
than colorectal cancer, such as melanoma, ovarian cancer, 
and pancreatic cancer.23, 24 Inhibiting COX-1 and COX-2 
enzymes, which are crucial components of the human 
inflammatory cascade, is the primary molecular mechanism 
by which aspirin demonstrates its anticancer potential.25, 

These investigations have identified 26 the major participants 
in this inflammatory cascade, and the changes they cause may 
be cancer risk markers.  27-29 The acetamide class of 
chemicals includes phenacetin. It functions as a 
cyclooxygenase 3 inhibitor, a peripheral nervous system 
medication, and a non-narcotic analgesic. N-acetyl-p-
aminophenol, either conjugated or free, is the main 
metabolite of phenacetin detected in urine after oral 
treatment. 30 

 

1.3. Flavonoid Compounds  
 
The category of polyphenolic substances known as flavonoids 
is primarily present in fruits, vegetables, herbs, cereals, 
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spices, and even dairy products. 31, 32 Scientists worldwide are 
interested in their function as an interconnected type of 
medicine. Various pharmacological actions, such as 
antioxidant, antibacterial, antiviral, anticancer, anti-
atherosclerosis, antidiabetic, anti-inflammatory, anti-
thrombogenic, hypolipidemic, and neuroprotective effects, 
are the key components of the health-promoting qualities. 33-

35 Numerous studies have shown evidence to support the 
use of these chemicals as anticancer medications. One of the 
flavonoid groups widely distributed in various fruits, 
vegetables, and other foods is Quercetin. Naringenin is a 
member of the flavanones group, another group primarily 
found in Citrus fruits.36,37 According to the literature, 
researchers looked into the anticarcinogenic effects of 
Quercetin on breast cancer stem cells and the potential 
mechanisms underlying those effects. Surprisingly, they 
discovered that Quercetin could reduce breast cancer stem 
cells' division, self-renewal, and invasiveness. Aldehyde 
dehydrogenase 1A1, C-X-C chemokine receptor type 4, and 
epithelial cell adhesion molecules were among the proteins 
whose expression levels were decreased. These proteins are 
linked to carcinogenesis and cancer progression.38-40 

Naringenin is present in either glycoside or aglycone form. 
The phenylpropanoid pathway synthesizes Naringenin and its 
derivatives among vegetables and fruits.41 Naringenin inhibits 
breast cancer (MCF-7) cell generation by blocking the 
GLUT4 transporter.  Naringenin prevented glucose 
absorption by reducing the phosphorylation of P44/P42 
mitogen-activated protein kinase (MAPK), a crucial step in 
the insulin signaling cascade, and the activation of 
phosphoinositide-3-kinase42, a major regulator of insulin-
induced GLUT4 translocation. Similarly, Quercetin caused 
cell cycle arrest in the G0/G1 phase and reduced the 
expression of the survival gene in breast cancer. 43-46 

Therefore, the present study aims to do a comparative In-

silico analysis and detailed study on molecular docking with 
our protein of interest and comparison among the ligands to 
see the toxicity levels of these drugs and analyze the drug-
likeliness of the synthetic compounds, i.e., Tamoxifen and 
Letrozole (which are of already widely used for the 
treatment of breast cancer patients), group of analgesics, i.e., 
Aspirin and Phenacetin and certain essential phytochemicals 
(flavonoids), i.e., Naringenin and Quercetin, represented 
through Figure 2. 

 

 
 

Fig 2: The Overall Workflow 
 
2. MATERIALS AND METHODS 
 
2.1. Selection and Preparation of the Ligands  
 
Following a thorough literature review, six compounds from 
three different variants were selected. These include 
Quercetin and Naringenin under flavonoid compounds, 
Tamoxifen and Letrozole under standard synthetic market 

drugs, and Aspirin and Phenacetin under the category of 
analgesics. Next, all of the ligand structures' 2D Structure 
Data Format (SDF) [Figure 3] files were downloaded from 
PubChem (www.pubchem.ncbi.nlm.nih.gov/) and later 
translated to their 3D PDB format using Open Babel 
software. Finally, a PDBQT format file was created after 
adding 47 hydrogenating atoms and the desired torsion to a 
PDB format file. 

 

http://www.pubchem.ncbi.nlm.nih.gov/
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Fig 3: The Small Molecules or Compounds Selected based on Literature  
 
2.2. Selection of Receptor or Proteins 
 
For protein selection, 1H2M protein has been selected. This 

protein signifies the structure of HIF-1α. From Protein Data 
Bank      (http://www.rcsb.org/), the 3D structure of 1H2M 

[Figure 4] has been obtained. Then to stabilize the receptor 
structures, the already attached ligands and water molecules 
were removed by BIOVIA Discovery Studio 2020 software 
(https://discover.3ds.com/discovery-studio-visualizer-
download/).48 

 

 
 

Fig 4: The 3D Structure of Protein 1H2M [Human Factor Inhibiting HIF-1α ] 
 

2.3. Protein Preparation 
 
2.3.1. Validation of Protein Structure 
 
The newly generated protein PDB structure was then 
undergone through a series of quality analyses, including 

ERRAT, Procheck using SAVES 6.0 
(https://saves.mbi.ucla.edu/), QMEAN Z Score using SWISS-
MODEL Server (https://swissmodel.expasy.org/qmean/) 49-52 
and ProSA-web 
(https://prosa.services.came.sbg.ac.at/prosa.php/).53  

 

http://www.rcsb.org/
https://discover.3ds.com/discovery-studio-visualizer-download/
https://discover.3ds.com/discovery-studio-visualizer-download/
https://saves.mbi.ucla.edu/
https://swissmodel.expasy.org/qmean/
https://prosa.services.came.sbg.ac.at/prosa.php/
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2.3.2. SwissADME Prediction of the Compounds 
 
Adsorption, Distribution, Metabolism, and Excretion all 
together, termed ADME, is a very profitable process to 
assess all those previously mentioned parameters of the 
ligands using the server of the SwissADME website 
(https://www.swissadme.ch/).54, 55  
 
2.3.3. Toxicity Prediction of the Compounds 
 
In the case of designing and establishing a suitable drug 
compound, it is a very necessary step to predict the toxicity 
level of the small compounds or rather ligands before 
investigating their endurance capacity when ingested into any 
animal model like a mouse or rat as well as in humans too. 
There are two online servers available for these purposes; 
they are: PreADMET server (https://preadmet.bmdrc.kr/).56, 57  
 
2.3.4. Bioactivity Score Prediction Using Molinspiration 

Chemo Informatics Tool 
 
Molinspiration chemoinformatics online tool 
(https://www.molinspiration.com/) helps to identify different 
bioactivity scores of a compound only upon submitting its 
SMILE structure to the server. Six various bioactivity scores 
can be predicted by supporting molecular manipulation, 
fragmentation, processing, and conversion.58  
 
2.3.5. Molecular Docking Interaction Using AutoDock 

4.2  
 
With the help of AutoDock 4.2 online software 59, the 
molecular docking of the target protein (1H2M) with all the 
selected compounds has been carried out. This automation 
procedure was very effective for further investigation of the 
binding efficiency of respective ligands towards the 
macromolecule. Each PDB file has been changed into PDBQT 
format to carry out the docking, where all the non-protein 
elements are removed.  The gasteiger partial charges and 
Hydrogen atoms were added using AutoDock tools 
(Version- 4.2). Following this, the LGA (Lamarckian Genetic 

Algorithm) has been implemented through AutoDock, ver-
4.2 program by maintaining all default parameters, many 
algorithms, and techniques. This procedure involves many 
assembling tools to assemble the desired result by the 
conformations' similarities, conformational visualization, and 
protein-ligand interactions. To generate affinity potentials, 
the auto grid has been applied. For the interpretation of 
results of molecular docking, the AutoDock tool comprises. 
The final visualization of the docked structure was performed 
using BIOVIA Discovery Studio 2020 
(https://discover.3ds.com/discovery-studio-visualizer-
download/) 48 and PYMOL software (https://pymol.org/). 60  
 
2.3.6. Assessment of Structural Hotspots on the 

Receptor Protein 
 
An internet service called CASTp 3.0 
(http://sts.bioe.uic.edu/)61 is used to predict active amino acid 
residues or structural hotspots on the receptor protein. In 
addition, the Computer Atlas Surface Topography of Protein 
(CASTp) often systematically quantitatively characterizes a 
protein's surface topography. 
 
2.3.7. CABS-flex 2.0 Server prediction  
 
One of the well-known tools for quick simulation is the 
CABS flex 2.0 webserver 
(http://biocomp.chem.uw.edu.pl/CABSflex2/), 62–65, where the 
MD-Simulation process is carried out. According to the 
results produced by the online server, the 'Fluctuation plot' 
tab offers a movable 2D RMSF plot following global 
superposition. 
 
3. RESULTS 
 
3.1. Validation of Protein Structure 
 
The overall quality recognition of the 3D protein PDB 
structure, i.e., 1H2M, as predicted by several previously 
mentioned online tools, are represented in Figure 5, 6, and 
Table 1. 

 

https://www.swissadme.ch/
https://preadmet.bmdrc.kr/
https://www.molinspiration.com/
https://discover.3ds.com/discovery-studio-visualizer-download/
https://discover.3ds.com/discovery-studio-visualizer-download/
https://pymol.org/
http://sts.bioe.uic.edu/
http://biocomp.chem.uw.edu.pl/CABSflex2/


 

ijlpr 2023; doi 10.22376/ijlpr.2023.13.6.P12-P27                       Drug Design and Development  

 

 

P17 

 

 
 

Fig 5: The Quality Checking Parameters of Protein 1H2M  
 

 
 

Fig 6: The RAMACHANDRAN Plot Statistics 
 

Table 1: Table Showing ERRAT, and PROSA WEB and QMEAN Z Scores of Protein 1H2M 
Name of the protein ERRATA Quality Score PROSA WEB Score QMEAN Z Score 

1H2M 93.931 -7.03 -0.11 
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3.2. SwissADME Prediction Results  
 
Upon submission of ligand structure in SMILEs format, SwissADME result is generated based on ADME/toxicity analysis and 
Lipinski filter analysis. Here in our result, we have given different tables for each of the result parameters: physicochemical 
properties [Table 2], lipophilicity [Table 3], water solubility [Table 4], pharmacokinetics [Table 5], and drug likeliness [Table 6]. 
The Boiled Egg Structure Showing Results of Gastrointestinal Tract Absorption and, afterward, Show BBB (Blood Brain Barrier) 
Permeation is represented via Figure 7. 
 

 
 

Fig 7: The Boiled Egg Structure Showing Results of Gastrointestinal Tract Absorption and after that Show BBB 
(Blood Brain Barrier) Permeation 

 

           Table 2: Table Showing Results of Physicochemical Properties of the Compounds 
Parameters Compounds 

Tamoxifen Letrozole Aspirin Phenacetin Quercetin Naringenin 

Formula C26H29NO C17H11N5 C9H8O4 C10H13NO2 C15H10O7 C15H12O5 

Molecular Weight 371.51 g/mol 285.30 g/mol 180.16 g/mol 179.22 g/mol 302.24 g/mol 272.25 g/mol 

Num. heavy atoms 28 22 13 13 22 20 

Num. arom. heavy atoms 18 17 6 6 16 12 

Fraction Csp3 0.23 0.06 0.11 0.30 0.00 0.13 

Num. rotatable bonds 8 3 3 4 1 1 

Num. H-bond acceptors 2 4 4 2 7 5 

Num. H-bond donors 0 0 1 1 5 3 

 

Table 3:  Table Showing Results of Lipophilicity of the compounds 
Parameters Compounds 

Tamoxifen Letrozole Aspirin Phenacetin Quercetin Naringenin 

Log Pa/w (iLOGP) 4.64 2.20 1.30 2.10 1.63 1.75 

Log Pa/w (XLOGP3) 7.14 2.73 1.19 1.58 1.54 2.52 

Log Pa/w (WLOGP) 6.00 2.66 1.31 1.85 1.99 2.19 

Log Pa/w (MLOGP) 5.10 1.49 1.51 1.54 -0.56 0.71 

Log Pa/w (SILICOS-IT) 5.99 2.53 1.10 1.74 1.54 2.05 

Consensus Log Pa/w 5.77 2.32 1.28 1.76 1.23 1.84 

 

Table 4:  Table Showing Results of Water Solubility of the Compounds 
Parameters Compounds 

Tamoxifen Letrozole Aspirin Phenacetin Quercetin Naringenin 

LOG S (ESOL) -6.59 -3.70 -1.85 -2.02 -3.16 -3.49 

Class Poorly soluble Soluble  Very soluble  Soluble  Soluble Soluble  

LOG S (Ali) -7.22 -4.03 -2.12 -2.00 -3.91 -3.99 
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Class Poorly soluble Moderately soluble  Soluble  Very soluble  Soluble Soluble  

LOG S (SILICON-IT) -8.92 -5.29 -1.85 -3.32 -3.24 -3.42 

Class Poorly soluble Moderately soluble Soluble  Soluble  Soluble Soluble  

 

Table 5:  Table Showing Results of Pharmacokinetics of the Compounds 
Parameters Compounds 

Tamoxifen Letrozole Aspirin Phenacetin Quercetin Naringenin 

GI absorption Low  High   High  High  High High  

BBB permeant No  Yes  Yes  Yes  No No  

P-gp substrate Yes  No  No  No  No Yes 

CYP1A2 inhibitor No  Yes  No  Yes  Yes Yes  

CYP2C19 inhibitor Yes  Yes  No  No  No No  

CYP2C9 inhibitor No  Yes  No  No  No No  

CYP2D6 inhibitor Yes  Yes  No  No  Yes No  

CYP3A4 inhibitor No  No  No  No  Yes Yes  

LOG KP (skin permeation) -3.50 cm/s -6.10 cm/s -6.55 cm/s -6.27 cm/s -7.05 cm/s -6.17 cm/s 

  

Table 6:  Table Showing Results of Drug Likeliness of the Compounds 
Parameters Compounds 

Tamoxifen Letrozole Aspirin Phenacetin Quercetin Naringenin 

Lipinski Yes; 1 violation: 
MLOGP>4.15 

Yes, 0 
violation 

Yes, 0 
violation 

Yes; 1 violation: 
NH or OH>5 

Yes, 0 
violation 

Yes; 1 violation: 
NH or OH>5 

Bioavailability 
Score 

0.55 0.55 0.85 0.55 0.55 0.55 

 
3.3. Toxicity Prediction of the Ligands 
 
Evaluating a small compound's toxicity is a crucial step in the drug discovery process. Table 7 displays the results of the 
toxicological prediction using the PreADMET service, including the drugs' mutagenicity, carcinogenicity, and inhibition of hERG. 
 

Table 7:  Table Showing Results of Mutagenicity and Carcinogenicity along with hERG Inhibition of the 
compounds 

Compounds Ames Test Carcino Mouse Carcino Rat Herg Inhibition 

Tamoxifen Mutagen Positive  Negative Medium Risk 

Letrozole  Mutagen Negative Negative  Medium Risk 

Aspirin Mutagen Negative Positive Low Risk 

Phenacetin  Mutagen Negative Negative  Low Risk 

Quercetin  Mutagen Negative Positive Medium Risk 

Naringenin Mutagen Negative Positive  Medium Risk 

 
3.4. Bioactivity Score Prediction Using Molinspiration Chemo Informatics Tool 
 
The computed scores predicted by the Molinspiration chemo informatics online tool for different bioactivities of the compounds 
are displayed in Table 8. 
 

Table 8: Table Showing Results of Bioactivity Score Prediction of the Compounds 
Compounds Gpcr 

Ligand 
Ion Channel 
Modulator 

Kinase 
Inhibitor 

Nuclear Receptor 
Ligand 

Protease 
Inhibitor 

Enzyme 
Inhibitor 

Tamoxifen 0.30 0.00 -0.01 0.57 0.04 0.32 

Letrozole -0.06 -0.07 -0.19 -0.27 -0.24 0.30 

Aspirin  -0.76 -0.32 -1.06 -0.44 -0.82 -0.28 

Phenacetin  -1.00 -0.61 -0.98 -1.15 -1.10 -0.72 

Quercetin  -0.06 -0.19 0.28 0.36 -0.25 0.28 

Naringenin  0.03 -0.20 -0.26 0.42 -0.12 0.21 

 
3.5. Molecular Docking Interaction Using AutoDock 4.2  
 
Based on the docking analysis done by AutoDock 4.2, The total result of different binding energy affinity is represented in Figure 
10, and each docking interaction is presented in the 3D and 2D manner (Figures 8 and 9). 
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Fig 8: Complete Representation and Close Insight of 1H2M Interaction with the Respective Six Ligands  
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Fig 9: 3D and 2D View of interactions of 1H2M Protein with the Respective Six Ligands  
 

 
 

Fig 10: Graphical Representation of Binding Affinity along with the Score (kCal/ mol.) towards the Target 
Protein 1H2M by the Respective Compounds/ Ligands 
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3.6. Docking Calculation 
 
Different energy values, including Binding energy, Torsional energy, Intermolecular energy, Vdw_hb_desolv_ energy, and Total 
Internal energy for each of the docked complexes, are represented in a tabulated form in Table 9. 
 

Table 9: Results of Docking Calculations 

Compound 
Name 

Binding Energy 
(kCal/mol.) 

Torsional 
Energy 

(kCal/mol.) 

Intermolecular 
Energy 

(kCal/mol.) 

Vdw_hb_desolv_ 
energy 

(kCal/mol.) 

Total Internal 
Energy 

(kCal/mol.) 

Tamoxifen -7.07  2.39  -9.46 -8.37  -2.08  

Letrozole -7.3  0.89 -8.2 -7.95 -0.8 

Aspirin -5.7 1.19 -6.89 -5.18 -0.66 

Phenacetin -6.16 0.89 -7.06 -6.96 -0.32 

Quercetin -8.02 1.79 -9.81 -9.48 -1.99 

Naringenin -7.11 1.19 -8.3 -7.89 -0.91 

 
3.7. Assessment of Structural Hotspots on the Receptor Protein 
 
Table 10 displays the findings from the CASTp 3.0 online server for various protein PDB structures. 
 

Table 10: Table Showing Active Amino Acid Residues Along with Different Categories of Bonds Obtained from 
Molecular Docking Interaction for Each of the Ligand Along with the Receptor Protein 1H2M 

Name of the 
Protein 

 Name of the Compound/ 
Ligand 

Active Amino Acid Residues 

 
 
 
 

     1H2M 

Tamoxifen  TYR 200, TYR 230, PRO 231, ASP 237, GLU 323, VAL 336, LEU 
340   

Letrozole  LYS 99, LEU 101, PRO 197, ALA 198, ASP 243, ARG 251, HIS 
280 

Aspirin  GLU 15, ARG 17, TRP 27, VAL 264 

Phenacetin   LYS 99, VAL 195, PRO 197, ALA 198, SER 240, PHE 244, HIS 280 

Quercetin   TYR 35, LYS 99, PRO 197, ALA 198, TYR 230, SER 240, PHE 244, 
ASP 245, HIS 280 

Naringenin  PHE 224, PRO 229, PRO 231, VAL 232, ASP 237, ARG 320, GLU 
323 

 
3.8. CABS-flex 2.0 Server prediction  
 
The MD-simulation study on CABS-flex 2.0 webserver was carried out, from where we derived the RMSF plots of each of the 
docked complexes, which is represented in a pictorial manner (Figure 11). 
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Fig 11: Results Showing 2D RMSF Plot of 1H2M with their respective ligand Complex Generated via  
CABS-flex 2.0 Server  

 
4. DISCUSSION 
 
4.1. Validation of Protein Structure 
 
Perfect protein structure is approved by verifying the protein 
PDB model via a series of quality-checking parameters.  
ERRAT shows results of the "overall quality factor" that 
signifies proteins with higher scores have better quality; 
according to ERRAT results, each protein exhibits a quality 
score of more than 93.931%, which means each protein is 
well-modeled. Followed by VERIFY 3D result, which shows 
the result in the form of % of residues with an average 3d-1d 
score >= 2; according to the server data, it shows 92.72 % of 
residues bearing an average 3d-1d score >= 2. Next, talking 
about ProSA-web result showed the overall z score of the 
protein; here, the score is -7.03, which means the structure 
is under the X-ray region. The Ramachandran plot of the 
1H2M protein model showed that 89.9% of the residues 
were present in the most preferred regions, followed by 
9.8% in additional allowed, 0.3% in generously allowed, and 
0.0% in disallowed regions, according to the PROCHECK 
result. The QMEAN Z Score is found to be -0.11. All the 
results accumulated from these parameters rectify that each 
of the proteins has a good quality and is suitable for studying 
further molecular interactions. 
 

4.2. SwissADME Prediction Results of the Compounds 
 
According to the SwissADME result from Table 2, it is 
observed that all six compounds have a molecular weight 
within an acceptable range (MW ≤ 500) 66 and also follow the 
Ro5, which states that the drug-like compounds ought to 
have nHBA ≤ 10 and nHBD ≤ 5. It indicates that all the 
compounds have the potential to be easily absorbed, diffused, 
and transported.67 The number of rotatable bonds is a 
measure of molecular flexibility and is one of the widely used 
filters during the drug discovery process; 68 in this criterion, 
all four compounds have successfully passed as all of them fell 
within the acceptable range (nRB ≤ 15), indicative of their 
potential permeability and oral bioavailability.69 From Table 3, 
it is concluded that each protein shows a value of CLogP ≤ 5, 
which influences their solubility, selectivity, potency, 
permeability, and promiscuity.70 From Table 4, it is shown 
that all the compounds are within the range of moderately 
soluble to soluble, thus affecting drug absorption and 
distribution.71, 72 According to Table 5, except for Tamoxifen, 
other compounds have a high potential to be absorbed by 
gastrointestinal tract but on the other hand tamoxifen and 
naringenin show low BBB (Blood Brain Barrier) permeation 
too. 73 One of the top priorities during the drug development 
process is analyzing metabolite prediction data of the 
compounds against five isoforms of cytochrome P450.74 The 
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negative LogKp values indicate the skin impermeability of 
each compound.75 The drug likeliness [Table 6] result reveals 
that all six compounds show satisfactory results with either 0 
or 1 violation. According to Table 6, except for aspirin 
(0.85), the bioavailability scores describe the degree and rate 
at which administered compounds enter the systemic 
circulation and ultimately reach the targeted sites. The other 
five compounds have scores similar to aspirin's, i.e., 0.55. 
According to this figure, the compounds follow the Lipinski 
rule of five and have a 55% chance of being bioavailable. 76, 77 

 

4.3. Toxicity Prediction of the Ligands 
 

The findings suggest that a positive prediction signifies that 
the molecule has no carcinogenic activity, while a negative 
prediction indicates carcinogenic activity. So from Table 7, it 
can be observed that in the case of rats, aspirin, Quercetin, 
and Naringenin show no carcinogenic activity, whereas 
Tamoxifen, letrozole, and phenacetin show carcinogenic 
properties. In the case of mice, except Tamoxifen, all other 
five compounds show carcinogenic activity. Talking about the 
mutagenic characteristics, all are mutagenic. In the case of 
hERG inhibition, all six compounds show medium to low 
probabilities of blogging the hERG gene often associated with 
sudden heart attacks in humans.  
 
4.4. Bioactivity Score Prediction Using Molinspiration 

Chemo Informatics Tool 
 

The bioactivity scores for substances are classified as being 
either effectively functioning (scores > 0), moderately 
functioning (scores: -5.0-0.0), or inactive (scores -5.0).78   
 

4.5. Molecular Docking Interaction Using AutoDock 
4.2 

 

Based on the docking analysis done by AutoDock 4.2, the 
binding affinity of different compounds, including synthetic 
market drugs, analgesics, and plant-derived flavonoids, with 

the relevant protein Human Factor Inhibiting HIF-1α (1H2M), 
is determined. Ligands showing more negative binding energy 
exhibit the highest binding affinity towards the proteins. 
According to our study, we selected six ligands; each ligand 
shows a different result as their binding capacity with the 
target protein receptors differed. As reported by the docking 
result, Quercetin shows the maximum binding affinity, i.e., -
8.2 kcal/ mol. followed by Letrozole (-7.3 kcal/mol.), 
Naringenin (-7.11 kcal/mol), Tamoxifen (-7.07 kcal/mol), 
Phenacetin (-6.16 kcal/mol), and lastly, Aspirin shows a 
minimum affinity energy of -5.7 kcal/mol. 
 
4.6. Assessment of Structural Hotspots on the 

Receptor Protein 

The key amino acids implicated in the particular protein-
ligand interaction are displayed in this finding. 
 
4.7. CABS-flex 2.0 Server prediction  
 
This graph shows almost different patterns of fluctuation 
state of the amino acids involved in the interaction between 
Human Factor Inhibiting HIF-1α protein and small molecules/ 
ligands (market drugs, analgesics, and flavonoids).  
 
5. CONCLUSION 
 
After carrying out different methodologies such as 
PreADMET, toxicity prediction, energy minimization, and last 
of all, molecular docking interaction, our protein of interest 
with various compounds, we eventually found out that 
Quercetin being a basic phytochemical flavonoid compound 
which is mostly present in Citrus species fruits, gives the best 
possible outcome among all others. It provides almost similar 
efficacy and shows the least binding affinity among the other 
ligands when docked with the 1H2M receptor molecule. 
Next, talking about another phyto-compound, Naringenin 
also shows a more or less similar way of interacting with the 
preferred protein. Compared with the standard marketed 
drugs, their interaction status with the protein shows similar 
low binding affinity. However, as long as talking about a 
group of analgesics, they are not toxic and are approved as 
drugs to be prescribed. Still, they do not show such great 
activity or interaction with the HIF regulation factor of 
Breast cancer metastasis and hence cannot be considered a 
potent ligand. Furthermore, both in vitro and in vivo 
toxicological investigations should be used to validate these 
prediction results. 
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