



## Updated Detailed Review of *Trachyspermum Ammi*: Composition, Applications and Pharmacological Profile

Kamal Nabi<sup>1</sup>, Imanshu<sup>1</sup>, Saswat Swarup<sup>1</sup>, Deepika Bhatia<sup>1</sup>, Manisha Bhatti<sup>1</sup> and Lovedeep Singh<sup>1\*</sup> 

<sup>1</sup>University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India

<sup>1</sup>\*Assistant Professor, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India

**Abstract:** *Trachyspermum Ammi* (T. Ammi) is a traditional medicinal plant belonging to the family Apiaceae. It, also known as Ajacine or Ajwain, is an herb with Egyptian origins. It is distributed all over India and mainly cultivated in Rajasthan and Gujarat. This review is designed to discuss the updated pharmacological activities of T. Ammi, its phytochemistry, herbal formulations, and patents filed on its novel formulations and their actions. Until now, no such review has discussed the above mentioned particulars on the same platform. The review aims to provide the updated traditional and pharmacological activities of *T. Ammi*, along with its phytochemistry, herbal formulations, and microwave-assisted extraction method. The microwave-assisted extraction method is less time-consuming, cost-effective, and gives more extractive value than other methods. We have also added the latest novel patents of the *T. Ammi*. It is an annual plant with tall growth that is fragrant and bears white blooms and little brownish berries, small, grey, bitter, and peppery. The seeds or fruit of this plant are the parts that are used most frequently. Ajwain's fruits have 5% essential oil in them. Ancient researchers highly influenced the use of this herb. The essential oil brings on Ajwain's aroma and flavor. Ajwain is a potent traditional medicine that is frequently used to cure a variety of illnesses in both humans and animals. To include literature evidence to support the article's theme, a search was performed on five electronic databases, including PubMed, Scopus, Web of Science, Embase, and Google Scholar, by using specific keywords.

**Keywords:** *Trachyspermum Ammi*, Herbal formulations, Phytoconstituents, Patents, Microwave-Assisted Extraction.

---

**\*Corresponding Author**

Lovedeep Singh , Assistant Professor, University  
Institute of Pharma Sciences, Chandigarh University,  
Mohali, Punjab, India

Received On 7 June, 2023

Revised On 12 August, 2023

Accepted On 21 August, 2023

Published On 1 September, 2023

---

**Funding** This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

**Citation** Kamal Nabi, Imanshu, Saswat Swarup, Deepika Bhatia, Manisha Bhatti and Lovedeep Singh , Updated Detailed Review of *Trachyspermum Ammi*: Composition, Applications and Pharmacological Profile.(2023).Int. J. Life Sci. Pharma Res.13(5), P221-P238  
<http://dx.doi.org/10.22376/ijlpr.2023.13.5.P221-P238>



## I. INTRODUCTION

Ayurveda has extensively used *Trachyspermum Ammi*, also known as Ajacine or Ajwain, a herb with Egyptian origins and belongs to the Apiaceae family<sup>1</sup>. The annual herbaceous plant family Apiaceae includes the highly prized medicinal plant Ajwain (*Trachyspermum Ammi*)<sup>2</sup>. It is an annual plant with tall growth that is fragrant and bears white blooms and little brownish berries, small, grey, bitter, and peppery. Ajwain seeds have a softer flavour when cooked. The seeds or fruit of this plant are the parts that are used most frequently. It resembles caraway or cumin seeds. It has numerous green stems and branches, tiny feather-like leaves, and four to twelve rays of flower heads, and each head has six to sixteen blooms<sup>3,4</sup>. The bitter and pungent taste of brown, seed-like fruits of *T. ammi* is processed as nutraceuticals for medical and condiment reasons<sup>5,6</sup>. Alcohols, aldehydes, ketones, acids, and esters are among the oxygenated derivatives of monoterpenes and sesquiterpenes and make up most of the essential oil's volatile constituents<sup>7</sup>. 2.0–4.4% of the seeds' weight is dark oil. Numerous phytochemicals in *T. ammi* have been discovered to contain thymol (35%–60%). Thyme contains -pinee with a high concentration of salt propisochlor (50%–55%) and -pineene (30%–35%), a non-thymol fraction. The entire plant also contained glycosides, resins, starch, inorganic acids, phenolic compounds, amino acids, protein,

coumarins, phlobatannins, carbohydrates, vitamins, minerals, tannins, carotenoids, alkaloids, steroids, saponins, and flavonoids, in addition to volatile compounds<sup>8,9</sup>. The fruit's water-soluble components, including one monoterpenoid, five novel monoterpenoid glucosides, two glucosides from aromatic compounds, and two glucides, have also been identified<sup>5</sup>. It is commonly grown in dry and semi-dry areas with much salt in the soil. It involves glabrous and minutely pubescent properties and can grow up to 90cm. Although native to Egypt, Ajwain is widely grown and sold in Iran, Afghanistan, Pakistan, India, and Europe<sup>1,5,10</sup>. The Indian states where it is grown are Bihar, Gujarat, Madhya Pradesh, Maharashtra, Rajasthan, Uttar Pradesh, and West Bengal. The seeds contain 2-4.4% of Ajwain oil, a brownish oil<sup>10</sup>. The fruit has traditionally been administered to treat stomach issues like flatulence, indigestion, colic, and diarrhoea. Other pharmacological and biological effects include nematocidal, anti-helminthic, anti-filarial, insecticidal, anti-inflammatory, anti-cancer, anti-inflammatory, antisemitic, hypotensive, hypolipidemic, antihypertensive, antispasmodic, anti-lithiasis, diuretic, and antitussive effects<sup>2,6,11,12</sup>. Recent studies have found the plant's antioxidant, antiviral, antifungal, nematocidal, inflammatory, analgesic, hepatoprotective, antiepileptic, antifever, and viability of spermatogonia stem cells in vitro and wound healing capabilities<sup>4,8,13</sup>. Novel patents granted on *Trachyspermum Ammi* are listed in Table I.

**Table I: Patents granted on *Trachyspermum Ammi***

| Country                | Inventor                                                                                                                                                        | Patent file no.                | Invention                                                                                         | References    |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|---------------|
| South Korea            | Steel Wire Iron Seo Hwajin Soren Pole                                                                                                                           | KR101241180B1<br>KR101241180B1 | Essential oil from <i>Trachyspermum Ammi</i> having a spermicidal effect and uses thereof         | <sup>14</sup> |
| Australia              | Ganga Raju, Gokaraju Rama Raju, Venkata Kanaka, Venkata Krishna Raju Alluri, and Kiran Bhupathiraju Trimurtulu Golakoti, Krishnan Sengupta, Ranga Raju Gokaraju | AU2019200802A1                 | Synergistic dietary supplement compositions for enhancing physical performance                    | <sup>15</sup> |
| United States          | Esther Pons, Cedric Rousseau, Krishnan Sengupta, Philippe Ragot                                                                                                 | US20200390696A1                | Edible Product Comprising Reconstituted Plant Material                                            | <sup>16</sup> |
| United States          | John Turner                                                                                                                                                     | US9532593B2                    | Herbal smoking blend                                                                              | <sup>17</sup> |
| United States          | Mariya Grega, Drew L. Lichtenstein, Vivek Kuttappan, Jeffery Escobar Monestel, Mercedes Vazquez-Anon, Graciela B. Arhancet, Matthew Mahoney, Scott Long         | US9801845B2                    | Antimicrobial compositions and uses thereof                                                       | <sup>18</sup> |
| United States          | Jeyaganesh DEVARAJ, Md. Zishan Akhter, and Pranay RANJAN                                                                                                        | US20220408734A1                | Hybrid solvents and fabrics for antimicrobial application                                         | <sup>19</sup> |
| European Patent Office | Yoshikazu Yonei, Masayuki Yagi, Hiroshige Kawai, and Masako Shoshihara                                                                                          | EP2949362B1                    | Ages-degrading agent and use thereof                                                              | <sup>20</sup> |
| United States          | Sebastian Hoffmann, Philippe Desbordes, Pierre-Yves Coqueron, Ulrike Wachendorff-Neumann, Pierre CRISTAU, and Peter Dahmen                                      | US10130095B2                   | Fungicidal compositions of pyrazolecarboxylic acid alkoxyamides                                   | <sup>21</sup> |
| WIPO (PCT)             | Sean EVANS and Donna EVANS                                                                                                                                      | WO2015000064A1                 | Composition for treating pain and/or inflammation comprising eugenol and beta-caryophyllene       | <sup>22</sup> |
| United States          | Gregory Brian LEE                                                                                                                                               | US20200397711A1                | Microparticle compositions for treatment of infection or disease, methods of making the same, and | <sup>23</sup> |

| methods of treating subjects with microparticle compositions |                                                             |                 |                                                                                                   |
|--------------------------------------------------------------|-------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|
| WIPO (PCT)                                                   | Samuel Guilds, John Coulthurst, and Seabrook, Jr.           | WO2006068759A2  | Liposomes containing phytochemical agents and methods for making and using the same <sup>24</sup> |
| United States                                                | David Scharich, Matthew Alan WARD, Brian Lee ORWAT, and III | US20170348449A1 | Method of disinfecting a thermal control unit <sup>25</sup>                                       |
| WIPO (PCT)                                                   | Ibrahim Abou-Nameh                                          | WO2009135049A1  | Methods and compositions of plant micronutrients <sup>26</sup>                                    |
| WIPO (PCT)                                                   | Ibrahim Abou-Nameh                                          | WO2010126794A1  | Methods for increasing growth and yield of plants with methionine compounds <sup>27</sup>         |

Table I shows the latest novel patents granted by various authorities of different countries on formulations and activities of *T. Ammi*. All the inventors of different countries representing the particular invention, along with the patent number, title of invention, granting country, and authority, have been listed in this table I. The chemical composition of Ajwain oil with different major constituents including thymol<sup>28</sup>,  $\gamma$ -terpinene, and p-cymene<sup>2,29</sup> carvone, limonene, and dillapiole and carvacrol<sup>2</sup>. Fruit extract showed antispasmodic and antihypertensive effects by preventing contraction caused by K+. Additionally, the extract showed

protective efficacy in mice against toxicity brought on by CCl<sub>4</sub> and paracetamol<sup>8,13</sup>. In the traditional medical system, *Trachyspermum Ammi* treats headaches, neurological conditions, joint discomfort, and rheumatoid arthritis. It also reduces inflammation<sup>13</sup>. Bean bug species *Riptortus clavatus* nymphs and adults (male and female) were strongly repulsed by the essential oils from ajowan plants. Thymol and carvacrol, two of the components found in the essential oil of the ajowan plant, had the strongest anti-bean insect repellent effects<sup>30</sup> (Fig. I).



**Fig. I: *Trachyspermum Ammi* Sprague fruits**

## 2. PLANT PROFILE

It is grown in Afghanistan, India, Iran, Iraq, and Pakistan and originates in Egypt<sup>1,10,31</sup>. The Indian states where it is grown are Bihar, Gujarat, Madhya Pradesh, Maharashtra, Rajasthan, Uttar Pradesh, and West Bengal<sup>32</sup>. Taxonomical classification is listed in Table 2.

| Table 2: Taxonomical Classification of <i>Trachyspermum Ammi</i> <sup>10,34</sup> |                                |
|-----------------------------------------------------------------------------------|--------------------------------|
| <b>Kingdom</b>                                                                    | Plantae                        |
| Subkingdom                                                                        | Tracheobionta, Vascular Plant  |
| Division                                                                          | Magnoliopsida- Flowering plant |
| Phylum                                                                            | Spermatophyta, Seed Plant      |
| Subphylum                                                                         | Angiospermae, Seed Plant       |
| Species                                                                           | Ammi                           |
| Family                                                                            | Apiaceae                       |
| Genus                                                                             | <i>Trachyspermum</i>           |
| Order                                                                             | Apiales                        |
| Class                                                                             | Magnoliopsida- Dicotyledons    |
| Common name                                                                       | Ajwain                         |
| Taxonomic rank                                                                    | Taxon                          |

*Trachyspermum Ammi* of the Apiaceae family is a medicinal spice of great value. The roots are naturally diuretic, and these extracts have excellent aphrodisiac properties<sup>34</sup>. The seeds have 2-4.4% of Ajwain oil, a brown oil. Thymol, the major ingredient in this oil, is used to treat bronchial diseases, anorexia, and digestive system issues<sup>35</sup>. The oil has fungicidal, antibacterial, and anti-aggregatory properties. Ajwain is a potent traditional medicine that is frequently used to cure a variety of illnesses in both humans and animals<sup>36</sup>. It treats diarrhetic dyspepsia and flatulence. Ajwain seeds are

stinging and bitter and have digestive, anthelmintic, carminative, and laxative properties<sup>37</sup>. It also has anti-inflammatory and antioxidant properties and relieves stomach problems, aches, and ulcers. The essential oils in the seeds have around 50% of the thymol's potent anti-spasmodic and anti-fungal activities. Furthermore, toothpaste and fragrances contain thymol<sup>38</sup>. The effect of planting months on different constituents of *Trachyspermum Ammi* is listed in Table 3.

**Table 3: Effect of planting months on different constituents of *Trachyspermum Ammi*<sup>4,10</sup>**

| Sowing time | (%) Composition |                     |          |                 | Minor components | Essential oil (kg/ha) |
|-------------|-----------------|---------------------|----------|-----------------|------------------|-----------------------|
|             | Thymol          | $\gamma$ -terpinene | p-cymene | $\beta$ -pinene |                  |                       |
| October     | 61.9            | 20.16               | 11.79    | 1.93            | 4.27             | 17.0                  |
| November    | 55.00           | 24.00               | 9.07     | 7.05            | 7.08             | 15.82                 |
| December    | 54.13           | 19.05               | 9.04     | 3.39            | 14.39            | 14.07                 |
| January     | 42.78           | 27.35               | 9.10     | 14.04           | 6.73             | 13.98                 |
| February    | 24.56           | 15.01               | 6.65     | 39.17           | 14.61            | 13.21                 |
| March       | 30.69           | 12.52               | 4.28     | 5.62            | 46.89            | 10.42                 |

Table 3 shows the potential effect showing period (months) on the percentage composition of some of the major components of *T. ammi*, including thymol,  $\gamma$ -terpinene, p-cymene, and  $\beta$ -pinene. Besides this, the table also depicted the effect on minor components and essential oil composition.

### 3. BOTANICAL DESCRIPTION

Ajwain is mostly grown in arid and semiarid areas where the soil is highly salty<sup>5,8</sup>. Ajwain is a 60-90 cm tall perennial

shrub<sup>39</sup>. The stalk is striped, and the flowers are actinomorphic, white, male, and bisexual, with five corollas, bilobed petals, and five stamens, alternating with petals; the lower ovary has a knob-like stigma; the fragrant fruit is cordate and ovoid, and it is a Cremo carp with persisting stylopodium. 7 pairs of lateral leaflets and a terminal leaflet comprise a leaf pin<sup>40</sup>. The fruit has two grey, compressed, oval mericarps about 1.7 mm and 2 mm long. Each mericarp has five ridges and six vittae, typically independent, principal ridges<sup>41</sup>. Vernacular names of *T. Ammi* are in Table 4.

**Table 4: Vernacular names of *Trachyspermum Ammi*: - <sup>3, 42-44</sup>**

| Language   | Vernacular names                                                        |
|------------|-------------------------------------------------------------------------|
| Sanskrit   | Yamini, Yaminiki, Yaviniki, Dipyaka                                     |
| Assamese   | Jain                                                                    |
| Arabic     | Kamun Mulki, Al-Yunan                                                   |
| English    | Bishop's weed, Carom, falsely lovage seeds, ajwan seed, Ethiopian cumin |
| Hindi      | Ajwain, Spairkai                                                        |
| Bengali    | Yamani, Yauvan, Yavan, Javan, Yavani, , Jain, Jowan                     |
| China      | Xi Ye Cao Guo Qin                                                       |
| Armenian   | Hounastan                                                               |
| Dutch      | Ajwan                                                                   |
| Farsi      | Nanava                                                                  |
| Thai       | Chilan                                                                  |
| Kashmiri   | Kath                                                                    |
| Gujrati    | Ajma, Ajmo, Yavan, Javain                                               |
| Kannada    | Oma, Yom, Omu                                                           |
| Korean     | Ayowan                                                                  |
| Malayalam  | Oman                                                                    |
| Nepali     | Javano                                                                  |
| Punjabi    | Lodhar                                                                  |
| Marathi    | Onva                                                                    |
| Urdu       | Azwain Desi                                                             |
| Oriya      | Juani                                                                   |
| Tamil      | Omam                                                                    |
| Telugu     | Vamu                                                                    |
| Persian    | Nankhah, Zenyan                                                         |
| Turkish    | Misiranason                                                             |
| Singhalese | Assamodium                                                              |

#### 4. MICROSCOPIC CHARACTERS

The flexible part of the fruit displays the creation of two hexagonal bonds joined together by carpophores, epicarps made up of one layer of extended table cells, mesocarps made up of long to polygonal cells with various vittophores, and carpophores veins<sup>45</sup>. Very lengthy cells, the integument, the slow-moving coffin fashioned like a cell, small embryo-filled cells, small, spherical oil molecules—all of them are made up of cells with thin, polygonal walls—make up the endosperm<sup>46</sup>. When the powder is examined under a microscope, it reveals the presence of endosperm cell clusters and oil globules<sup>47</sup>.

#### 5. PHYTOCHEMICAL STUDIES

Investigations of ajwain seeds have shown that they include mineral matter (7.1%) that contains calcium, phosphorus, iron, and nicotinic acid, as well as fiber (11.9%), carbohydrates (38.6%), tannins, glycosides, moisture (8.9%), protein (15.4%), fat (18.1%), saponins, and flavones<sup>3</sup>. Thymol is the main component (between 35% and 60%) of the 2% to 4% brownish essential oil produced by ajwain fruits<sup>48</sup>. Paracymene,  $\alpha$ -terpinene,  $\alpha$ - and  $\beta$ -pinenes, dipentene,  $\beta$ -terpinene, and carvacrol are present in the nonthymol fraction. The plant also contains trace quantities of camphene, myrcene, and  $\alpha$ -3-carene. Alcoholic extracts have a saponin that is extremely hygroscopic. The fruits contain a yellow, crystalline flavone, a steroid-like compound, 6-O- $\beta$ -glucopyranosyloxythymol, glucoside, and 25% oleoresin that contains 12% volatile oil (thymol,  $\gamma$ -terpinene, para-cymene, and  $\alpha$ - and  $\beta$ -pinene). Carvone (46%), limonene (38%), and dillapiol (9%) are the main components of *T. ammi*'s oil<sup>49</sup>.

#### 6. PHARMACOGNETIC PROFILE

The plant can be identified for quality and purity of the plant medication which can be standardized with a pharmacognostic profile. A detailed analysis of the drug's organoleptic and physicochemical properties was published by Hardel Danendra Kumar et al. in 2013. The colour of the drug powder is light brown, and the taste is pleasant, while its order is characteristic. The foreign matter is 2.4%w/w, loss on drying is  $4.7 \pm 0.29$  %w/w, pH of 1% is  $3.23 \pm 0.09$  w/v; Total ash is  $8.6 \pm 0.29$ %, Acid insoluble ash is  $0.49 \pm 0.02$ %, Water soluble extractive is  $42 \pm 0.32$ , Alcohol soluble extractive  $17.9 \pm 0.80$ , Angle of repose  $50 \pm 0.11$ 26, and Carr's index is  $27 \pm 1.724$ <sup>50</sup>.

##### 6.1. Qualitative Phytochemistry

Terpenes, Fixed Oils, Terpenes, and Glycosides are all present in crude drug powder. Seed ethanol extract reveals that reducing sugar, tannins, and glycoside is present. An extract of ethanol and petroleum ether reveals the presence of amino acids, proteins, sterols, terpenes, glycosides, and alkaloids<sup>52</sup>. Katasani Damodar et al., have done a detailed phytochemical study on the seed's methanol, acetone, hexane, and chloroform extract. They found the presence of different metabolites in different solvents. Carbohydrates are present in the methanol, acetone, and chloroform but absent in the hexane; reducing sugar is present in methanol and acetone and absent in chloroform and hexane; Monosaccharide is present in methanol and absent in remaining solvent; Tannins is present in acetone solvent extract and absent in remaining solvent, Terpenes is present

in methanol, hexane, chloroform and absent in acetone, Alkaloids are present in methanol, hexane, acetone and absent in chloroform extract, Anthraquinones are present in methanol and acetone. At the same time, it is absent in the chloroform and hexane extract; Cardiac Glycoside is present in the methanol and acetone solvent extract and in the chloroform and hexane<sup>51</sup>.

#### 6.2. Quantitative phytochemistry

According to an examination of ajwain seeds, they contain mineral matter (7.1%), which includes calcium, phosphorus, iron, and nicotinic acid, as well as fiber (11.9%), carbohydrates (38.6%), tannins, glycosides, moisture (8.9%), protein (15.4%), fat (18.1%), saponins, and flavones. Thymol is the majority (35% to 60%) of the 2% to 4% brownish essential oil that the Ajwain fruits produce. The plant also contains trace amounts of camphene, myrcene, and  $\alpha$ -3-carene<sup>52</sup>. The nonthymol fraction (thymene) contains para-cymene,  $\gamma$ -terpinene,  $\alpha$ - and  $\beta$ -pinenes, dipentene,  $\alpha$ -terpinene, and carvacrol. Alcoholic extracts have a saponin that is extremely hygroscopic. A glucoside, a yellow, crystalline flavone, and a compound that resembles a steroid that also contains 6-O- $\beta$ -glucopyranosyloxythymol have been extracted from the fruits, along with a 25% yield of oleoresin that contains 12% volatile oil (thymol,  $\gamma$ -terpinene, para-cymene, and  $\alpha$ - and  $\beta$ -pinene). *Trachyspermum Ammi*'s main oil components are carvone (46%), limonene (38%), and dillapiol (9%)<sup>53</sup>.

#### 7. ESSENTIAL OIL EXTRACTED WITH THE HELP OF MICROWAVE-ASSISTED EXTRACTION

Regarding the quantity and quality of the finished product, the essential oil (EO) extraction process is crucial. Microwave-assisted extraction (MAE), a new extraction method with low energy consumption, high efficiency, short process time, and minimal environmental effect, was used to extract the ajowan EO. The microwave-assisted extraction of ajowan EO and to simulate and improve EO production and chemical profile. The extraction time most significantly influenced the yield and composition, followed by the microwave power. Short extraction times (80 min) and high irradiation powers (1.37 W/g) maximized thymol content, but p-cymene and  $\gamma$ -terpinene content were adversely linked with the above mentioned factors. In contrast to settings that maximize p-cymene or thymol and  $\gamma$ -terpinene, extended extraction durations (160 min) and high irradiation power (1.37 W/g) are more favourable for yield. Higher quantities of thymol and equivalent yields were guaranteed by microwave-assisted extraction compared to traditional hydro distillation operating at the same extraction time. It is interesting to note that the extraction duration influences hydro distillation in a manner like microwave-assisted extraction (MAE). Microwave-assisted extraction has the tremendous benefit of adaptability since its settings may be accurately modified, even though hydro distillation can produce results equivalent to MAE<sup>54</sup>.

#### 8. CHEMICAL CONSTITUENTS OF *T. AMMI*

Till now, fibers (11.9%), glycosides, tannins, moisture (8.9%), carbohydrates (24.6%), protein (17.1%), fat (21.1%), saponins, and flavones are the phytoconstituents of Ajwain that have been identified so far. Other components (7.1%) include iron, phosphorus, calcium, thiamine, riboflavin, iodine, cobalt,

manganese, nicotinic acid, and copper<sup>55</sup>. Saponin is derived in huge amounts in the alcoholic extract process<sup>56</sup>. Ajwain is popular for the brownish essential oil of the family Apiaceae<sup>57</sup>. Nowadays, Ajwain's aroma and flavor are brought on by the essential oil. Ajwain's fruits have 5% essential oil in them. Nonetheless, some researchers say essential oil outputs can reach 9%, a significant amount<sup>58</sup>. Thymol, carvacrol,  $\gamma$ -terpinene, cymene, and limonene typically make up 35% to 60% of the essential oil in Ajwain, Paracymene, Gamma-terpinene, Alpha- pinene, Styrene, Beta pinene,  $\alpha$ -terpinene, Betaphyllanderene Delta-3-carene, carvacol, and terpinene-4-ol are all present in the non-thymol part<sup>59</sup>. Dillapiole (8.9%), carvone (46.2%), and limonene (38.1%) are all present in the oil part. Petroselinic acid, linoleic acid, oleic acid, palmitic acid, and petroselinic acid were all identified from the fruits of Ajwain<sup>28</sup>. Recently, 6-hydroxy carvacrol 2-O-D-Glucopyranoside and 3,5-Dihydroxytoluene 3-O-D-Galactopyranoside were identified as new glycosyl components from the fruit of ajwain<sup>60</sup>. The fruits of Ajwain contain a chemical called 6-O-gluco pyranosyloxy thymol, which resembles a steroid. New

monoterpeneoid glucosides include monoterpeneoid and 7-tetrol (2S, 6Z) 7, 7-Dimethyloct-3 (10) 1, 2, 6, and 7-Tetrol -ene 6-Hydroxythymol and 1-O-D-glucopyranoside 3-O- $\beta$ -D-Glucopyranoside these are the Ajwain fruit's water-soluble extract; 2-Methyl-3-Buten-2-ol- $\beta$ -D-Glucopyranoside Glucide and Benzyl-D-Glucopyranoside in particular (3R) A brand-new aromatic chemical glucoside are 2-hydroxy methyl butane-1,2,3,4-tetrol<sup>41</sup> Nucleosides like uridine and adenosine were also isolated from Ajwain fruits along with other glucosides like 1-Deoxypentitol and 1-Deoxy-L-Erythrito<sup>61</sup>. Ancient researchers highly influenced the use of this herb. It exhibited various therapeutic properties and was known to have various chemical properties. This paper reviews the clinical applications of this herb and other pharmacological properties of current medicine. Thymol has antioxidation properties by preventing chelating metal ions and free radicals, and boosting endogenous antioxidants, whether they are dependent on or not<sup>62</sup>. Additionally, the non-phenolic monoterpene terpinene exhibits antioxidant effects<sup>63</sup>. The chemical composition of *Trachyspermum Ammi* by GC-MS is listed in Table 5.

**Table 5: Chemical composition of *Trachyspermum Ammi* by GC-MS <sup>1,3,64</sup>**

| Composition           | IUPAC                                                                                                                | Retention Time |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|----------------|
| Sabinene              | 4-Methylidene-1-propan-2-ylbicyclo [3.1.0] hexane                                                                    | 10.43          |
| $\beta$ -Pinene       | 6,6-Dimethyl-4-methylidenebicyclo [3.1.1] heptane                                                                    | 10.76          |
| B -Myrcene            | 7-Methyl-3-methylideneocta-1,6-diene                                                                                 | 11.32          |
| Verbenene             | 6,6-dimethyl-4-methylidenebicyclo[3.1.1]hept-2-ene                                                                   | 11.54          |
| Menthatriene          | 1-methyl-4-prop-1-en-2-ylcyclohexa-1,3-diene                                                                         | 11.78          |
| Foeniculin            | 1-(3-methylbut-2-enoxy)-4-[(E)-prop-1-enyl]benzene                                                                   | 12.17          |
| $\alpha$ -Cymene      | 1-methyl-2-propan-2-ylbenzene                                                                                        | 12.65          |
| $\rho$ -Cymene        | 1-Methyl-4-propan-2-ylbenzene                                                                                        | 12.82          |
| $\alpha$ -Pinene      | 4,6,6-Trimethylbicyclo [3.1.1] hept-3-ene                                                                            | 13.34          |
| $\gamma$ -Terpinene   | 4-Methyl-1-(1-methylethyl)-1,4-cyclohexadiene                                                                        | 13.71          |
| Isobornyl isobutyrate | [(1R,2R,4R)-1,7,7-trimethyl-2 bicyclo[2.2.1]heptanyl] 2-methylpropanoate                                             | 14.45          |
| Umbellulone           | 4-methyl-1-propan-2-ylbicyclo[3.1.0]hex-3-en-2-one                                                                   | 16.83          |
| Tertradecanal         | Tetradecane                                                                                                          | 20.14          |
| Thymol                | 5-Methyl-2-propan-2-ylphenol                                                                                         | 21.86          |
| Davanone              | 2-(5-ethenyl-5-methyloxolan-2-yl)-6-methylhept-5-en-3-one                                                            | 23.34          |
| Myristain             | 4-methoxy-6-prop-2-enyl-1,3-benzodioxole                                                                             | 27.46          |
| Thymol hydroquinone   | 2-methyl-5-propan-2-ylbenzene-1,4-diol                                                                               | 34.54          |
| Manool                | (3R)-5-[(1S,4aS,8aS)-5,5,8a-trimethyl-2methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]-3 methylpent-1-en-3-ol | 37.19          |
| Thymyl acetate        | (5-methyl-2-propan-2-ylphenyl) acetate                                                                               | 41.56          |
| Ionone                | (E)-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-3-en-2-one                                                              | 42.34          |
| Silphine              | (1R,5S,8R,11R)-5,7,7,11 tetramethyltricyclo[6.3.0.0 <sup>1,5</sup> ]undec-2-ene                                      | 45.34          |
| Cedrane               | (1S,2R,5S,7S,8R)-2,6,6,8-tetramethyltricyclo[5.3.1.0 <sup>1,5</sup> ]undecane                                        | 49.56          |

## 9. PHYTOCONSTITUENTS IN DIFFERENT PLANT PARTS

### • Seeds

Seed of *T.ammi* contains the phytoconstituents  $\alpha$ -phellandrene,  $\beta$ -pinene, Cis-myrenol,  $\gamma$ - terpinene,  $\alpha$ -carene,  $\alpha$ -pinene, p-cumin-7-ol, p- mentha-1,3,8 triene, Thymol, Carbohydrate, Glycosides, Saponins, Calcium, Flavones, Fiber, Moisture, Fat, Protein, Mineral. The pharmacological activities are Hepatoprotective, Antibacterial, Antioxidant,

Antihypotensive, Abortifacient, Estrogenic, Insecticidal, and Antiulcer<sup>44</sup>.

### • Fruits

Fruits of *T. Ammi* contains 3, 5-Dihydroxytoluene 3-O- $\beta$ -DGalactopyranoside (glycosal compound), 1-(3-isopropyliden-2,2-dimethyl cyclopropyl) isopropanol (Nonterpenoids), Alpha-pinene, Alpha-terpinene, Beta pinene, Beta phellandrene, Carvacrol, Delta-3- carene, Gamma-terpinene, Paracymene, Styrene, Terpinene-4-ol (Non-thymol), 2-

Methyl-3-Buten-2ol- $\beta$ -DGlucopyranoside, 7-Dimethyloct(10)-ene-1, 2, 6, 7-Tetrol 1-O- $\beta$ -D-Glucopyranoside and 6-Hydroxythymol 3-O- $\beta$ -D-Glucopyranoside having the pharmacological activities of anti-filarial, antifertility, antipyretic, analgesic, anti-inflammatory<sup>44</sup>.

## 10. APPLICATIONS OF AJWAIN IN TRADITIONAL PERSIAN MEDICINE AND MEDIEVAL

- This plant is frequently used in conventional medical programs in various specialties and pharmacies. Ajwain has long been well-known in Persian Traditional Medicine (TPM) for its traditional purposes<sup>65</sup>.
- Ajwain seeds are a popular and effective component of the treatment used by Iranian laborers. Ajwain is hot, dry, and acidic to a third degree when it comes to temperature<sup>66</sup>.
- Oral use of seeds is helpful in paraplegia, tremors, and paralysis, as well as other neurological disorders in the brain<sup>67</sup>.
- Persian physicians have also applied eye and ear drops made of Ajwain seeds to control infections and correct hearing loss<sup>68</sup>.
- Ajwain is believed to be useful for coughing, dysphonia, and pleurisy in the respiratory system. The fruit was frequently used to treat anorexia, nausea, vomiting, reflux, and other stomach and liver conditions<sup>69</sup>. They are known to have invigorating and stimulating effects and be helpful for gastrointestinal issues. Ajwain was allegedly used as an anti-helminthic and treatment for different naturally occurring poisonous substances<sup>70</sup>. Also, it is thought that drinking wine helps to break up calculi and stones. Moreover, Iranian workers believe the seeds have aphrodisiac, galactagogic, and diuretic properties<sup>71</sup>.
- The topical use of Ajwain as a cosmetic has left the skin with a yellowish tinge. Moreover, it was a component of drugs for pityriasis, leukoderma, and honey in all cases of

ecchymosis<sup>72</sup>. It has been suggested in the field of toxicology that washing the injured region with a decoction of Ajwain seeds lessens the agony brought on by a scorpion bite<sup>73</sup>. Moreover, it was utilised to lessen the negative symptoms of opiate withdrawal.

Moreover, Ajwain is described as a strong analgesic and anti-inflammatory. Thus, it is only applied to the afflicted region when combined with egg white or honey. Persian doctors use ajwain to treat persistent fever and complaints. Ajwain seeds may be used to make hydrosol and oil, which have medical uses<sup>74</sup>. Ajwain hydrosol coupled with Cinnamon and Borage was strongly advised as a main therapeutic remedy for the treatment of paralysis, tremors, and neurological illnesses such as chronic pain and neuropathic pain, which are listed in the medical manuscripts and Persian Medical literatures<sup>55</sup>.

## 11. PHARMACOLOGICAL PROFILE

The fruit has traditionally been used to treat intestinal problems such as flatulence, indigestion, colic, galactagogue, stomach, carminative, expectorant, and diarrhea. Recent studies have linked the plant to additional pharmacological and biological effects, including effects on wound healing, hepatoprotection, antiepileptic, antiseptic, amoebiasis, antibacterial, fever, and inflammation. Oil-fried seeds and a mild soup made from the plant's seeds were also used as galactagogues to treat diarrhoea<sup>4</sup>. The fruit powder and the plant's aqueous extract, high in thymol, had a dose-dependent anti-helminthic effect<sup>28</sup>. The seeds of Ajwain are bitter and act as an anthelmintic, carminative, laxative, and stomachic. It also treats stomach ulcers, stomach aches, and piles. Fruit extract confirmed antispasmodic and antihypertensive effects by preventing contraction caused by K+. Many herbal formulations of *T. ammi* are available in the market; some are listed in Table 6.

Table 6: Herbal Formulations of *Trachyspermum Ammi*

| S. No. | Herbal formulations                                        | Uses                                                                                                                                                                | Manufacturers                       | Ref.          |
|--------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------|
| 1      | Ajwain oil (Trachyspermum Ammi 100% Natural Essential Oil) | Used in the treatment of osteoarthritis, cervical spondylitis, rheumatoid arthritis, back discomfort, joint pain, and morning stiffness and useful in aromatherapy. | Salvia Cosmeceuticals               | <sup>75</sup> |
| 2      | Ammi visnaga                                               | useful in leucoderma, spasms of the uterus, kidney stones, and as a diuretic.                                                                                       | Dr. Willmar Schwabe India Pvt. Ltd. | <sup>76</sup> |
| 3      | BrijBooti Ajwain Moti                                      | Used in treating osteoarthritis, cervical spondylitis, rheumatoid arthritis, back discomfort, joint pain, and morning stiffness.                                    | Birju Mahavir Pvt Ltd               | <sup>77</sup> |
| 4.     | Hingvastak Powder                                          | Boosts the body's capacity to absorb and assimilate nutrients while lubricating the intestines for easier disposal. Stimulates the digestive fire and appetite.     | Shivamastu                          | <sup>78</sup> |

Table 6 shows some of the marketed herbal formulations of *T. Ammi*, along with its uses and the name of the manufacturers. Additionally, the extract showed protective efficacy against toxicity caused by CCl<sub>4</sub> and paracetamol in mice. Catecholamines from the adrenal medulla may contribute to ACTH stress-related relief or an increasing rise in the adrenal gland is accompanied by an increase in catecholamines and intracellular cyclic AMP<sup>8</sup> release. The actions of Ajwain as per Ayurveda are listed in Table 7.

**Table 7: Different actions of Ajwain as per Ayurveda-<sup>62</sup>**

| Terms                    | Actions                                                                |
|--------------------------|------------------------------------------------------------------------|
| Abhiyantar pachansanthan | It helps the digestive system and is also used to eliminate parasites. |
| Sansthani karam wahay    | It is utilized locally as a Vedna sansthapak analgesic or painkiller.  |
| Sawashan Sansthani       | It lessens the amount of Kapha (lubrication) in the human body.        |
| Raktavah Sansthani       | Improves blood circulation                                             |
| Prajanan-Sansthani       | It has important fertility-enhancing qualities.                        |
| Mutrvah Sansthani        | It facilitates urination.                                              |

Table 7 depicts the different nomenclature used in Ayurveda to define the respective action of *T. Ammi* on the body.

## 12. PHARMACOLOGICAL ACTIVITIES

### 12.1. Analgesic and Antinociceptive Effects

Using the Tail-flick Analgesiometer Device, in vivo research was conducted to investigate Ajwain's analgesic and antinociceptive efficacy. Research has demonstrated that after 2 hours of medication administration, ethanolic release considerably lengthens Tail-Flick Latency (TFL). Formalin testing has also been used in experimental research to evaluate the antinociceptive effects of Ajwain hydroalcoholic extract with morphine sulphate<sup>79</sup>. The results demonstrated that in the anxious and recent stages, Ajwain release had an antinociceptive impact<sup>80</sup>. Ajwain essential oil was the subject of research akin to this one, and it was discovered that it performed substantially better in the most recent stage of formalin testing, probably because it contains the chemical thymol<sup>81</sup>. Also, the analgesic impact of essential vegetable oils on the temperature of neuropathic feet was examined in a randomized controlled experiment with placebo control. The results showed that Ajwain essential oil significantly reduced foot burns compared with a placebo<sup>82</sup>.

### 12.2. Antibacterial and Antifungal Activities

The impact of fungal diseases on public health is significant and currently under-researched, and they are an increasing global issue<sup>83</sup>. The therapeutic benefits and antibacterial abilities of *Trachyspermum Ammi* are well established<sup>84</sup>. In vitro, Gram-positive, Gram-negative, and fungal development are all inhibited by the essential oil of the *T. ammi* fruit<sup>2,85</sup>. To test the effectiveness of Ajwain antibacterial agents, aqueous and acetone extracts were tested against *Salmonella typhimurium*, *Pseudomonas aeruginosa*, *Klebsiella pneumonia*, *Escherichia coli*, *Typhi*, *Salmonella*, the agarreusus strain of *Shigella*, *flexnericus*, *Enterococcus faecalis*, and *Staphylococcus agarregus*<sup>86</sup>. Studies have shown that the release of acetone shows more activity when compared to aqueous extraction. The ethanolic extract of Ajwain has antibacterial activity against eight types of *Helicobacter pylori*. And Ajwain methanolic extract has shown anti-bacterial activity against 11 species at 2 mg/source in efficient agar distribution. Measured using the Diameter of Inhibition Zones (DIZ). DIZ was over 15 mm against *Staphylococcus epidermidis* and *Staphylococcus aureus*, 10mm - 14 mm against *Bacillus pumilus* and *Pseudomonas aeruginosa*, and 7-9 mm against *Escherichia coli*, *Bordetella bronchiseptica*, and *Klebsiella pneumonia*. On the other hand, *Pseudomonas fluorescens* and *Micrococcus luteus* were found to be inactive<sup>87,88</sup>. The main chemical constituents of methanolic *T. ammi* extract were thymol 48.96%, p-cymene 23.73%, and gamma-terpinene 15.98%. Since Ajwain may have a high concentration of Carvacrol or Thymol in its total oil, the said

phenolic compounds are reported to be bacteriostatic or bactericidal agents depending on how concentrated Ajwain showed a positive effect on antifungal activity<sup>75</sup>. *Curvularia ovoidea* and *Aspergillus Niger* at 5000 ppm as a low blockade. It also showed the positive effect of the antimicrobial activity of *Trachyspermum Ammi* Oil Against *Enterococcus faecalis* Biofilm Formed on Tooth Substrate<sup>89</sup>. The antibacterial activities of *T. ammi* seed extracts were higher in methanolic and ethanolic extracts than in aqueous extract. Even at the lowest concentration, Ajwain methanolic extract exhibits a significant anti-fungal effect, suggesting that Ajwain extract has a greater potential for anti-fungal activity<sup>90</sup>. Several *T. ammi* extracts and essential oils have demonstrated their antifungal and antibacterial properties against various bacteria that cause food spoilage and antibiotic-resistant bacteria<sup>1,91,92</sup>.

### 12.3. Insecticidal Assessment

Endophytes have been found to provide host plants with several advantages, including improved nutrient uptake and defense against predators, pests, and abiotic stressors<sup>93</sup>. Alpha-glucosidase inhibitory activity of isolated endophytes from the *T. ammi* plant was assessed<sup>94</sup>. *T. ammi* has been shown to have insecticidal activity against *Sitophilus zeamais*<sup>64</sup>. Since isolate AZ-9 showed the highest activity against a-glucosidase, it was determined that it was *E. spinifera*. *Exophiala* is a saprophytic fungi isolated from oligotrophic hot and humid settings like restrooms, steam rooms, and dishwashers rich in hydrocarbons<sup>4</sup>. *T. ammi* endophytic fungi were examined for alpha-glucosidase inhibitory activities. Maximum inhibition (96%) was seen in isolate AZ-9, which morphological and molecular evidence determined to be *Exophiala spinifera*. *Spodoptera litura* (Fab.) was fed a diet containing an insecticide to test the insecticidal activity of the inhibitor. Significant larval mortality and emerging adult abnormalities were the results of it. Additionally, a decrease in the activity of digestive enzymes was seen in-vivo. A nutritional examination of *S. litura*'s food utilization parameters demonstrated the harmful effect of the AZ-9 inhibitor. *S. litura*'s relative growth and consumption rates were significantly lower. Essential Oils' Insecticidal Activity Against Adult *P. interpunctella*. When the adults of *P. interpunctella* were exposed to caraway (*T. ammi*), the mortality values significantly increased by the rising essential oil concentration. The mortality values reached 30% and 70% when the adults were exposed to 6  $\mu$ L/L air concentrations of *T. ammi*, respectively, and all the adults were killed by 14  $\mu$ L/L air or higher concentration. The essential oil from *T. ammi* effectively killed adult *P. interpunctella* insects<sup>64</sup>.

#### 12.4. Anthelmintic Activity

Bovine filarial *Setaria digitata* worms were used as the test subject for an in vitro anti-filaria assay using Ajwain methanolic extract. The extracted crude was subjected to flash chromatography to prepare the directed bioassay classification. Both the active fraction and the raw extraction underwent HPLC analysis. By using both worm motility and MTT [3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide] reduction assays, the raw extract and active component have demonstrated substantial action against the adult *S. digitata*. The MS, H-NMR, and IR analysis systematically identified a separate functional target as a phenolic monoterpenone. The in vivo anti-filaria activity of the substance was next examined against the human filarial worm *Brugia malayi*. The results show that *B. malayi* is resistant to vivo macrofilaricidal action and female worm sterility. *Haemonchus contorts* in sheep and *Ascaris lumbricoides* in humans are considered in the Ajwain Anthelmintic research. The outcomes were brought about by preventing parasites' energy metabolism from working properly by allowing ATPase activity. Ajwain was also reported to have cholinergic activity and peristaltic gut movement. This fact may help in the expulsion of intestinal parasites and contribute to their anthelmintic activity. The presence of thymol in *T. ammi* is important for its anthelmintic activity<sup>95</sup>. Thymol has been shown to interfere with the energy metabolism of parasites by influencing the activity of membrane intrinsic proteins such as ATPases and the permeability of membranes, which results in the discharge of energy sources<sup>96</sup>. Thymol binding to membranes may increase the curvature and polarity of the membrane surface. On the other hand, it can activate and stimulate the binding of some synthetic anthelmintics to the gamma-aminobutyric acid A-receptor (GABA-A-R), increasing the effects of these compounds<sup>4</sup>.

#### 12.5. Antiplatelet Activity

The dried ethereal extract of Ajwain is used to conduct the antiplatelet function<sup>97</sup>. Ajwain seeds thereby prevented platelet aggregation by arachidonic acid, collagen, and epinephrine in an in vitro investigation using human blood samples<sup>98</sup>.

#### 12.6. Anti-inflammatory Effects

Ajwain was also tested to show an anti-inflammatory effect. n-hexane, chloroform, methanol, and aqueous extract content have an in vivo anti-inflammatory effect. A plethysmometer was used to measure the size of normal hind paws to assess the anti-inflammatory activity on male Wistar rats weighing 200–225 g kept in usual conditions. After administering the doses for 30 minutes, carrageenan (1%) was subcutaneously injected into the right paw of each rat. A plethysmometer measured the paw size immediately after the carrageenan injection. *T. ammi*'s anti-inflammatory properties were tested on rats at 500 and 1000 mg/kg doses. The edema caused by carrageenan is a two-phase reaction;

- Kinin, histamine, and serotonin production mediate the primary phase.
- The secondary phase is linked to prostaglandin synthesis.

*T. ammi* seed extracts have anti-inflammatory effects through various peripheral and central mechanisms (potentiating in the neurotransmission of GABA), including by inhibiting

endogenous substances like leukotrienes and prostaglandins, the main mediators in inflammation. Plant extracts revealed a percentage inhibition of *T. ammi* at a dose of 500 mg/kg; n-hexane showed a more anti-inflammatory effect than chloroform and methanol plant extract. At a 1000 mg/kg dose, n-hexane showed greater anti-inflammatory activity than methanolic and chloroform extracts regarding *T. ammi* percentage inhibition<sup>13</sup>. By preventing IL-1 and IL-8 from being secreted by a bronchial epithelial cell line, it has shown vitro anti-inflammatory tendency<sup>99,60</sup>.

#### 12.7. Antitussive and Bronchodilatory Effects

In old medieval manuscripts, the effects of Ajwain antitussive have been documented. In this regard, measuring the quantity of cough generated was used to examine the reported clinical effects of aerosols associated with two different concentrations of macerated and aqueous extracts of Ajwain seeds and codeine, carvacrol, and saline<sup>99</sup>. The results show that both concentrations of Ajwain seeds significantly reduce the number of coughs, which may be due to their potent anti-inflammatory properties<sup>100</sup>. Similar investigations have demonstrated the inhibition of Histamine (H1) receptors isolated from Guinea-pig tracheal chains by Ajwain release and essential oils<sup>101</sup>. Another study examined the bronchodilatory properties of various important Ajwain ingredients in the respiratory field. The findings suggested that the quantity of carvacrol in essential oils may be responsible for their calming and bronchodilator effects<sup>102</sup>. An investigation determined if the decocted extract of Ajwain had bronchodilatory effects on asthmatic patients' airways<sup>103</sup>. According to the findings, compared to the concentrated impact of theophylline being used, the emission has an almost bronchodilatory effect on asthmatic airways<sup>104</sup>.

#### 12.8. Diuretic and Anti-lithiasis Activity

Ethnopharmacological accounts claim that Ajwain has diuretic and anti-lithiasis properties<sup>105</sup>. As a result, studies involving humans were conducted, and Ajwain seeds were taken from milk and administered orally to participants who had urine incontinence for nine days. The results against a pure calcium oxalate stone are good<sup>7</sup>. The ingredients in ajwain, including thymol, carvacrol, and flavonoids, are thought to have diuretic qualities<sup>106</sup>. Ajwain extract has been found in animal studies to enhance salt and potassium excretion and urine production. To assess Ajwain's diuretic effects on people, more study is necessary<sup>107</sup>. The most typical type of kidney stone, calcium oxalate, has been demonstrated to be prevented by substances found in Ajwain. According to rat research, Ajwain extract decreased kidney stone development by lowering the concentrations of calcium, oxalate, and phosphate in urine<sup>108</sup>.

#### 12.9. Antihyperlipidemic Properties

Another proven function of Ajwain is its antihyperlipidemic properties. In vivo, research reveals that Ajwain powder seeds are very effective in lipid profile and can reduce the amount of LDL-cholesterol, total lipids cholesterol, and triglycerides. In addition, seed extraction reduces the atherogenic index and increases HDL-cholesterol levels in albino rabbits. Compared to methanolic extract, petroleum ether extract showed more significant results in increasing HDL cholesterol levels and decreasing LDL cholesterol levels. Additionally, petroleum ether extract effectively

decreased the atherogenic index<sup>62</sup>. The significant anti-hyperlipidaemic effects of the plant's methanol and aqueous extracts are present in rat models with triton-induced hyperlipidemia. The study showed that both extracts at dosages of 3 g/kg and 5 g/kg considerably decreased levels of total cholesterol, triglycerides, and low-density lipoprotein while significantly increasing the blood concentration of high-density lipoprotein<sup>109</sup>.

#### 12.10. Detoxification Activity

The release of aflatoxin by Ajwain can seeds supports traditional related reports. Thus, in a randomized controlled trial, Ajwain seed extract showed a significant decrease in aflatoxin G1<sup>110</sup>. Thymol, one of the essential oils found in Ajwain, is said to have a cleansing impact on the body<sup>2</sup>. Thymol is a naturally occurring antibacterial and antioxidant chemical that has been demonstrated to enhance liver function and aid in removing toxins from the body. Moreover, it could improve digestion by easing the bloating, gas, and other problems with digestion that could result from a buildup of toxins in the body<sup>111</sup>.

#### 12.11. Antioxidant Properties

Free radicals are produced in an organism due to the oxidation of biomolecules such as proteins, lipids, nucleic acids, and carbohydrates. Free radicals are the main initiator of the development of many degenerative diseases. Antioxidants neutralize these free radicals, preventing cell deterioration. Polyphenols are antioxidants that prevent the body's cells and chemical constituents from oxidative and reactive atom damage. The essential oil extracted from *T. ammi* has high antioxidant activity and is recommended for nutraceutical and pharmacological uses<sup>2,112</sup>. Hexachlorocyclohexane-induced oxidative stress and toxicity in vivo studies have been used to investigate Ajwain extract's antioxidant and ameliorative abilities. Considering the findings, dietary Ajwain extract can lessen the toxicity caused by hepatic free radical stress. The effect of reactive oxygen species (ROS) and free radicals produced during drought stress<sup>29,113</sup>. Thymol is also an antioxidant and anti-inflammatory, reducing CRP (C-reactive protein) levels, IL-1, IL-6, TNF-, TNF-, and MMP9 (matrix metalloproteinase 9). The antioxidant activity can be estimated by three different methods, namely FRAP, DPPH, and ABTS<sup>64</sup>. The *T. ammi* oil sample showed significant concentration-dependent antioxidant activity by reducing the DPPH free radical with an IC<sub>50</sub> value of 36.41 g mL<sup>-1</sup>. In contrast, ascorbic acid's IC<sub>50</sub> value was determined to be 28.09 g mL<sup>-1</sup>. It was discovered that the oil functions as an antioxidant and has hydrogen-donating properties similar to those of ascorbic acid. The concentration of the extract plus ascorbic acid (5.0-100 µg mL<sup>-1</sup>) had a greater scavenging effect<sup>115</sup>. A cheap approach frequently used to assess the antioxidative ability of different natural compounds with plant origins is the DPPH assay<sup>116</sup>.

#### 12.12. Antiulcer Activity

Ajwain has been used to treat intestinal diseases, diarrhea, abdominal pain, and ulcer<sup>117</sup>. Using different models of lesions, Ajwain ethanolic extract led to a significant reduction in wound index in veterinary treatment and showed wound protection in all models. The herb *Trachyspermum Ammi* for its ability to treat ulcers. Various ulcer rat models were used for the investigation. The ulcer index was significantly

reduced after pre-treating the animals with the plant's ethanolic extract at 100 mg/kg and 200 mg/kg. It significantly decreased the ulcerative lesions, suggesting that *Trachyspermum Ammi* has potent anti-ulcer properties<sup>118</sup>.

#### 12.13. Antihypertensive Activity

The antihypertensive and antispasmodic properties of Ajwain have been investigated. An aqueous-methanolic extract of seeds reduced arterial blood pressure in models of sedated animals, according to similar research<sup>119</sup>. Also, the isolated rabbit aorta and jejunum preparations inhibited K-shrinkage when using Ajwain extract. These results support Ajwain's antihypertensive and antispasmodic properties<sup>120</sup>.

#### 12.14. Digestive Stimulant Activity

Traditional healers suggest the cure as a stimulant. Ajwain's ability to raise bile acid, stomach acid, and digestive enzyme activity has been established. The length of the meal may be shortened as well<sup>42</sup>. Ajwain increases pancreatic lipase and amylase activity as an enzyme modulator, which may promote digestive function<sup>121</sup>.

#### 12.15. Viability of Spermatogonia Stem Cells in Vitro

Mice male laboratory (3-6 days old) were used, and testis tissue was processed enzymatically in two phases to yield spermatogonia stem cells. The mice's harvested testes were washed in phosphate-buffered saline (PBS)<sup>113</sup>. 10, 20, and 30 µL of the *T. ammi* essential oil were added to the cell cultures. The culture media were changed every other day and kept in a 35°C, 5% CO<sub>2</sub> humid environment. Using an inverted microscope and ImageJ software, the diameter and number of colonies were counted and analysed<sup>8</sup>. A hemocytometer was used to count the cells. 92.8% of the cells collected from the mouse testes expressed the stimulated by retinoic acid gene 8(Stra8)<sup>122</sup>. The diameter and quantity of colonies developed much higher in the oil treatments than in the control group, especially 20 µL of oil. Oxidative stress and Reactive oxygen species (ROS) can damage cell membranes, enzymes, structural proteins, and nucleic acids. Antioxidants can counteract these negative effects<sup>123</sup>. After two weeks of therapy, analysis of gene expressions revealed that *T. ammi* oil affected the gene expressions in spermatogonia cells. The expression of the Bcl2 and BAX genes was changed to decrease cell apoptosis. In the presence of the oil, spermatogonia cell markers Plzf and ID-4 were overexpressed. After being subjected to oil, the expression of ID-4 and Plzf increased, whereas the expression of c-Kit decreased<sup>8</sup>. The main component of the studied oil was thymol, which positively affected the spermatogonia cells in the medium. Thymol has antioxidation properties by preventing chelating metal ions and free radicals and boosting endogenous antioxidants, whether dependent on or independent of enzyme<sup>62</sup>. Additionally, the non-phenolic monoterpenic -terpinene has antioxidant effects<sup>63</sup>. However, glioblastoma cells treated with thymol developed apoptosis due to Ca<sup>2+</sup> being released from the endoplasmic reticulum<sup>124</sup>. At lesser quantities, thymol and carvacrol both exhibited antioxidant action. According to their concentration, phenolic substances frequently exhibit pro- and anti-oxidant activities<sup>125</sup>. Better results were obtained when 20 µL of the oil was used to treat the spermatogonia cells, indicating the significance of

concentration in preserving spermatogonia cells using *T. ammi* oil<sup>5</sup>.

### 12.16. Spermicide activity

An in vitro investigation was done to investigate the spermicidal properties of Ajwain essential oil. The results showed that the volatile oil had potent spermicidal action. As a result, the oil may be used as a natural contraceptive<sup>121</sup>. Human spermatozoa's membrane and DNA were harmed by *T. ammi* essential oil, which also severely inhibited motility. The findings of decreased viability, acrosomal state, nuclear chromatin status, altered cell surface shape, and loss of viability revealed that exposure to *T. ammi* essential oil severely impaired the cytoplasmic membrane, leading to an imbalanced metabolism<sup>126</sup>.

### 12.17. Toxicity and teratogenicity

In their survey conducted in 1987, several districts of Uttar Pradesh (India) reported using 14 indigenous medicinal herbs, including *Trachyspermum Ammi*. Of the 155 women in the fertile phase, 50 of the 75 pregnant women surveyed in the village of Kallipuschium, Lucknow district, reported to have used *T. ammi* seed for an abortion. Since the herb was not completely effective, there was a chance that it could result in congenital abnormalities<sup>63</sup>. Ajwain may be dangerous to consume while pregnant because it is teratogenic in rat foetuses<sup>122</sup>. Based on teratogenicity seen in rat foetuses, ten plants, including *T. ammi*, posed a significant risk of potential human fetotoxicity<sup>63</sup>.

### 12.18. Estrogenicity

The National Dairy Research Institute in India<sup>63</sup> investigated the estrogenic content of *T. Ammi*. The dry Ajwain seed's total phytoestrogen concentration was at 473 ppm. The herb comes in second place on the list of plants tested for total phytoestrogen concentration. It should be noted that the plant has historically been employed as a galactagogue<sup>127</sup>.

### 12.19. Antidiabetic Activity and Diabetic Neuropathy

Streptozotocin (45 mg/kg i.p.) was used to cause diabetes in Wistar rats, which was followed by 12 weeks of treatment-induced diabetic neuropathy. To comprehend the neuropathic protection of thymol in STZ-treated Wistar rats, biomarkers were examined. The effects of thymol extracted from *Trachyspermum Ammi* at doses of 10 and 20 mg/kg on streptozotocin-induced diabetes and diabetic neuropathy in Wistar rats have been studied. At this dosage, the blood glucose level was seen to be declining. The stimulation of insulin secretions from beta cells, which increase glucose metabolism and regenerate the surviving cells, must be the reason for the decrease in blood glucose levels. Diabetic neuropathy, a common consequence of prolonged diabetes conditions, is treated using the protective actions of the isolated molecule thymol. People with diabetes who suffer from nerve damage and peripheral neuropathy report losing their ability to feel pain<sup>128</sup>. A delayed reaction in diabetic control group animals due to extensive nerve damage and loss of perception caused by prolonged diabetes. A progressive healing activity was observed in treated groups, particularly in groups receiving 20 mg/kg of thymol. However, the diabetic groups tended to have high sensitivity

responses in nerves, which delayed responses during week 12 due to severe nerve damage<sup>100</sup>.

### 12.20. Anti-microbial

The ability of *Trachyspermum Ammi* to fight pathogens like *Klebsiella pneumonia*, *E. coli*, and *Staphylococcus aureus* was collected from urine cultures of patients hospitalized with urinary tract infections. The study showed that the plant's essential oil was active against *E. coli* at a minimum inhibitory concentration (MIC) of 100 ppm, whereas the highest MIC against *Klebsiella pneumonia* was 250 ppm<sup>129</sup>. *Trachyspermum Ammi* has good antimicrobial effects on gram-negative microbial strains. The plant's ethanol extract was efficient against the gram-negative bacterium *Pseudomonas* sp., while the acetone extract displayed strong antibacterial potential against *Escherichia coli*. The anti-viral potential of *Trachyspermum Ammi*'s methanolic extract against the Hepatitis C Virus (HCV) protease in in-vitro research. The extract was found to be a strong inhibitor of the tested virus<sup>55</sup>. The anti-fungal effects of the *Trachyspermum Ammi* flavonoid extract on proinflammatory biomarkers such as tumor necrosis factor (TNF-) and interleukin-18 (IL-18)<sup>37</sup>. Essential oils and their corresponding fractions were tested for their antifungal properties against nine different strains of fungi from the American Type Culture Collection (ATCC), including *Candida krusei* (ATCC 6258), *Candida albicans* (ATCC 10261), *Candida parapsilosis* (ATCC 4344), *Candida glabrata* (ATCC 90030), *Aspergillus fumigatus* (ATCC (CBS 14.65), *Aspergillus flavus* (ATCC 64025). Thymol, carvacrol, r-cymene, and g-terpinene are present in *Trachyspermum Ammi* essential oil and are responsible for their antibacterial properties. A lower concentration of *Trachyspermum Ammi* essential oil (0.3 mg/mL) may prevent the growth of some strains of *Staphylococcus aureus*. *Trachyspermum Ammi* essential oil has fungistatic properties against the *Candida* and *Aspergillus* species at low concentrations (0.0625 to 1 mL/mL)<sup>130</sup>.

### 12.21. Anti-amnesia

A 10-day in-vivo experiment using mouse models to assess the anti-amnesic effects of treating with *Trachyspermum Ammi* seed powder. Scopolamine, electroshock, and alprazolam were used to create amnesia. Several variables were calculated throughout the trial, including serum cholesterol, brain monoaldehyde (MDA), brain-reduced glutathione (GSH), and brain nitrite. The step-down latency of the Passive avoidance paradigm (PAP) and the object identification task's (ORT) discrimination index significantly increased, together with the rise in brain glutathione (GSH) levels, a significant decrease in the brain's MDA level, AChE activity, and nitrite level<sup>131</sup>.

### 12.22. Anti-*Candida* activity

The most typical cause of human fungal infections, which can range from superficial mucosal infections to widespread, potentially fatal infections, is *Candida albicans*<sup>33</sup>. The majority of disseminated mycoses are candidiasis-related. The fungus *Candida albicans* is the one that results in the most invasive and opportunistic fungal illnesses. It was discovered that an Ajwain methanol extract was efficient against *C. albicans*. Aromatic water (AW) was tested for its antifungal properties against 16 common *Candida* strains, including *C. tropicalis*, *C. albicans*, *C. glabrata*, *C. krusei*, *C. dubliniensis*, and *C.*

parapsilosis. The phenolic monoterpenes found in AW have antifungal properties. In addition to its antibacterial characteristics, this plant has a pleasant scent and antioxidant qualities. There is evidence that *T. ammi* AW's EO has anti-candida activity and is high in phenolic monoterpenes<sup>132</sup>. These monoterpenes cause changes in the cytoplasmic membrane's permeability, which leads to the leakage of ions and intracellular components and the development of their antibacterial properties<sup>33</sup>. Moreover, it has been observed that thymol and carvacrol have a fungicidal effect by preventing the synthesis of ergosterol and disrupting membrane integrity. Once *T. ammi* AW was administered to the mice, candidal colonisation decreased, and the healing process began in the necrotic tissue. It also reduces inflammation and hyperemia. Carvacrol and T, thymol, which are the two primary components of the EO of AW, have anti-inflammatory or antioxidant properties<sup>42</sup>. The presence of phenolic monoterpenes in the EO of AW is responsible for the significant antifungal activity of AW, as evidenced by the eradication of *C. albicans* in the afflicted tissue. AW's antibacterial and antioxidant properties significantly impacted inflammation and started the necrotic tissue's healing process. To make topical herbal treatments for *Candida albicans* infections, *T. ammi* extract can be employed<sup>63</sup>. The *Trachyspermum Ammi* seed extract demonstrated stronger antifungal effectiveness, with maximal inhibition zones against *C. albicans* measuring 38.3 mm and 31.3 mm, respectively<sup>133</sup>.

### 12.23. Anti-Rheumatic Potential

An autoimmune inflammatory disease called rheumatoid arthritis (RA) is characterised by synovial hyperplasia, which erodes bones and cartilage, leads to joint dysfunction, and increases the risk of mortalit<sup>134</sup>. Two crucial inflammatory mediators involved in RA and other inflammatory illnesses are prostaglandins and nitric oxide (NO)<sup>135</sup>. Thymol has anti-inflammatory characteristics and lowers matrix metalloproteinase 9 (MMP9) levels, IL-1, IL-6, TNF-, TNF-, and CRP (C-reactive protein)<sup>83</sup>. Biogenic selenium nanoparticles (SeNPs) produced from *Trachyspermum Ammi* demonstrated anti-rheumatic and immunomodulatory effects. 25 mice were used to test the toxicity of these selenium nanoparticles (SeNPs)<sup>136</sup>. Compared to healthy mice, the tested doses of SeNPs exhibited no observable adverse effects on the kidney, serum, liver, and spleen biochemical markers. The SeNPs treatment decreased the disease's severity, as shown by decreased paw edema and decreased lymphocytic cellular infiltration in the histological findings. SeNPs also showed a dose-independent improvement in the redox state of the inflamed synovium by greatly increasing the activity of antioxidant enzymes concerning the arthritic controls<sup>137</sup>.

### 12.24. Antispasmodic Activity

*Trachyspermum Ammi* Essence (TAE) can suppress a strong spasmolytic and anti-spasmodic effect in an isolated rat's ileum. Ileal smooth muscle significantly relaxed when exposed to the ethanolic and aqueous extracts. Compared to aqueous extracts, TAE showed a stronger inhibitory effect on Ach-induced contractions. Several mechanisms mediate the relaxation of the gastrointestinal smooth muscle. The blocking action on excitatory pathways occurs through cholinergic and histaminergic pathways<sup>33</sup>.

### 12.25. Anti-viral

The Apiaceae plant species *T. ammi*'s seed oil demonstrated exceptional antiviral activity<sup>138</sup>. Plaque assay in vitro was used to quantify the Japanese encephalitis virus (JEV) titer, and a plate-reduction neutralization test (PRNT) was used to measure the antiviral activity of Ajwain oil. According to their research, Ajwain oil shows antiviral action in vitro against (JEV)<sup>139,140</sup>.

## 13. CONCLUSION

The current review was designed to provide insight into the pharmacological activities, phytoconstituents, novel patent, herbal formulation, and Microwave-assisted extraction of very useful and excellent Sprague fruits, *T. Ammi*. The microwave-assisted extraction process is less time-consuming, cost-effective, and gives more extractive value than other methods. *Trachyspermum Ammi* exhibited various pharmacological properties that may be attributed to its various pharmacologically active phytoconstituents. The broad range of pharmacological activities of *T. Ammi* includes nematocidal, anti-helminthic, anti-filarial, insecticidal, anti-inflammatory, anti-cancer, anti-rheumatic, anti-inflammatory, antiulcer, antiemetic, antihypertensive, antihyperlipidemic, antispasmodic, anti-candida, anti-lithiasis, antidiabetic, diuretic, analgesic, antitussive, antiviral, etc. Glycosides, resins, starch, inorganic acids, phenolic compounds, amino acids, protein, coumarins, phlobatannins, carbohydrates, vitamins, minerals, tannins, carotenoids, alkaloids, steroids, saponins, flavonoids are the different class of constituents present in the *T. ammi*. Thymol is a major constituent with antioxidation properties, as evidenced by reduced chelate formation and free radical generation. Along with this, it also boosts the formation of endogenous antioxidants. The toxicity profile states that *T. ammi* might be dangerous for pregnant women because its teratogenic potential was reported in rat foetuses. Besides the aforementioned toxic potential in pregnancy, *T. ammi* is a very useful fruit having a wide range of active pharmacological agents with broad pharmacological profiles.

## 14. AUTHORS CONTRIBUTION STATEMENT

Mr. Kamal Nabi carried out the literature survey and wrote the manuscript. Mr. Imanshu aided in writing. Mr. Saswat Swarup did the formatting and provided the necessary inputs related to Ayurveda. Ms. Deepika Bhatia and Dr. Manisha Bhatti have done the language editing and formatting job. Dr. Lovedeep Singh has conceptualized and designed the idea.

## 15. CONFLICT OF INTEREST

Conflict of interest declared none.

## 16. LIST OF ABBREVIATIONS

Essential oil (EO), Microwave-assisted extraction (MAE), Diameter of Inhibition Zones (DIZ), Japanese encephalitis virus (JEV), Plate-reduction neutralization test (PRNT), *Trachyspermum Ammi* Essence (TAE), Selenium nanoparticles (SeNPs), Nitric oxide (NO), Rheumatoid arthritis (RA), Aromatic water (AW), Passive avoidance paradigm (PAP), object identification task's (ORT), Matrix metalloproteinase 9 (MMP9), C-reactive protein (CRP), Acetylcholinesterase activity (AChE), Tumor necrosis factor (TNF), Hepatitis C

Virus (HCV), Minimum inhibitory concentration (MIC), Reactive oxygen species (ROS), Minimum essential medium alpha (MEM $\alpha$ ), Phosphate buffered saline (PBS),

## 17. REFERENCES

1. Hyder M, Li Y, Wang M, Mao J, Mari JM, Bukero A et al. Insecticidal activity, Chemical Constituents of *Trachyspermum Ammi*, *Withania coagulans* and *Murraya koenigii* ethanloic extracts against *Bemisia tabaci*. *Braz J Biol.* 2022 Aug 1;84:e260298. doi: 10.1590/1519-6984.260298, PMID 35920500.
2. Morsy NFS. Production of thymol rich extracts from ajwain (*Carum copticum* L.) and thyme (*Thymus vulgaris* L.) using supercritical CO<sub>2</sub>. *Ind Crops Prod.* 2020 Mar 1;145:112072. doi: 10.1016/j.indcrop.2019.112072.
3. Bairwa R, Sodha RS, Rajawat BS. *Trachyspermum Ammi*. *Pharmacogn Rev.* 2012 Jan;6(11):56-60. doi: 10.4103/0973-7847.95871, PMID 22654405.
4. Imani-Baran A, Abdollahi J, Akbari H, Jafarirad S, Moharramnejad S. Anthelmintic activity of crude powder and crude aqueous extract of *Trachyspermum Ammi* on gastrointestinal nematodes in donkey (*Equus asinus*): an in vivo study. *J Ethnopharmacol.* 2020 Feb 10;248:112249. doi: 10.1016/j.jep.2019.112249, PMID 31557509.
5. Sonar PK, Singh R, Saraf SK. Phytochemical, chromatographic and spectroscopic investigation of *Carum copticum* seeds and their potential as immunomodulatory agents. *Pharm Biol.* 2016 Mar 3;54(3):494-502. doi: 10.3109/13880209.2015.1050116, PMID 26030463.
6. Ramakrishna C, Pamisetty A, Reddy SR. Nutraceutical enriched Indian traditional chikki. *J Food Sci Technol.* 2015 Aug;52(8):5138-46. doi: 10.1007/s13197-014-1625-y, PMID 26243935.
7. Chahal KK, Dhaiwal K, Kumar A, Kataria D, Singla N. Chemical composition of *Trachyspermum Ammi* L. and its biological properties: a review. *J Pharmacogn Phytochem.* 2017;6(3):131-40.
8. Mahboubi M, Kazempour N. Chemical composition and antimicrobial activity of *Satureja hortensis* and *Trachyspermum copticum* essential oil. *Iran J Microbiol.* 2011 Dec;3(4):194-200. PMID 22530088.
9. Hejazian SH, Bagheri SM, Safari F. Spasmolytic and anti-spasmodic action of *Trachyspermum Ammi* essence on rat's ileum contraction. *North Am J Med Sci.* 2014 Dec;6(12):643-7. doi: 10.4103/1947-2714.147982, PMID 2559053.
10. Syed S, Al-Haq MI, Saddiqui MH, Aslam Z. Growth and yield response of ajwain (*Carum copticum* L.) to sowing date and row spacing. *Pak J Life Sci.* 2015 Dec 14;13:157-61.
11. Bashyal SA, Guha AV. Evaluation of *Trachyspermum Ammi* seeds for antimicrobial activity and phytochemical analysis. *Asian J Pharm Clin Res.* 2018;11(5):148-222. doi: 10.22159/ajpcr.2018.v11i5.24430.
12. Moazeni M, Saharkhiz MJ, Hosseini AA. In vitro lethal effect of ajowan (*Trachyspermum Ammi* L.) essential oil on hydatid cyst protoscoleces. *Vet Parasitol.* 2012 Jun 8;187(1-2):203-8. doi: 10.1016/j.vetpar.2011.12.025, PMID 22245070.
13. Monfared AA, Mousavi SA, Zomorodian K, Mehrabani D, Iraji A, Moein MR. *Trachyspermum Ammi* aromatic water: A traditional drink with considerable anti-*Candida* activity. *Curr Med Mycol.* 2020 Sep;6(3):1-8. doi: 10.18502%2Fcmm.6.3.3979.
14. Available from: [https://patents.google.com/patent/KR101241180B1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi](https://patents.google.com/patent/KR101241180B1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi) (Access on 31/03/2023). Google.
15. Available from: [https://patents.google.com/patent/AU2019200802A1/e?n?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi](https://patents.google.com/patent/AU2019200802A1/e?n?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi) (Access on 31/03/2023). Google.
16. Available from: [https://patents.google.com/patent/US20200390696A1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi](https://patents.google.com/patent/US20200390696A1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi) (Access on 31/03/2023). Google.
17. Available from: [https://patents.google.com/patent/US9532593B2/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi](https://patents.google.com/patent/US9532593B2/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi) (Access on 31/03/2023). Google.
18. Available from: [https://patents.google.com/patent/US9801845B2/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi](https://patents.google.com/patent/US9801845B2/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi) (Access on 31/03/2023). Google.
19. Available from: [https://patents.google.com/patent/US20220408734A1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=4](https://patents.google.com/patent/US20220408734A1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=4) (Access on 31/03/2023). Google.
20. Available from: [https://patents.google.com/patent/EP2949362B1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=4](https://patents.google.com/patent/EP2949362B1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=4) (Access on 31/03/2023). Google.
21. Available from: [https://patents.google.com/patent/US10130095B2/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=9](https://patents.google.com/patent/US10130095B2/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=9) (Access on 31/03/2023). Google.
22. Available from: [https://patents.google.com/patent/WO201500064A1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=9](https://patents.google.com/patent/WO201500064A1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=9) (Access on 31/03/2023). Google.
23. Available from: [https://patents.google.com/patent/US20200397711A1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=9](https://patents.google.com/patent/US20200397711A1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=9) (Access on 31/03/2023). Google.
24. Available from: [https://patents.google.com/patent/WO2006068759A2/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=9](https://patents.google.com/patent/WO2006068759A2/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=9) (Access on 31/03/2023). Google.
25. Available from: [https://patents.google.com/patent/US20170348449A1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=9](https://patents.google.com/patent/US20170348449A1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=9) (Access on 2/04/2023). Google.
26. Available from: [https://patents.google.com/patent/WO2009135049A1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=9](https://patents.google.com/patent/WO2009135049A1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=9) (Access on 2/04/2023). Google.
27. Available from: [https://patents.google.com/patent/WO2010126794A1/en?q=\(Trachyspermum+ammi\)&oq=+Trachyspermum+ammi&page=9](https://patents.google.com/patent/WO2010126794A1/en?q=(Trachyspermum+ammi)&oq=+Trachyspermum+ammi&page=9) (Access on 2/04/2023). Google.

28. Khanehzad M, Abolhasani F, Koruji SM, Ragerdi Kashani I, Aliakbari F. The roles of Sertoli cells in fate determinations of spermatogonial stem cells. Medical Journal TUMS Publications. 2016 Mar 10;73(12):878-87.

29. Bettaieb Rebey IB, Jabri-Karoui I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B. Effect of drought on the biochemical composition and antioxidant activities of cumin (*Cuminum cyminum* L.) seeds. Ind Crops Prod. 2012 Mar 1;36(1):238-45. doi: 10.1016/j.indcrop.2011.09.013.

30. Wahab AT, Ilyas Q, Farooq S, Javaid S, Ahmed S, Rahman AU et al. In-vitro and in-vivo anticandidal activity of *Trachyspermum Ammi* (L.) Sprague seeds ethanolic extract and thymol-containing hexanes fraction. Nat Prod Res. 2021 Nov 18;35(22):4833-8. doi: 10.1080/14786419.2020.1731738, PMID 32233667.

31. Singh NP, Pandey VP, Chand Yadav G, Singh G, Tyagi N, Pandey P et al. Genetic divergence studies in ajwain (*Trachyspermum Ammi* L.) genotypes. Int J Curr Microbiol Appl Sci. 2017;6(11):563-9. doi: 10.20546/ijcmas.2017.611.068.

32. Ramchander PJ, Middha A. Recent advances on ajowan and its essential constituents. J Med Plants. 2017;5(3):16-22.

33. Moein MR, Zomorodian K, Pakshir K, Yavari F, Motamedi M, Zarshenas MM. *Trachyspermum Ammi* (L.) Sprague: chemical composition of essential oil and antimicrobial activities of respective fractions. J Evid Based Complementary Altern Med. 2015 Jan;20(1):50-6. doi: 10.1177/2156587214553302, PMID 25305209.

34. Mishra S. A review of super food ajwain and its pharmacological actions. Int J Res Pharm Pharm Sci. 2020;1(1):303.

35. Gaddamwar DAG, Rajput PR, Parsodkar VJ. Extraction of basil, *Padina*, ajwain and development of oxygen garden in the school yard as a preventive measure for Covid-19. IJRASET. 2020;8(6):1408-11. doi: 10.22214/ijraset.2020.6228.

36. Pal DK, Dutt B, Varun Attri RD. Studies on important medicinal plants of mid Himalayan region of Himachal Pradesh. Int J Pharm Innov. 2020;9:158-75.

37. Saleem U, Riaz S, Ahmad B, Saleem M. Pharmacological screening of *Trachyspermum Ammi* for antihyperlipidemic activity in Triton X-100 induced hyperlipidemia rat model. Pharmacogn Res. 2017 Dec;9;Suppl 1:S34-40. doi: 10.4103/pr.pr\_37\_17, PMID 29333040.

38. Attou A, Davenne D, Benmansour A, Lazouni HA. Chemical composition and biological activities of *Ammoides verticillata* essential oil from west Algeria. Phytothérapie. 2019 Feb 1;17(1):2-8. doi: 10.3166/phyto-2019-0116.

39. Kumar A, Singh AK. *Trachyspermum Ammi* (Ajwain): A Comprehensive Review. World J Pharm Res. 2021 Apr 5;10(6):724-36. doi: 10.20959/wjpr20216-20569.

40. Prakash C, Ansari SH, Kaur G, MP. I, ram N, Singh GD. Analytical method development and its validation for the estimation of thymol in *Trachyspermum Ammi* mill fruit by gas liquid chromatography. Available from: <https://citeseerrx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cbfc6ef584849edf01b225ed2deab0cca7ffc287>.

41. Gayathri T, Giridhar K, Tanuja Priya B, Paratpara Rao M, Vijaya Lakshmi T. Variation for qualitative traits in ajwain (*Trachyspermum Ammi* L.) germplasm. Available from: [https://www.researchgate.net/profile/GiridharKalidasu/publication/365728191\\_Variation\\_for\\_Qualitative\\_Traits\\_in\\_Ajwain\\_Trachyspermum\\_ammi\\_L\\_Germplasm/links/63805717c2cb154d29248b64/Variation-for-Qualitative-Traits-in-Ajwain-Trachyspermum-ammi-L-Germplasm.pdf](https://www.researchgate.net/profile/GiridharKalidasu/publication/365728191_Variation_for_Qualitative_Traits_in_Ajwain_Trachyspermum_ammi_L_Germplasm/links/63805717c2cb154d29248b64/Variation-for-Qualitative-Traits-in-Ajwain-Trachyspermum-ammi-L-Germplasm.pdf).

42. Asif HM, Sultana S, Akhtar N. A panoramic view on phytochemical, nutritional, ethanobotanical uses and pharmacological values of *Trachyspermum Ammi* Linn. Asian Pac J Trop Biomed. 2014 Jul 1;4:S545-53. doi: 10.12980/APJT.B.4.2014APJT.B-2014-0242.

43. Grover M. Ayurvedic significance of World's ancient spice. *Trachyspermum Ammi* linn.(Ajwain). Available from: <http://irjpms.com/wp-content/uploads/2021/07/IRJPMS-V4N4P100Y21.pdf>.

44. Goyal S, Chaturvedi V, Dhingra G, Tanwar S, Sharma K, Singh S. *Trachyspermum Ammi*: a review on traditional and modern pharmacological aspects Traditional and modern aspects. J Biol Sci. 2022 Nov 8;02(4):324-37. doi: 10.55006/biolsciences.2022.2401.

45. Barimani F, Gholami AA, Nabil M. In vitro antifungal activity of *Raphanus sativus* L. var. niger (black radish) and *Trachyspermum Ammi* (ajwain) on resistant and susceptible *Aspergillus fumigatus* isolates. Int J Mol Clin Microbiol. 2020 Dec 1;10(2):1360-8.

46. Chauhan B, Kumar G, Ali M. Pharmacognostical and physiochemical parameters of *Trachyspermum Ammi* (L.) Sprague (fruits). Curr Res Pharm Sci. 2013 Sep 30:87-91.

47. Zargaran A, Zarshenas MM, Mehdizadeh A, Mohagheghzadeh A. Oxymel in medieval Persia. Pharm Hist (Lond). 2012;42(1):11-3. PMID 22530314.

48. Ishikawa T, Segi Y, Kitajima J. Water-soluble constituents of ajowan. Chem Pharm Bull (Tokyo). 2001;49(7):840-4. doi: 10.1248/cpb.49.840, PMID 11456088.

49. Choudhury S, Ahmed R, Kanjilal PB, Leclercq PA. Composition of the seed oil of *Trachyspermum Ammi* (L.) Sprague from Northeast India. J Essent Oil Res. 1998 Sep 1;10(5):588-90. doi: 10.1080/10412905.1998.9700979.

50. Hardel D, Sahoo L, Patel J. Pharmacognostic studies on *Trachyspermum Ammi* linn. A powder analysis. IJRAP. 2011;2(4):1272-7.

51. Katasani D, Srinu B, Bala R. Phytochemical screening, quantitative estimation of total phenolic, flavonoids and antimicrobial evaluation of *Trachyspermum Ammi*. J Atoms Mol. 2011;1(1):1-8.

52. Jeet K, Devi N, Narendra T, Sunil T, Lalit S, Raneev T. *Trachyspermum Ammi* (ajwain): a comprehensive review. Int Res J Pharm. 2012 May;3(5):133-8.

53. Ishikawa T, Segi Y, Kitajima J. Water-soluble constituents of ajowan. Chem Pharmaceuticalbulletin. 2001;49(7):840.

54. Beegam KS, Joseph A, Singh VPP. Evaluation of the antimicrobial efficacy of *Elettaria cardamomum* oil, *Trachyspermum ammi* Oil and 5% Sodium Hypochlorite Against *Enterococcus faecalis* Biofilm Formed on Tooth Substrate. Contemp Clin Dent. 2021 Oct;12(4):396-400. doi: 10.4103/ccd.ccd\_643\_20, PMID 35068839.

55. Hanif MA, Hassan SM, Mughal SS, Rehman A, Hassan SK, Ibrahim A et al. An overview on ajwain (*Trachyspermum Ammi*) pharmacological effects:

current and conventional. *Technology*. 2021 Apr 30;5(1):1-6. doi: 10.11648/j.pst.20210501.11.

56. Anwar S, Ahmed N, Habibatni S, Abusamra Y, Ajwain (*Trachyspermum Ammi* L.) oils. In: *Essential oils in food preservation, flavor and safety* 2016 Jan 1 (pp. 181-92). Academic Press. doi: 10.1016/B978-0-12-416641-7.00019-5.

57. Vitali LA, Beghelli D, Biapa Nya PC, Bistoni O, Cappellacci L, Damiano S et al. Diverse biological effects of the essential oil from Iranian *Trachyspermum ammi*. *Arab J Chem*. 2016 Nov 1;9(6):775-86. doi: 10.1016/j.arabjc.2015.06.002.

58. Goyal S, Chaturvedi V, Dhingra G, Tanwar S, Sharma K, Singh S. *Trachyspermum Ammi*: a review on traditional and modern pharmacological aspects. *J Biol Sci*. 2022 Nov 8;2(4):324-37.

59. Shuja S, Owais A, Fatima N, Shan M, Khan M, Zaman M. The Use, Phytochemical and antimicrobial Activity Evaluation of *Foeniculum vulgare*, *Cuminum cyminum*, and *Trachyspermum Ammi* Were Reviewed for the Treatment of Gastric Diseases as Future compounds. *J Pharm Pharmacol*. 2022;10:273-82. doi: 10.17265/2328-2150/2022.10.005.

60. Zarshenas MM, Moein M, Samani SM, Petramfar P. An overview on ajwain (*Trachyspermum Ammi*) pharmacological effects; modern and traditional. *J Nat Rem*. 2014:98-105.

61. Omidpanah S, Aliakbari F, Nabavi SM, Vazirian M, Hadjikhondi A, Kurepaz-Mahmoodabadi M et al. Effects of monoterpenes of *Trachyspermum Ammi* on the viability of spermatogonia stem cells in vitro. *Plants (Basel)*. 2020;9(3):343. doi: 10.3390/plants9030343, PMID 32182777.

62. Baschieri A, Ajvazi MD, Tonfack JLF, Valgimigli L, Amorati R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. *Food Chem*. 2017 Oct 1;232:656-63. doi: 10.1016/j.foodchem.2017.04.036, PMID 28490124.

63. Hsu SS, Lin KL, Chou CT, Chiang AJ, Liang WZ, Chang HT et al. Effect of thymol on Ca<sup>2+</sup> homeostasis and viability in human glioblastoma cells. *Eur J Pharmacol*. 2011 Nov 16;670(1):85-91. doi: 10.1016/j.ejphar.2011.08.017, PMID 21914442.

64. Sharifzadeh A, Shokri H. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible *Candida albicans*. *Avicenna J Phytomed*. 2016 Mar;6(2):215-22. doi: 10.1093/jas/skad047, PMID 27222835.

65. Escobar A, Pérez M, Romanelli G, Blustein G. Thymol bioactivity: a review focusing on practical applications. *Arab J Chem*. 2020 Dec 1;13(12):9243-69. doi: 10.1016/j.arabjc.2020.11.009.

66. Akber M, Seraj S, Islam F, Ferdousi D, Ahmed R, Nasrin D et al. A survey of medicinal plants used by the traditional medicinal practitioners of Khulna City, Bangladesh. *Am Eurasian J Sustain Agric*. 2011 Apr 1;5:177-95.

67. Debit Bhowmik C, Kumar KS, Chandira M, Jayakar B. Turmeric: a herbal and traditional medicine. *Arch Appl Sci Res*. 2009;1(2):86-108.

68. Ravisankar P, Koushik O, Reddy A, Kumar U, AP, Pragna P. A detailed analysis on acidity and ulcers in esophagus, gastric and duodenal ulcers and management. *IOSR JDMS (IOSR-JDMS)*. 2016;15(1):94-114. doi: 10.9790/0853-1511094114.

69. Razzak DMA. Pharmacological and phytochemical profile of *Trachyspermum Ammi*: evidence from the traditional medicine and recent research. *Int J Unani Integ Med*. 2020;4(3):19-23. doi: 10.33545/2616454X.2020.v4.i3a.139.

70. Williams C. *Medicinal plants in Australia volume 4: an Antipodean apothecary*. Rosenberg publishing; 2013 May 1. Google. Available from: <https://books.google.com/books?hl=en&lr=&id=7eVUAQAAQBAJ&oi=fnd&pg=PA5&dq=Williams+C.+Medicinal+plants+in+Australia+volume+4:+an+Antipodean+apothecary.+Rosenberg+Publishing%3B+2013+May+1.&ots=O71yEGbnvz&sig=uui7WeOnANR6-mu4WQ5sr9tDobM>.

71. Singh H, Meghwal M. Ajwain a potential source of phytochemical for better health. *J Pharm Innov*. 2019;8:599-603.

72. Awan SJ, Hadi F, Maqbool T, Nadeem S, Malik S, Farzand A. A review on the medicinal potential of *Trachyspermum Ammi* Found in Pakistan. *JPRI*:302-11. doi: 10.9734/jpri/2021/v33i41B32369.

73. Ladani MR. Brief review on analgesic and anti-inflammatory properties of *Moringa oleifera*, *Senna auriculata* & other useful medicinal plants to inhibit release of immune mediators. Available from: [https://www.researchgate.net/profile/Miral-Ladani-3/publication/363187025\\_Brief\\_review\\_on\\_analgesic\\_and\\_ant-inflammatory\\_properties\\_of\\_Moringa\\_oleifera\\_Senna\\_auriculata\\_other\\_useful\\_medicinal\\_plants\\_to\\_inhibit\\_release\\_of immune mediators/links/6310e1651dd4470212885bc/Brief-review-on-analgesic-and-anti-inflammatory-properties-of-Moringa-oleifera-Senna-auriculata-other-useful-medicinal-plants-to-inhibit-release-of-immune-mediators.pdf?\\_sg%5B0%5D=started\\_experiment\\_milestone&origin=journalDetail&\\_rtd=e30%3D](https://www.researchgate.net/profile/Miral-Ladani-3/publication/363187025_Brief_review_on_analgesic_and_ant-inflammatory_properties_of_Moringa_oleifera_Senna_auriculata_other_useful_medicinal_plants_to_inhibit_release_of immune mediators/links/6310e1651dd4470212885bc/Brief-review-on-analgesic-and-anti-inflammatory-properties-of-Moringa-oleifera-Senna-auriculata-other-useful-medicinal-plants-to-inhibit-release-of-immune-mediators.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail&_rtd=e30%3D).

74. Rajeshwari CU, Kumar AV, Andallu B. Therapeutic potential of ajwain [*Trachyspermum ammi* L] Seeds. In: *Nuts and seeds in health and disease prevention* 2011 Jan 1 (pp. 153-9). Academic Press. doi: 10.1016/B978-0-12-375688-6.10017-9.

75. Available from: [https://www.google.com/aclk?sa=l&ai=DChcSEwi\\_65fa04P-AhUWDisKHTJ0C6EYABAEGgjzZg&sig=AOD64\\_2mnnZ6jKOeAFJIFT3G7UuUSf8o8g&adurl&ctype=5&ved=2ahUKEwiN0Y3ao4P-AhURkOYKHWXDCYQvh6BAgBEFA](https://www.google.com/aclk?sa=l&ai=DChcSEwi_65fa04P-AhUWDisKHTJ0C6EYABAEGgjzZg&sig=AOD64_2mnnZ6jKOeAFJIFT3G7UuUSf8o8g&adurl&ctype=5&ved=2ahUKEwiN0Y3ao4P-AhURkOYKHWXDCYQvh6BAgBEFA) (Access on 30/03/2023). Google.

76. Available from: [https://www.google.com/aclk?sa=l&ai=DChcSEwi\\_65fa04P-AhUWDisKHTJ0C6EYABABGgjzZg&sig=AOD64\\_3UplKznj5nGfQb6KhnaA448CfrmAw&adurl&ctype=5&ved=2ahUKEwiN0Y3ao4P-AhURkOYKHWXDCYQvh6BAgBEEY](https://www.google.com/aclk?sa=l&ai=DChcSEwi_65fa04P-AhUWDisKHTJ0C6EYABABGgjzZg&sig=AOD64_3UplKznj5nGfQb6KhnaA448CfrmAw&adurl&ctype=5&ved=2ahUKEwiN0Y3ao4P-AhURkOYKHWXDCYQvh6BAgBEEY) (Access on 30/03/2023). Google.

77. Available from: [https://brijbooti.in/?ixwpse=l&rating=3&taxonomy=product\\_shipping\\_class&term=below-500](https://brijbooti.in/?ixwpse=l&rating=3&taxonomy=product_shipping_class&term=below-500) (Access on 30/03/2023).

78. Available from: <https://www.athreyaherbs.com/products/hingvastak-powder> (Access on 30/03/2023).

79. Al-Snafi AE. Therapeutic importance of *Hyoscyamus* species grown in Iraq (*Hyoscyamus albus*, *Hyoscyamus niger* and *Hyoscyamus reticulatus*)-A review. *IOSR J Pharm.* 2018;8(6):18-32.

80. Dehdari S, Hajimehdipoor H. Medicinal properties of *Adiantum capillus-veneris* Linn. in traditional medicine and modern phytotherapy: a review article. *Iran J Public Health.* 2018 Feb;47(2):188-97. PMID 29445628.

81. Petramfar P, Moein M, Samani SM, Tabatabaei SH, Zarshenas MM. *Trachyspermum Ammi* 10% topical cream versus placebo on neuropathic pain, a randomized, double-blind, placebo-controlled trial. *Neurol Sci.* 2016 Sep;37(9):1449-55. doi: 10.1007/s10072-016-2600-3, PMID 27166709.

82. Dubey S, Kashyap P. *Trachyspermum Ammi*: a review on its multidimensional uses in Indian folklore medicines. *Res J Med Plants.* 2015;9(8):368-74. doi: 10.3923/rjmp.2015.368.374

83. Sharifzadeh A, Khosravi AR, Shokri H, Sharafi G. Antifungal effect of *Trachyspermum Ammi* against susceptible and fluconazole-resistant strains of *Candida albicans*. *J Mycol Med.* 2015 Jun 1;25(2):143-50. doi: 10.1016/j.mycmed.2015.03.008, PMID 25982599.

84. Mazzara E, Scorticlini S, Fiorini D, Maggi F, Petrelli R, Cappellacci L et al. A design of experiment (DoE) approach to model the yield and chemical composition of ajowan (*Trachyspermum Ammi* L.) essential oil obtained by microwave-assisted extraction. *Pharmaceuticals (Basel).* 2021 Aug 19;14(8):816. doi: 10.3390/ph14080816, PMID 34451913.

85. Nickavar B, Adeli A, Nickavar A. TLC-bioautography and GC-MS analyses for detection and identification of antioxidant constituents of *Trachyspermum copticum* essential oil. *Iran J Pharm Res.* 2014;13(1):127-33. PMID 24734063.

86. Bora L. Anticandidal activity of medicinal plants and *Pseudomonas aeruginosa* strains of clinical specimens. *J Microbiol Immunol Infect.* 2016 Apr 1;49(2):276-80. doi: 10.1016/j.jmii.2014.10.002, PMID 25592881.

87. Yazdeli MZ, Ghazaei C, Maraghi ET, Bakhshi A, Shukohifar M. Evaluation of antibacterial Synergism of methanolic Extract of *Dracocephalum kotschy* and *Trachyspermum Ammi*. *Malays J Med Sci MJMS.* 2021 Dec;28(6):64-75. doi: 10.21315%2Fmjms2021.28.6.7.

88. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement; CLSI document M100. 2017-S21. doi: 10.11150/kansenshogakuzasshi.85.355.

89. Qamar N, John P, Bhatti A. Toxicological and Anti-rheumatic potential of *Trachyspermum Ammi* derived biogenic selenium nanoparticles in arthritic BALB/c mice. *Int J Nanomedicine.* 2020 May 15;15:3497-509. doi: 10.2147/IJN.S243718, PMID 32547009.

90. Chaubey MK. Study of insecticidal properties of *Trachyspermum Ammi* and *Mentha arvensis* essential oils against *Sitophilus zeamais* L. (Coleoptera: Curculionidae). *Curr Life Sci.* 2018 Jan;4:10-7. doi: 10.5281/zenodo.1116380.

91. Sharifi Mood BS, Shafeqhat M, Metanat M, Saeidi S, Sepehri N. The inhibitory effect of ajowan essential oil on bacterial growth. *Int J Infect.* 2014 Jul 30;1(2). doi: 10.17795/iji-19394.

92. Siddiqui MJ, Aslam A, Khan T. Comparison and evaluation of different seed extracts of *Trachyspermum Ammi* for immunomodulatory effect on cell-mediated immunity through delayed-type hypersensitivity assay skin thickness method. *J Pharm Bioallied Sci.* 2019 Jan;11(1):43-8. doi: 10.4103/jpbs.JPBS\_174\_18, PMID 30906139.

93. Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM et al. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. *Symbiosis.* 2014 Feb;62(2):63-79. doi: 10.1007/s13199-014-0273-3.

94. Andrés MF, Diaz CE, Giménez C, Cabrera R, González-Coloma A. Endophytic fungi as novel sources of biopesticides: the Macaronesian Laurel forest, a case study. *Phytochem Rev.* 2017 Oct;16(5):1009-22. doi: 10.1007/s11101-017-9514-4.

95. Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM et al. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. *Symbiosis.* 2014 Feb;62(2):63-79. doi: 10.1007/s13199-014-0273-3.

96. Maggiore M, Pensel PE, Denegri G, Elisondo MC. Chemoprophylactic and therapeutic efficacy of thymol in murine cystic echinococcosis. *Parasitol Int.* 2015 Oct 1;64(5):435-40. doi: 10.1016/j.parint.2015.06.005, PMID 26096310.

97. Iannarelli R, Marinelli O, Morelli MB, Santoni G, Amantini C, Nabissi M et al. Aniseed (*Pimpinella anisum* L.) essential oil reduces pro-inflammatory cytokines and stimulates mucus secretion in primary airway bronchial and tracheal epithelial cell lines. *Ind Crops Prod.* 2018 Apr 1;114:81-6. doi: 10.1016/j.indcrop.2018.01.076.

98. Boskabady MH, Alitaneh S, Alavinezhad A. *Carum copticum* L.: a herbal medicine with various pharmacological effects. *BioMed Res Int.* 2014 Jun 25;2014:569087. doi: 10.1155/2014/569087, PMID 25089273.

99. Dutta P, Sarma N, Saikia S, Gogoi R, Begum T, Lal M. Pharmacological activity of *Trachyspermum Ammi* L. seeds essential oil grown from Northeast India. *J Essent Oil Bear Plants.* 2021 Nov 2;24(6):1373-88. doi: 10.1080/0972060X.2022.2028681.

100. Sargazi Zadeh G, Panahi N. Endothelium-independent vasorelaxant activity of *Trachyspermum Ammi* essential oil on rat aorta. *Clin Exp Hypertens.* 2017 Feb 17;39(2):133-8. doi: 10.1080/10641963.2016.1235178, PMID 28287882.

101. Vegad UG, Pandya DJ. Tackling COVID-19 through Ayurveda: a review on the herbs of recommended Indian remedies. *Curr Trad Med.* 2021 Oct 1;7(5):15-32. doi: 10.2174/221508380766210210152256.

102. Jyoti D, Dheer D, Singh D, Kumar G, Karnataka M, Chandra S et al. Thymol chemistry: A medicinal toolbox. *Curr Bioact Compd.* 2019 Oct 1;15(5):454-74. doi: 10.2174/157340721466180503120222.

103. Rao FV, Andersen OA, Vora KA, DeMartino JA, Van Aalten DM. Methylxanthine drugs are chitinase

inhibitors: investigation of inhibition and binding modes. *Chem Biol*. 2005 Sep 1;12(9):973-80. doi: 10.1016/j.chembiol.2005.07.009, PMID 16183021.

104. Wadhwa M, Bakshi MPS. Effect of supplementing total mixed ration with ajwain (*Trachyspermum Ammi*) oil on the performance of buffalo calves. *Indian J Ani Sci*. 2019 Apr 1;89(4):424-30. doi: 10.56093/ijans.v89i4.89144.

105. Jimmy A. Characterization of *Physalis lagascae* for its in vitro anticancer activity (Doctoral dissertation, Annai JKK Sampoorani Ammal College of Pharmacy, Komarapalayam). Available from: <http://repository-tnmgrmu.ac.in/id/eprint/10636>.

106. Basu S, Banik BK. Natural spices in medicinal chemistry: properties and benefits. In *Green approaches in medicinal chemistry for sustainable drug design* 2020 Jan 1 (pp. 739-58). Elsevier. doi: 10.1016/B978-0-12-817592-7.00022-8.

107. Khan N, Jamila N, Ejaz R, Nishan U, Kim KS. Volatile oil, phytochemical, and biological activities evaluation of *Trachyspermum Ammi* seeds by chromatographic and spectroscopic methods. *Anal Lett*. 2020 Apr 12;53(6):984-1001. doi: 10.1080/00032719.2019.1688825.

108. Singh PA, Bajwa N, Chinnam S, Chandan A, Baldi A. An overview of some important deliberations to promote medicinal plants cultivation. *J Appl Res Med Aromat Plants*. 2022 May 25;31:100400. doi: 10.1016/j.jarmap.2022.100400.

109. Soni K, Parle M. *Trachyspermum Ammi* seeds supplementation helps reverse scopolamine, alprazolam and electroshock induced amnesia. *Neurochem Res*. 2017 May;42(5):1333-44. doi: 10.1007/s11064-017-2177-0, PMID 28097466.

110. Anilakumar KR, Saritha V, Khanum F, Bawa AS. Ameliorative effect of ajwain extract on hexachlorocyclohexane-induced lipid peroxidation in rat liver. *Food Chem Toxicol*. 2009 Feb 1;47(2):279-82. doi: 10.1016/j.fct.2008.09.061, PMID 18940228.

111. Shahrajabian MH, Sun W, Cheng Q. Pharmaceutical benefits and multidimensional uses of ajwain (*Trachyspermum Ammi* L.). *Pharmacogn Commun*. 2021 Apr 1;11(2):138-41. doi: 10.5530/pc.2021.2.25.

112. Subrata B. Ajwain and its phenolic compound, carvacrol improve cadmium-induced apoptosis in PC12 cells [doctoral dissertation]. doi: 10.14943/doctoral.k13888.

113. Mahmoudpour Z, Shokri J, Kamalinejad M, Meftah N, Khafri S, Mozaffarpur SA et al. The efficacy of a Persian herbal formulation on functional bloating: A double-blind randomized controlled trial. *J Integr Med*. 2019 Sep 1;17(5):344-50. doi: 10.1016/j.joim.2019.05.007, PMID 31201146.

114. Korani M, Jamshidi M. The effect of aqueous extract of *Trachyspermum Ammi* seeds and ibuprofen on inflammatory gene expression in the cartilage tissue of rats with collagen-induced arthritis. *J Inflam Res*. 2020 Feb 28;13:133-9. doi: 10.2147/JIR.S236242, PMID 32184646.

115. Sasikumar JM, Erba O, Egigu MC. In vitro antioxidant activity and polyphenolic content of commonly used spices from Ethiopia. *Heliyon*. 2020 Sep 1;6(9):e05027. doi: 10.1016/j.heliyon.2020.e05027, PMID 32995654.

116. Daga P, Vaishnav SR, Dalmia A, Tumaney AW. Extraction, fatty acid profile, phytochemical composition and antioxidant activities of fixed oils from spices belonging to Apiaceae and Lamiaceae family. *J Food Sci Technol*. 2022;59(2):518-31. doi: 10.1007/s13197-021-05036-1, PMID 35185173.

117. Grădinaru AC, Trifan A, Șpac A, Brebu M, Miron A, Aprotoisoaie AC. Antibacterial activity of traditional spices against lower respiratory tract pathogens: combinatorial effects of *Trachyspermum Ammi* essential oil with conventional antibiotics. *Lett Appl Microbiol*. 2018 Nov 1;67(5):449-57. doi: 10.1111/lam.13069, PMID 30187508.

118. Hassanshahian M, Bayat Z, Saeidi S, Shiri Y. Antimicrobial activity of *Trachyspermum Ammi* essential oil against human bacterial. Available from: [https://www.sid.ir/en/VEWSSID/\\_pdf/57000020140102.pdf](https://www.sid.ir/en/VEWSSID/_pdf/57000020140102.pdf).

119. Naquvi KJ, Ansari SH, Salma A, Ahamad J, Najib S. A review on phytochemical investigations and biological activities of *Trachyspermum Ammi* (L.) Sprague. *Res J Pharm Technol*. 2022 May 1;15(5):2364-70.

120. Ali A. Herbs that heal: the philanthropic behavior of nature. *Ann Phytomed*. 2020;9(1):7-17. doi: 10.21276/ap.2020.9.1.2.

121. Bhadra P. An overview of ajwain (*Trachyspermum Ammi*). *Indian J Nat Sci*. 2020;10(59):18466-2474.

122. Saraswat S, Kharche SD, Jindal SK. Impact of reactive oxygen species on spermatozoa: A balancing act between beneficial and detrimental effects. *Iran J Appl Anim Sci*. 2014 Mar 1;4(2):247-55.

123. Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. *Front Pharmacol*. 2017 Jun 26;8:380. doi: 10.3389/fphar.2017.00380, PMID 28694777.

124. Llana-Ruiz-Cabello M, Gutiérrez-Praena D, Puerto M, Pichardo S, Jos Á, Cameán AM. In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. *Toxicol In Vitro*. 2015 Jun 1;29(4):647-56. doi: 10.1016/j.tiv.2015.02.006, PMID 25708581.

125. Sachan N, Saraswat N, Chandra P, Khalid M, Kabra A. Isolation of thymol from *Trachyspermum Ammi* Fruits for treatment of diabetes and diabetic neuropathy in STZ-induced rats. *BioMed Res Int*. 2022 Apr 28;2022:8263999. doi: 10.1155/2022/8263999, PMID 35528161.

126. Paul S, Kang SC. In vitro determination of the contraceptive spermicidal activity of essential oil of *Trachyspermum Ammi* (L.) Sprague ex Turrill fruits. *New Biotechnol*. 2011 Oct 1;28(6):684-90. doi: 10.1016/j.nbt.2011.02.008, PMID 21396489.

127. Platel K, Srinivasan K. Studies on the influence of dietary spices on food transit time in experimental rats. *Nutr Res*. 2001 Sep 1;21(9):1309-14. doi: 10.1016/S0271-5317(01)00331-1.

128. Solanki ND, Bhavsar SK. An evaluation of the protective role of *Ficus racemosa* Linn. in streptozotocin-induced diabetic neuropathy with neurodegeneration. *Indian J Pharmacol*. 2015 Nov;47(6):610-5. doi: 10.4103/0253-7613.169579, PMID 26729951.

129. Abtahi MS, Maghsoudi H, Hatef B, Marashi P, Vassaf M. Antifungal effect of flavonoid extract of *Trachyspermum Ammi* plant on the gene expression of pro-inflammatory cytokines such as IL-18 and TNF-

α? in articular THP-1 monocyte/Macrophages Cells. *Biosci Biotechnol Res Asia.* 2015;12(2):1339-44. doi: 10.13005/bbra/1789.

130. Modareskia M, Fattahi M, Mirjalili MH. Thymol screening, phenolic contents, antioxidant and antibacterial activities of Iranian populations of *Trachyspermum Ammi* (L.) Sprague (Apiaceae). *Sci Rep.* 2022 Sep 19;12(1):15645. doi: 10.1038/s41598-022-19594-7, PMID 36123425.

131. Aslam A, Nokhala A, Peerzada S, Ahmed S, Khan T, Siddiqui MJ. Evaluation and comparison of *Trachyspermum Ammi* seed extract for its anti-inflammatory effect. *J Pharm Bioallied Sci.* 2020 Nov;12;Suppl 2:S777-80. doi: 10.4103/jpbs.JPBS\_243\_19, PMID 33828377.

132. Arasu A, Pingley V, Prabha N, O R, Annathurai K, Kasirajan S et al. Impact and fungitoxic spectrum of *Trachyspermum Ammi* against *Candida albicans*, an opportunistic pathogenic fungus commonly found in human gut that causes candidiasis infection. *J Infect Public Health.* 2021 Dec 1;14(12):1854-63. doi: 10.1016/j.jiph.2021.09.027, PMID 34656507.

133. Kaur J, Kaur R, Datta R, Kaur S, Kaur A. Exploration of insecticidal potential of an alpha glucosidase enzyme inhibitor from an endophytic *Exophiala spinifera*. *J Appl Microbiol.* 2018 Nov 1;125(5):1455-65. doi: 10.1111/jam.13947, PMID 29877011. Kaur J, Kaur R, Datta R, Kaur S, Kaur A. Exploration of insecticidal potential of an alpha glucosidase enzyme inhibitor from an endophytic *Exophiala spinifera*. *J Appl Microbiol.* 2018 Nov 1;125(5):1455-65. doi: 10.1111/jam.13947, PMID 29877011.

134. Bajpai VK, Agrawal P. Studies on phytochemicals, antioxidant, free radical scavenging and lipid peroxidation inhibitory effects of *Trachyspermum Ammi* seeds. *Indian J Pharm Educ Res.* 2015 Jan 1;49(1):58-65, doi: 10.5530/ijper.49.1.8.

135. Yu YM, Chao TY, Chang WC, Chang MJ, Lee MF. Thymol reduces oxidative stress, aortic intimal thickening, and inflammation-related gene expression in hyperlipidemic rabbits. *J Food Drug Anal.* 2016 Jul 1;24(3):556-63. doi: 10.1016/j.jfda.2016.02.004, PMID 28911561.

136. Lee SC, Seo SM, Huh MJ, Kwon JH, Nam I, Park JH et al. Behavioral and electrophysiological effects of ajowan (*Trachyspermum Ammi* Sprague)(Apiales: Apiaceae) essential oil and its constituents on nymphal and adult bean bugs, *Riptortus clavatus* (Thunberg)(Hemiptera: Alydidae). *Insects.* 2020 Feb 4;11(2):104. doi: 10.3390/insects11020104, PMID 32033226.

137. Chandrasekar R, Chandrasekar S. Natural herbal treatment for rheumatoid arthritis-a review. *Int J Pharm Sci Res.* 2017 Feb 1;8(2):368. doi: 10.13040/IJPSR.0975-8232.8.

138. Perera WPRT, Liyanage JA, Dissanayake KGC, Gunathilaka H, Weerakoon WMTDN, Wanigasekara DN et al. Antiviral potential of selected medicinal herbs and their isolated natural products. *BioMed Res Int.* 2021 Dec 8;2021:7872406. doi: 10.1155/2021/7872406, PMID 34926691.

139. Roy S, Chaurvedi P, Chowdhary A. Evaluation of antiviral activity of essential oil of *Trachyspermum Ammi* against Japanese encephalitis virus. *Pharmacogn Res.* 2015 Jul;7(3):263-7. doi: 10.4103/0974-8490.157977, PMID 26130938.

140. Hosseinkhani F, Jabalameli F, Banar M, Abdellahi N, Taherikalani M, Leeuwen WB et al. Monoterpene isolated from the essential oil of *Trachyspermum Ammi* is cytotoxic to multidrug-resistant *Pseudomonas aeruginosa* and *Staphylococcus aureus* strains. *Rev Soc Bras Med Trop.* 2016 Mar;49(2):172-6. doi: 10.1590/0037-8682-0329-2015, PMID 27192585.