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Abstract: The toxicity of nanoparticles (NPs) is a critical research topic in nanotechnology, as it is essential to understand the
hazards posed by the wide spectrum of NPs that vary in shape, size, and composition. Previous reviews have yet to thoroughly
explore the Biological Effective Doses of NPs, which drive toxicity and are influenced by factors such as solubility, charge, shape,
contaminants, and the ability of NPs to translocate from the deposition site in the lungs. This review aims to fill the gap in the
literature by providing an overview of the possible toxicity of nanoparticles in zebrafish during growth stages, with a focus on
oxidative stress, and exploring the available modes of toxicity that are relevant to conventional pathogenic particles. This review
also discusses the effects of nanomaterials on the reproductive system in animal models, providing insight into the potential toxicity
of nanoparticles in humans. This review aims to provide a comprehensive overview of the toxicity of nanoparticles and to critically
explore the challenges associated with implementing nanotechnology, particularly in the pharmaceutical development of novel
therapeutic products and regulatory issues. The review also considers recent uses and projected nanotechnology advancements,
providing a basis for future research in this field. In conclusion, this review rectifies the lacunae in previously published reviews by
providing a comprehensive overview of the toxicity of nanoparticles and exploring the challenges associated with implementing
nanotechnology. The aim and objective of this review are to provide a comprehensive understanding of the toxicity of nanoparticles
and to guide future research in this field.
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1. INTRODUCTION

Nanotechnology is the future in terms of enabling
technological advances across a wide range of industries by
offering potential'. The acceptance of nanotechnology and
nano-enabled products are very reliable and have effective use
on public cum consumer confidence in both human and
environmental safety of this new technology. At the same time,
we must ensure that it has been done effectively with the
safety and regulation of new technology. The proactiveness of
government regulators and international organizations such as
the OECD, ISO, and BSI helps or tries to understand
nanotechnology and how best to facilitate its safe development
and use’. Abundant examples of other reports and opinions
which have been more specific in their remit, like addressing
nanoparticle terminology and definitions’, inhalation toxicity
testing for nanomaterials®, management of the risk of carbon
nanotubes® and specific regulatory frameworks such as
REACH for nanoparticles with the effectiveness®’, and this all
for improvement of the safe handling of nanotechnology. But
despite the obvious hard work, funding, and good intention
that is being focused on the safe development of
nanotechnology, there still needs to be more certainty and
Besides all the good side effects and therapeutic effects of
nanoparticles, there is concern that nanomaterials may harbor
an unknown mode of toxicity or 'nano-specific effects." Much
effort has been directed toward understanding these 'nano-
specific effects' that lead to the various modes of action in
identifying nanoparticle toxicity. All nano-sized particles have
novel size-dependent properties, and indeed, it has been
argued by Auffan and colleagues (2009) that the evidence for
novel size-dependent properties, besides the particle size,
should be the primary criterion in any definition of
nanoparticles that have relation to health and safety®.
Recently, a review by Fubini et al. and this argument was
considered further. It was acknowledged that material at the
nano-level should be 'new' by stating when and why it can be
considered nano-material’. From the availability of the
definitions of nanoparticles, an important consideration for a
nanoparticle is based on a threshold dimension(s) of 100
nm*'°, That cannot be derived from toxicological evidence of
a step-change in toxicity at 100nm nano-sized substances.
Much of the evidence is far for ‘nano’ effects is acknowledged
by Fubini et al., who noted that where the biological response
is related to the surface area, which forms the interface of the
particle, which is insoluble, or the biological interactions, as we
know nanoparticles will, of course, show effects orders of
magnitude greater than that of bulk particles at the same mass
dose due to vast greater surface area’. By taking this, it
becomes apparent that in the case of toxicity, at least, passing
below this threshold into the nano-realm doesn’t need to infer
any new and specific properties; therefore, the arbitrary
assumption of different and ‘nano-specific’ toxicity appears to
be unfounded. Instead of all this, there is likely to be a more
gradual magnification of the intrinsic hazard. This statement is
echoed by Norppa et al, that it cannot be generally assumed
that nanoscale size would be increased the genotoxicity of
nanomaterials, or we can say that nanoparticles are generically
genotoxic''. Indeed, the view of 'nano-specific’ toxicity could
be intrinsically not helpful because it labels all the
nanomaterials as hazardous or potentially like this, thereby
prejudicing against their use. However, in most cases, as for
conventional particles, in common use, nanoparticles show a
range of inherent toxicities; the majority is low toxicity. In
addition to that, the focus on the search for ‘nano-specific’ may
lead to the effect of ‘re-inventing the wheel’ of what is already
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known for the conventional particles and thereby delay the
important issue of ensuring that the field of nanoparticle
hazard can be adequately tested for, qualified and regulations
put in place that can be facilitated this is an efficient and
proportional manner. The main purpose of this article is to
discuss this general basis of toxicity for nanoparticles because,
as shown in recent research and studies, is to demonstrate
that the mode of action is, in most, if it is not all, cases the
same as that shown for the conventional bulk particles.
Generally, we can say to understand the basis of toxicity is to
understand the driving component, and this can be a variable
entity between the materials of the same as well as differing
the physicochemical characteristic, and this is described below
about the Biologically Effective Dose (BED)'".

2. NANOMATERIALS
2.1. Definition

According to the EC recommendation', nanomaterial refers
to a natural, incidental’, or manufactured material comprising
particles'?, either in an unbound state or as an aggregate
wherein one or more external dimensions are in size range of
I— 100nm for 250% of the particles', according to the number
size distribution. In environmental, health, safety, or
competitiveness concerns, the number size distribution
threshold of 50% may be substituted by a threshold between
I and 50%". Structures with one or more external dimensions
below | nm, such as fullerenes, graphene flakes, and single-wall
carbon nanotubes, should be considered nanomaterials'.
Materials with surface area by volume over 60 m*cm?are also
included'. It defines a nanomaterial in terms of legislation and
policy in the European Union'®. Based on this definition, the
regulatory bodies have released guidance to support drug
product development'®. For example, the EMA working group
introduces nanomedicines as purposely designed systems for
clinical applications'?, with at least one component at the
nanoscale'®, resulting in reproducible properties and
characteristics'® related to the specific nanotechnology
application and characteristics for the intended use (route of
administration, dose)'?, associated with the expected clinical
advantages of nano-engineering (e.g., preferential organ/tissue
distribution'®)'*. The Food and Drug Administration (FDA) has
not established its definiton for "nanotechnology,"
"nanomaterial," "nanoscale," or other related terms, instead of
adopting the meanings commonly employed about the
engineering of materials that have at least one dimension in
size range of approximately | nanometer (nm) to 100nm".
Based on the current scientific and technical understanding of
nanomaterials and their characteristics'’, FDA advises that
evaluations of safety, effectiveness, public health impact, or
regulatory status of nanotechnology products should consider
any unique properties and behaviors that the application of
nanotechnology may impart'?.

2.2. Size

The most important feature to consider is size. The
conventional size ranges from | to 100 nm. However, the
maximum size that a material can have to be considered
nanomaterial is an arbitrary value because the psychochemical
and biological characteristics of the material do not change
abruptly at 100 nm'®.

2.3. Particle Size Distribution
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The PSD is widely used in nanomaterial identification,
reflecting the range of variation in sizes'’. It is important to set
the PSD because a nanomaterial is usually polydisperse, which
means it is commonly composed of particles of different
sizes'’.

2.4. Surface Area

Surface area determination by volume is a relational
parameter. Therefore, the material is under the definition if
the surface area by volume is larger than 60 m*/cm? "°.

2.5. Composition

2.5.1. Metal Based

Metal-based NPs are an important class of NPs synthesized
due to their functions as semiconductors, electroluminescent
and thermoelectric materials'®. Recently, interest and
development in nanotechnology have been increasing, so many
studies have been conducted to evaluate whether the original
features of these NPs, such as the large surface area to volume
ratio, negatively affect the environment'”.

2.5.2. Carbon Based

A typical carbon-based nanomaterial is carbon nanotubes.
Carbon nanotubes were first discovered by lijima and
Ichihashi®® and Bethune et al *'in 1993 %. Carbon nanotubes
can show significant electrical conductivity™. Also, their tensile
strength” and thermal conductivity?* are outstanding due to
their nanostructure and the strength of the bonds between
carbon atoms; because of these properties of CNs can be
utilized in many areas of technology, from biomedicine to
nanoelectronics®.

2.5.3. Metal Oxide

Metal-oxide NPs are used as industrial catalysts. TiO,
nanoparticles may disrupt insulin response in Fao cells and
cause pregnancy complications in some animal model
studies®®?”. Studies have shown that other metal-oxide
nanoparticles adversely affect reproduction and neonatal
development®%,

2.5.4. Quantum dots
Quantum dots are engineered nanoscale crystals that can

transport electrons and convert a spectrum of light into
different colors®. Quantum dots make it possible to study
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cellular processes and may notably improve the diagnosis and
treatment of diseases such as cancers®®®'.

3. BIOLOGICAL EFFECTIVE DOSE

In conventional particle toxicology, the dose is defined by the
mass or concentration of particles per unit tissue, number of
cells, or surface area of cells in cell culture *%. Particles are
measured through Mass for risk management purposes; the
exception is fibers are counted by number. Toxic effects are
complicated and rely on the molecular effects at the cellular
level and depend on various properties of the particle, basically
the physicochemical properties. If the mass increases, it
further increases the dose delivery that drives the toxic effect.
Povey et al. define the BED as 'the active dose of the agent of
interest’ and that 'the nearer the dose specified can be to the
active dose of the real agent of interest, the more likely it is
that an association may exist between an agent and a disease'*’.
It has now defined the BED in particle toxicology as 'the entity
within any mass dose of particles that drives a critical
pathophysiologically relevant form of toxicity in tissue, such as
inflammation, genotoxicity or cellular proliferation’®. The
Biological Effective Dose of some pathogenic particles has
been recognized; in the case of quartz, it is the unpassivated
(active) surface area, and in the case of asbestos, it is the long,
bio-persistent fibres*’. BEDS are still measured by mass.
However, no doubt in the future, the development of
measuring instrumentation that directly measures the BED will
allow the BED to be metric, improving epidemiological dose:
responses and thereby improving risk management™.

4. POTENTIAL HUMAN HEALTH EFFECTS OF
NANOMATERIALS

4.1. Major Modes of Exposure

The population exposed, the amount of exposure, and the
length of exposure, and these situations have very different
types of material that people are exposed to *. During a new
material's development, it is feasible to be produced under
extremely controlled circumstances, usually in very small
quantities. Exposures may happen during synthesis or
downstream processes such as packaging, shipping, recovery,
and storage once the substance enters commercial
production®. Nanomaterials can be released intentionally in
processes like contaminated land remediation or as waste or
industrial pollutants into the air, soil, or water systems. As a
result, nanomaterial contamination of the air, water, food
supply, or commercial products containing nanomaterials
could expose people to them?’.
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Fig |: Systematic health effects of nanoparticles on the human body

Image adapted from Viswanath, B. & Kim, S. (2016). Influence of Nano toxicity on Human Health and Environment: The Alternative

Strategies [Image]. doi: 10.1007/398_2016_12

4.2. Common Exposure Routes of Humans to Engineered Nanoparticles Present in Consumer Products

Table I: Common Exposure Routes of Humans to Engineered Nanoparticles Present in Consumer Products

Route

Types of consumer products

Sunscreen (lotion)

Skin®*” (Dermal)

Skincare (lotion)

Paints and coatings

Sealants

Air fresheners (spray)

Paints and coatings

Lungs* (inhalation)

Skincare (spray)

Sunscreen (spray)

Food additives and colorings

Food supplement

Gastrointestinal tract®’

Health supplements

Food packaging

4.3. Effects of Inorganic Nanoparticles on Human
Health

Among the most crucial nanomaterials employed in modern
technologies are inorganic nanoparticles. Additionally, they are
simpler to incorporate into applications *. Insoluble inorganic
nanoparticles can be produced using pure metals or various
inorganic materials or alloys. They can be distinguished from
comparable products found on a wider scale by their
nanometric size”. These inorganic nanoparticles lose their
electrical, mechanical, and other properties as they become
larger®. The study of nanomedicine has shown that drug
sensitization employing various inorganic nanoparticles (NPs)
is a workable and developing method®. For instance, when
exposed to green light, the well-known photosensitizer Rose
Bengal (RB) triggers the production of ROS, which results in
cytotoxicity and cell death*. In addition, the substance
releases ions and silver radicals that have an antibacterial effect
when it comes into contact with moisture. Lam et al. (2004)
identified the cytotoxicity of silver nanoparticles generated by
ActicoatTM after finding a significant decline in cell viability in
an in vitro investigation of cultured human keratinocytes*.
Additionally, they showed that 100% anatase nanoparticles,

regardless of size, cause membrane leakage and cell necrosis
but do not produce ROS. On the other hand, rutile
nanoparticles induce apoptosis by producing ROS. Therefore,
the crystal structure and size interaction may be important in
mediating nanoparticle toxicity. According to in vitro research
by Lucarelli et al. (2004), cobalt (Co) and silica (SiO2)
nanoparticles significantly increased the pro-inflammatory
activity of human bone marrow monocytes. Gold nanoparticle
(AuNP) particle size and concentration were examined by Yao
et al. (2015) for their effects on uptake, accumulation, and
cytotoxicity in model intestinal epithelial cells®. As the mean
particle size of the AuNPs fell (from 100 to 50 to 15 nm), the
rate of absorption by intestinal epithelial cells rose. Still, their
cellular accumulation in the epithelial cells shrank. Additionally,
mitochondrial membrane depolarization demonstrated that
AuNP accumulation resulted in cytotoxicity in intestinal
epithelial cells. The results offer crucial insight into the
relationship between the dimensions of AuNPs and their
absorption through the digestive tract and potential
cytotoxicity®.  Platihum  medicines are given special
consideration as anti-cancer treatments. However, no matter
how effective they are, platinum medications have downsides.
Examples include their dose-limited toxicities, ineffectiveness
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against several common malignancies, and the patients'
resistance to Pt-based therapy regimens*. The cell vacuoles
contained PVC, TiO2, SiO2, and Co nanoparticles, according
to Peters et al. (2004), who investigated the survival and
behavior of human endothelial cells in vivo®. The synthesis,
stability, and toxicity of engineered metal nanoparticles (ENPs)
have been thoroughly studied over the past two decades
because inorganic elements are an inescapable component of
living beings. However, the study of naturally occurring

4.1.
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nanoparticles (NNPs) and their creation, destiny, and
ecological implications have recently attracted interest®. Solid
organic nanoparticles, typically lipids or polymeric substances,
make up organic nanoparticles (Lambert et al. 2014). This
nanoparticle form has undergone extensive development and
research over the past few decades due to its high potential in
various industrial fields, including electronic and photonic,
conducting  materials and  sensors, medicine and
biotechnology, and others*™.

In vivo observed effects supported by in vitro evidence.

Table 2: In vivo observed effects induced by engineered nanoparticles supported by in vitro evidence.

In vitro evidence

In vivo observed evidence

Enhanced cytotoxicity in exposed cell culture samples

Chronic obstructive
pulmonary disease (COPD)

Proliferative responses brought on by DEP component extracts

Hyperplasia

Gap Junction Intercellular Communication (GJIC) changes caused by macrophage-dendritic

transepithelial cells

Particle translocation

Pneumocytes, macrophages, and other exposed cells in co-cultures that directly activate
endothelial cells or indirectly trigger them. Tight junction-related changes to the TEER values

Systemic and endothelial
dysfunction

When exposed to PM, lung epithelial cells' NADPH-oxidase produces more ROS.

Oxidative stress

IL-1b, IL-6, IL-8, TNFa, MCP-1, and other molecules are secreted by lung cells, macrophages,

and cocultures.

Local and systemic
inflammation
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Fig 2: Multiple scenarios through which nanoparticles enter into the environment and humans

Image adapted from Viswanath, B. & Kim, S. (2016). Influence of Nanotoxicity on Human Health and Environment: The Alternative

Strategies [Image]. doi: 10.1007/398_2016_12.

4.2. Environmental Issues

Energy, security, information technology, agriculture,
environmental protection, and healthcare are just a few
industries where nanotechnology is revolutionizing the
landscape®. The development of nanomaterials has generated
impressive scientific activity, with an exponential rise in the
number of peer-reviewed papers on the subject during the
past ten years. Currently, national nanotechnology projects
exist in more than 60 nations. However, the success or failure
of nanotechnology may depend on its capacity to address

environmental challenges. Although there is limited advice
for researchers on how to put such practices into practice,
Responsible Research and Innovation provide a framework for
assessing the ethical dimensions of innovation processes. Any
research proposal should be anticipatory, looking ahead to
potential technological effects; reflective, looking at the goals
and purposes of technologies as well as the uncertainties in
risk assessment; deliberative, looking at the idea that public
and diverse stakeholders' perspectives are actively taken into
account during design processes, and responsive, looking at

P166



ijlpr 2023; doi 10.22376/ijlpr.2023.13.5.P162-P191

the actual alteration and shaping of technological trajectories
in response to deliberation®. Many scientists are putting in a
lot of effort to address several important environmental
problems, such as the following: * To what extent might the
manufacturing and usage of nanoproducts be expected to
result in the release of hazardous elements into the
environment? ¢ What possible environmental problems can
this nanotechnology cause! + Because nanoproducts
bioaccumulate in living tissue, may nanotechnology contribute
to environmental degradation? ¢ What impact will laws have
on this nanotechnology!? Researchers looking at how
nanoparticles affect ecology have found that some
nanomaterials are hazardous to the environment. The
precautionary principle should be used to reduce preventive
risk, notwithstanding ongoing scientific uncertainties.
Environmental inputs should be avoided as much as possible.
The environmental relevance of materials and the complexity
of natural systems should be increasingly the focus of
ecotoxicological study. Due to their tiny size and increased
specific surface areas, these products are expected to intensify
chemical reactivities sensitive to exposed surface sites ®.

4.3. Environmental Fate of Nanomaterials in Air

The processes through which ultrafine particles in the air are
lost have been clearly defined by numerous studies’™®.
However, several pressing difficulties must be resolved to
reveal the mechanisms that control their behavior, movement,
and destiny®. In aerosol systems, nanoparticles will be very
mobile and mix quickly. Unlike the other environmental
compartments, engineered nanoparticles suspended in air will
probably be exposed to sunlight, especially UV wavelengths, to
a considerably larger amount®. It widens the range of
photochemical changes. Additionally, the gravitational settling
velocity, which is inversely proportional to particle diameter,
influences the deposition of nanoparticles in the air. Smaller
nanoparticles in the air deposit much more gradually than
larger ones. Agglomeration, as a result, will greatly enhance
the deposition of engineered nanomaterials. Other processes
are considered significantly less significant or even
inappropriate for nanomaterials in the air compared to
photochemical reactions, aggregation, and deposition %,
Understanding possible nanomaterial sources and their
degradation, transformation, and existence is necessary to
comprehend the fate and behavior of nanomaterials in the
environment. Different outcomes for nanomaterials in the
environment are anticipated depending on their physical and
chemical characteristics, the medium in which they are
contained, and interactions with other environmental
pollutants. The three main sources of atmospheric
nanomaterials are as follows: Specifically, there are three types
of emissions: (1) primary emissions, which are defined as those
that are outwardly released from industrial combustion and
road traffic exhaust; (2) secondary emissions, which are
defined as those that are produced in the atmosphere by the
compression of low-volatility vapors from atmospheric gas
oxidation; and (3) formation during diesel exhaust dilution®.
Due to a lack of techniques that can separate manufactured
nanomaterials from background concentrations from other
sources, comparable to the situation in aquatic and terrestrial
settings, there needs to be data on engineered nanomaterials
in the atmosphere®. According to the literature, there are
many processes that fine, ultrafine, and nanomaterials can go
through in the atmosphere®®'. Some nanomaterials can be
created by condensing low-volatility chemicals. They can be
shrunk by evaporating adsorbed water or other volatiles,
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causing a departure in the particle size distribution but not the
overall numerical concentration. Nanomaterials in the
atmosphere can mix to produce larger particles while having a
lower numerical concentration’. Dry and wet deposition,
which may remove incredibly small particles of natural origin
and presumably create nanomaterials, are other methods for
removing nanoparticles from the atmosphere. As a result,
particle number concentration falls, and the particle size
distribution changes to bigger sizes™.

4.4. Environmental Fate of Nanomaterials in Water

Aggregation and disaggregation, diffusion, the interaction of
nanoparticles with natural water components, transformation,
biotic and abiotic degradation, and photoreaction can all
impact how nanomaterials behave in aquatic environments .
The destiny and behavior of manufactured nanomaterials
released into the aquatic environment can be understood by
referring to the existing literature on the fate and behavior of
naturally occurring colloidal particles. Nanomaterials are
currently highly suggested for wastewater treatment due to
their outstanding features. Although certain studies have
documented the numerous advantages of nanotechnology in
wastewater cleanup, more research needs to be done on the
fate and potential effects of the solid residues that these
technologies produce’. The impact of particle size and coating
material on these behaviors were examined in studies on the
aggregation and sedimentation kinetics of citrate- and
polyvinylpyrrolidone-coated silver nanoparticles (Cit-AgNPs)
in calcium chloride (CaCly) solutions. Cit-AgNPs aggregated
quickly and settled as the ionic strength increased”, whereas
PVP-AgNPs did not™, due to the PVP coating's steric
hindrance effects”, even at an ionic strength of 10 mM CaCl,”.
It is interesting to note that PVP-AgNPs did not aggregate
during the first week of sedimentation, and this propensity is
influenced by particle size. These results suggest that the
coating material type and particle size significantly impact how
nanoparticles behave in water®. In addition, nanoparticles may
interact with aquatic life and have detrimental consequences
at different levels of biological organization. Despite a recent
study of the ecotoxicological concerns that ENMs may pose
to aquatic creatures’°, Their biological danger and mode of
action are still unknown. Due to interactions with natural
organic matter, natural colloids, and suspended particulate
matter, nanoparticles in aquatic settings may aggregate and
perhaps silt from the solution. Sedimentation and aggregation
may aid in the movement of nanoparticles from the water
column to benthic sediments. In addition, depositing and filter-
feeding species in aquatic habitats bioaccumulate
nanoparticles. Since there are no reliable and sensitive
analytical techniques for identifying and characterizing
nanoparticles in complex environmental matrices such as
natural fluids and soils'®, although such interactions have not
yet been well researched, they may have a considerable impact
on the destiny and toxicity of nanoparticles.

4.5. Environmental Fate of Nanomaterials in Soil

A layered food web structure and a complex interface
between gases, solids, water, organic and inorganic substances,
and living things are matriculated by soil. Because they are so
small, nanomaterials can pierce soil pores'®'. They can become
immobilized because dirt particles adhere to their enormous
surface area'®. Sedimentation, filtration, or straining can be
used to immobilize large aggregates of nanomaterials in smaller
pores'®'. In the natural porous environment, there are
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currently limited reports on the movement and destiny of
nanomaterials. Reports state that the transfer speed depends
on the kind of nanomaterials employed'®'®*. While most
nanoparticle toxicity mechanisms are unknown, some
probable causes include membrane rupture or membrane
potential, protein oxidation, genotoxicity, interruption of
energy transmission, creation of reactive oxygen species, and
release of hazardous components'®. High surface area to
volume ratios, surface charges, hydrophobic and lipophilic
groups enabling them to interact with proteins and
membranes, complementary effects of nanostructures that
inhibit enzyme activity, bioaccumulation, and increasing
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chemical composition their reactivity could all contribute to
these toxicity mechanisms'®. Polymers and surfactants
improve the transport of nanoparticles. Numerous
researchers are examining the part that natural organic matter
plays in transport assisted by nanoparticles. The soil matrix's
characteristics may influence the diffusion and mobility of
nanoparticles. The physical-chemical features of the
nanoparticles, the characteristics of the soil and environment,
and the interaction of the nanoparticles with naturally
occurring colloidal material all affect how mobile they are in
soils. Table 3 lists some of the current ENPs along with their
impacts on human health and the environment.

Table 3: List of some existing ENPs and their health and environmental effects

Nanoparticle

Environmental effects

Health effects

Carbon nanotubes

environment

cause indirect impacts when in contact with
environmental organisms' surfaces; harm the

Apoptosis, lowered cell viability, lung
toxicity, oxidative stress, slowed cell growth,
skin irritation, etc.

Fullerenes Effects on aquatic ecosystems, soil organisms, Some examples are reduced cell viability,
enzymes, and chemical binding to fullerenes may oxidative stress, apoptosis, and delayed cell
impact the toxicity of other environmental pollutants. growth.
Heterogeneous Numerous physical, chemical, and environmental Cellular growth arrest, and occasionally even
nanostructures factors, including ecosystem harm, affect toxicity. cell death, chromatin condensation, and free
radical production
Nanosilver being released into the environment, it passes through Non-specific immune system changes,
various changes and manifests negative effects. altered cell signaling, apoptosis, cell necrosis,
oxidative stress, etc.
Nanostructured persistent and have a propensity to build up in the Cardiovascular effects, fibrosis, oxidative
flame retardants environment, harmful to wildlife, flora, etc. stress, cytotoxicity, carcinogenic, etc.
Polymeric Environmental exposure risk factor potential Oxidative stress, inflammation, changes in

nanoparticles

the shape and operation of cells, etc.

Silicon-based
nanoparticles

Potentially dangerous environmental exposure factors,
detrimental ecosystem impact, etc.

Heart problems, cytotoxicity, a rise in
oxidative stress, etc.

TiO2 nanoparticles

Stress photosynthetic organisms and the carbon and
nitrogen cycles in an aquatic habitat.

In humans, excessive exposure may lead to
increased oxidative stress, slowed cell
growth, minor lung abnormalities, etc.

5. NANO-BIO INTERFACE
NANOTOXICOLOGY

AND

5.1. Nano—bio interface

Research in numerous fields of nanotechnology has mostly
centered on proteins and nucleic acids'”""". Compared to a
10 nm nanoparticle, a single cell, which is generally tens of
microns, is immense (Fig 3). To research biological processes,
including medication transport and cellular-level bioimaging,
scientists worldwide have been using a variety of inorganic,
organic, and composite nanoparticles''>''¢, Many publications

have recently examined the relationship between a protein
and a nanoparticle''”™""?. Compared to a 10 nm nanoparticle,
the APP and a tiny therapeutic molecule (such as DHED) are
incredibly small, making it challenging to probe biologically
significant nanoparticle molecules. In truth, a nanoparticle put
into a live system will interact with the environment endless
times, regardless of size. Studies on the interface between
biological systems and nanostructured materials, starting with
proteins and moving up to the cell, will be a significant step
forward in understanding bio-systems important to
pharmacology, pharmacology, and medicine.
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Fig 3: Compared to a 10 nm nanoparticle, proteins (e.g., APP; X-ray crystal structure obtained from
www.pdb.org (Berman et al., 2000), protein ID 2FKL; visualization done by Accelrys Discovery Studio
Visualization 1.7 software) and small molecules (e.g., DHED) are small in size and volume. A mammalian
cell of proteins, nucleic acids, and other small to large molecules is a thousand times larger in volume
and size compared to a 10 nm nanoparticle. (b) Cell membrane incorporating
various proteins and a single 10 nm nanoparticle.

Image adapted from Viswanath, B. & Kim, S. (2016). Influence of Nanotoxicity on Human Health and Environment: The Alternative

Strategies [Image]. doi: 10.1007/398_2016_12

Studying the bio-nano interface is a completely different
undertaking because there are no straightforward tools for
probing the interaction in real-time or in situ. On the other
hand, nanotoxicology, which is the study of the bioeffects of
nanomaterials, is a rapidly expanding discipline with some
immediate use. Recent years have seen a significant increase in
studies into the toxicity of nanomaterials on the environment
and living systems. For instance, the University of California
has a robust nanotoxicology program led by UCLA and UCSB
as part of its UC Toxic Substances Research and Teaching
Program
(http://www.cnsi.ucla.edu/staticpages/education/nanotox-
program;
http://www.bren.ucsb.edu/news/press/nanotoxicology.htm).
For the first time in US history, Berkeley (CA) has chosen to
control nanotechnology through the law, with UC Berkeley
and LBNL (Lawrence Berkeley National Laboratory) involved
in various nanotech'”. The International Council on
Nanotechnology (ICON) and the Center for Biological and
Environmental Nanotechnology (CBEN) at Rice University are
both aiming to compile a database of materials based on
nanotechnology (http://cben.rice.edu/; http://icon.rice.edu/).
NCL (Nanotechnology Characterization Laboratory), run by a
chemist specializing in nanomaterials with dimensions less than
100 nm, was recently established as a separate organization by
the National Cancer Institute (NCI). Internationally,
Singapore's IBN  (Institute of Bioengineering and
Nanotechnology), run by A*STAR, is a multidisciplinary
research park that merges the study of biological systems at
the nanoscale scale. The fact that a materials scientist serves
as the organization's head suggests that IBN focuses more on
the materials it creates, which will help the transition from
nanotechnology to biotechnology. From the perspective of
both the material and the biological system, a basic
understanding of nanomaterial toxicity (nanotoxicology) is
highly desired. Toxicology assessments of nanoscale materials
should attract greater attention than ever from the general
public, the government, or those involved in nanomaterial
development, with the rising commercialization of goods

ranging from tennis balls to cosmetics'?'~'*. The knowledge
gained from these studies on nanotoxicology should assist
scientists in making better decisions on the kind of
nanomaterial that can be utilized to investigate, for instance,
the synaptic plasticity of a neuron. To do this, we will examine
the literature on the development of nanotoxicology and offer
a few tables to help with material selection. With the available
data, however, it is usually challenging to determine the
toxicity of particular nanomaterials since, like any tiny
molecule (such as a medicine), toxicity is dose, exposure, and
route dependent. Furthermore, it is impossible to predict the
effects of nanotoxicology on humans just from investigations
on cultured cells or animals.

5.2.  Nanotoxicology

Different forms of artificial nanomaterials currently exist due
to businesses' and academics' unprecedented and intensely
focused efforts in recent years. Over 3200 papers were
published exclusively on producing nanostructured materials
between 2006 and 2007, an exponential rise (Figure 4). This
enormous rise in publications has led to the release of
hundreds of in vitro toxicology research'*'° as well as
countless evaluations and viewpoints'?'~'2'3!=1%8 Contrarily, in
vivo, toxicology needs the test subject to internalize the test
sample, whether a little mouse or a large creature like a dog
or a monkey. This method examines toxicity (i.e., LD50,
pathophysiology) through inhalation, injection, and oral
digesting. However, given the extensive use of synthetic
engineering, testing the toxicity of nanomaterials on whole
animals is challenging'**"'*is carried out extremely specifically
by various research groups, and access to proprietary
information on synthesis—especially from the industry—can
be challenging. Additionally, setting up, carrying out, and
controlling an in vivo test is a difficult ethical and administrative
task. Individual research initiatives must work with institutional
approval organization(s) like IACUC (Institutional Animal
Care and Use Committees).
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Fig 4: The number of papers published solely on the synthesis of nanostructured materials (According to Web

of Science

6. DYNAMIC BEHAVIOR OF NANOMATERIAL
AND APPLICATION IN NANOMEDICINE

The application of nanomaterials in medical field purposes in
the form of nanomedicine: which has three different areas in
it is a diagnosis that is mainly known as nano-diagnosis, the
second one is controlled drug delivery, also known as
monotherapy, and the last one is regenerative medicine. A
new area of the medical world that mainly combines
diagnostics and therapy, termed theragnostic, is emerging and
is a promising approach that holds in both systems, which are
the same that are diagnosis/imaging agents and the other is
medicine. The promise held by nanomedicine is the changes in
clinical practice through the introduction of novel medicines
for both diagnosis and treatment, which has enabled to
address the of unmet medical needs (a)by integrating effective
molecules that otherwise could not be used due to having the
high toxicity (e.g, Mepact), (b) by exploiting multiple
mechanisms of actions (e.g., Nanomag, multifunctional gels) (c)
by maximizing efficacy (e.g., by increasing bioavailability) and
also by reducing the dose and the toxicity, (d) by providing
drug targeting, controlled and site-specific release, and by
favoring a preferential distribution within the body (e.g., in
areas with cancer lesions) and that is improved the
transportation across biological barriers'*. The result of the
intrinsic properties of nanomaterials has brought so many
advantages to the development of the pharmaceutical world.
Because of the small size of the nanomaterials or
nanoparticles, it has a high specific surface area about the
volume. Therefore, the surface energy of the particle is
increased by making the nanomaterials much more reactive.
The absorbance characteristics of the nanomaterials towards
the biomolecules, e.g., protein and lipids, have a large tendency
when it is in contact with the biological fluid. Important
interactions with living matter mainly rely on the plasma/serum
biomolecule adsorption layer, known as "corona," which
mainly forms on the surface of the colloidal nanoparticles'*.
Its composition mainly depends on the portal of entry into the
body and on the particular fluid from which the nanoparticle
comes, which may be blood, lung fluid, gastrointestinal fluid,

Search Results)

etc. Changes in "corona" can be influenced by additional
dynamic changes that constitute the nanoparticle crosses from
one biological compartment to another one'®. Besides that,
the optical, electrical, and magnetic properties also can be
changed and harmonic by the electron confinement in the
nanomaterials. In addition, nanomaterials can also be
engineered to have different sizes, shapes, chemical
compositions, and surfaces, and they can interact with specific
biological targets'®. By restoring careful particle design, we
will get a successful biological outcome. For these reasons,
comprehensive knowledge of the interactions between
nanomaterials and biological systems is required. Among of
two, the first one is related to the physiopathological nature
of the diseases. The main biological processes behind the
diseases occur at the nanoscale and can rely on, e.g., mutated
genes, misfolded proteins, viral infection, or bacterial infection.
Understanding of the molecular processes will be provided
with the rational design of engineered nanomaterials to target
the specific action site that is mainly desired site of action in
the body'*®. Another concern is the interaction between the
environment of the biological fluids and the nanomaterial or
nanoparticle surface. In the context of characterization of the
biomolecules, the corona is of the uttermost importance for
understanding the mutual interaction between nanoparticle
and cell called nanoparticle-cell affects the biological
responses. This intersection mainly comprises dynamic
mechanisms involving the exchange between biological
components'  surfaces, e.g, proteins, membranes,
phospholipids, vesicles, organelles, and the nanomaterial or
nanoparticle surfaces. The interaction stems from the
composition of the suspending media and the nanomaterial.
The size, shape, surface area, surface charge, chemistry,
energy, roughness, porosity, valence, conductance states, the
presence of ligands, or the hydrophobic/hydrophilic character
are some characteristics of the nanomaterials that influence
the respective surface properties. In addition, the presence of
water molecules, acids and bases, salts, and multivalent ions
will influence the interaction. All these aspects will govern the
characteristics of the interface between the biological
components and nanomaterial and promote different cellular

P170



ijlpr 2023; doi 10.22376/ijlpr.2023.13.5.P162-P191

fates'®. A piece of deeper knowledge of how the
physicochemical properties of the bio interface influence the
cellular signaling pathway and kinetics and transport will thus

provide critical rules that design the nanomaterials'®'.

7. CONSIDERATION OF DOSE IN
PERSPECTIVE OF NANOMEDICINE

The COVID-19 pandemic reminds us that we need high-value
flexible solutions to urgent clinical needs, including simplified
diagnostic technologies suitable for use in the field and for
delivering targeted therapeutics'®’. Nanotechnology is an
important resource for this, as a generic platform of technical
solutions to tackle complex medical challenges'*. Even though
there are more than 50 formulations currently on the market,
and the recent approval of 3 key nanomedicine products (e.g.,
Onpattro, Hensify, and Vyxeos), has revealed that the
nanomedicine field is concretely able to model products that
overcome critical barriers in conventional medicine in a special
unique manner'**, and also to deliver within the cells new drug-
free therapeutic effects by using pure physical modes of action
and therefore make a difference in patients’ lives'**. One major
advantage of nanomedicines as designed objects over other
medicinal products is their high level of uncoupling between
their functional requirements and their design parameters
(nanoparticle & drug, for instance), described by the general
theory of axiomatic design by P Suh in the 1990s'>*. However,
it is often claimed that nanomedicine failed to meet the initial
expectations in drug delivery since less than 2% of the active
pharmacological ingredient (API) is locally released, e.g., in
cancer treatment in the tumoral tissues'*2. On the other hand,
Abraxane demonstrates a significantly higher response rate,
longer time to tumor progression, and absence of
hypersensitivity reactions'>. Nanotechnology also expurgates
transdermal delivery, a safe, noninvasive method of
administering drugs'*®. Applied directly onto the skin,
transporting large-molecular weight proteins like vaccines
across the skin is relatively inefficient. Recent evidence has
shown that this barrier can be covered by properly structured
nanosized particles'**. Nanoparticles can also provide an
efficient delivery tool for drugs bypassing the blood-brain
barrier, such as chemotherapeutic agents for brain
malignancies, antiepileptics, and anesthetics (e.g., Dalargin)'*’.
For example, Polysorbate 80-coated nanoparticles loaded with
doxorubicin (5 mg/kg) achieved high brain levels of 6 pg/g brain
tissue. In contrast, all the controls'”’, including uncoated
nanoparticles and doxorubicin solutions mixed with
polysorbate, did not reach the analytical detection'®’.

8. NANOTOXICOLOGICAL CLASSIFICATION
SYSTEM

Hitherto, different risk assessment approaches have been
reported. The DF4nanoGrouping framework concerns a
functionality-driven scheme for grouping nanomaterials based
on their intrinsic properties, system-dependent properties,
and toxicological effects'*®. Accordingly, nanomaterials are
categorized into four groups, including possible subgroups'>.
The four main groups encompass (1) soluble, (2) persistent
high aspect ratio, (3) passive, that is, nanomaterials without
obvious biological effects, and (4) active nanomaterials'?, that
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is, those demonstrating surface-related specific toxic
properties. The DF4nanoGrouping foresees a stepwise
evaluation of nanomaterial properties and effects with
increasing biological complexity". In case studies that include
carbonaceous nanomaterials, metal oxide, metal sulfate
nanomaterials, amorphous silica, and organic pigments (all
nanomaterials with primary particle sizes smaller than 100nm),
the usefulness of the DF4nanoGrouping for nanomaterial
hazard assessment has already been established'’. It facilitates
the grouping and targeted testing of nanomaterials. It also
ensures that enough data for the risk assessment of a
nanomaterial are available and fosters the use of non-animal
methods'®. More recently, DF4nanoGrouping developed
three structure-activity relationship classification decision tree
models by identifying structural features of nanomaterials
mainly responsible for the surface activity based on a reduced
number of descriptors: one for intrinsic oxidative potential,
two for protein carbonylation, and three for no observed
adverse effect concentration'®®. Keck and Miiller also
proposed a nanotoxicological classification system (NCS)
(Figure 5) that ranks the nanomaterials into four classes
according to the respective size and biodegradability'®'. Due
to the size effects, this parameter is assumed as truly necessary
because when nanomaterials are getting smaller and smaller,
there is an increase in solubility'?, which is more evident in
poorly soluble nanomaterials than in soluble ones". The
adherence to the surface of membranes increases with the
decrease in size, and another important aspect related to the
size that must be considered is the phagocytosis by
macrophages'>. Above 100 nm, nanomaterials can only be
internalized by macrophages, a specific cell population, while
nanomaterials below 100nm can be internalized by any cell due
to endocytosis'®. Thus, nanomaterials below 100nm are
associated with higher toxicity risks than nanomaterials above
100 nm'®". Biodegradability was considered a required
parameter in almost all pharmaceutical formulations". The
term biodegradability applies to the biodegradable nature of
the nanomaterial in the human body'. Biodegradable
nanomaterials will be eliminated from the human body'3. Even
if they cause inflammation or irritation, the immune system will
return to its regular function after elimination'®. Conversely,
non-biodegradable nanomaterials will stay forever in the body
and change the normal function of the immune system'®'. Two
more factors must be considered besides the NCS: the route
of administration and the biocompatibility surface'’. When the
NCSI3 classifies a particle, toxicity depends on the route of
administration. For example, the same nanomaterials applied
dermally or intravenously can pose different risks to the
immune system'?. In turn, a non-biocompatibility surface (NB)
can activate the immune system by adsorption to proteins like
opsonins'®, even if the particle belongs to class | of the NCS
(Figure 5)". The biocompatibility (B) is dictated by the
physicochemical surface properties, irrespective of the size
and biodegradability'®. It can lead to a further subdivision into
eight classes I-B, I-NB, IV-B, and IV-NB'¢'. NCS is a simple
guide to evaluating the risk of nanoparticles, but many other

parameters play a relevant role in nanotoxicity
determination'®'. Other suggestions encompass more general
approaches, combining elements of toxicology, risk

assessment modeling, and tools developed in multicriteria

decision analysis'®%.
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Fig 5. Nanotoxicological Classification

9. TOXIC EFFECTS OF NANOPARTICLES ON
SYSTEMS

Experimental studies have demonstrated that nanoparticles
harm numerous systems by entering the body in three ways.
This section largely uses animal experiments to describe the
harmful effects of nanomaterials on systems.

9.1. Circulatory system:

Nemmar et al. found that intravenous administering iron oxide
nanoparticles to mice caused DNA damage and myocardial
oxidative stress'®’. Magaye et al. discovered cardiac toxicity-
arrhythmia and toxic effects in organs such as the liver, spleen,
and lung in a study of rats receiving intravenous Ni

nanoparticles'®*.

9.2. Digestive system

Zirconia oxide nanoparticles at 100 ppm induce liver injury in
rats, claim Arefian et al '®. Mice's liver is likewise harmful to
iron oxide nanoparticles.'®*.

9.3. Endocrine system

Oral iron oxide nanoparticles have been linked to abnormal
thyroid hormone levels in rats, according to Yousefi et al '**.

9.4. Immune system

According to Xu et al, Ti02 nanoparticles significantly
increased the number of white blood cells in mice'®.
Additionally, white blood cell production is increased by iron
oxide nanoparticles, with the liver and spleen being the most

immunologically impacted organs'®’.

9.5. Respiratory system

According to Cai et al, the lungs become hazardous when
metal nanoparticles (cobalt oxide, nickel oxide, and titanium
oxide) are delivered via oropharyngeal aspiration.'¢®Iron oxide
nanoparticles have also been linked to pulmonary damage in
rats, according to Sadeghi et al ',

9.6.  Urinary system

According to Saranya et al., kidney cells in monkeys, pigs, and
cattle are toxic to zinc oxide, iron oxide, and copper
nanoparticles'’®.  Furthermore, ~ TiO2  nanoparticles
administered intraperitoneally to rats result in kidney
deterioration, according to Fartkhooni et al 7',

9.7. Nervous system

When vision and hearing toxicity in animal ears and eyes were
investigated, very little or no harm was discovered
overall'7>'73,

9.8. Reproductive system

Zinc oxide nanoparticles were administered intraperitoneally
to mice, and Mozaffari et al. found that this resulted in a loss
and reduction of seminiferous tubule cells'’*. According to
Kong et al., nickel nanoparticles affect rat sperm motility and
FSH and LH hormone levels'”.

10. TOXICITY
NANOPARTICLES

MECHANISMS OF

The mechanical impacts brought on by the physicochemical
characteristics of nanoparticles are what induce toxicity.
Reactive oxygen species (ROS) are produced directly or
indirectly, which is the fundamental process of creating
hazardous effects. In vitro, ROS production is harmful via a
variety of cell pathways'’®'’. In mitochondria, ATP is
produced due to the conversion of molecular oxygen to
water. During this process, superoxide anions and radicals
with various oxygens are generated. Hydroxyl radicals, single
oxygen radicals, hydrogen peroxide radicals, and superoxide
anion radicals are some ROS generated'”’. Overproduction of
free radicals, which interfere with cellular signaling and the
mitogenic response in cells, causes damage to their
physiological activities'’®'”®, resulting in cell disruption.
Nanomaterials affect cells in cytotoxic and genotoxic ways
(Figure 6). Nanomaterials have modest dimensions, but
because of their high surface reactivity and specific surface
area, they emit more ROS'®,
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Fig 6: ROS and nanomaterial toxicity

Image adapted from Viswanath, B. & Kim, S. (2016). Influence of Nanotoxicity on Human Health and Environment: The Alternative

Strategies [Image]. doi: 10.1007/398_2016_12

Studies in living tissues, including human erythrocytes and skin
fibroblasts, have shown that different nanomaterials can be
hazardous by activating ROS'*. Kim et al. claim that nano-Ag
produces genotoxicity and oxidative stress in cultured live
tissue. Nano-Ag causes mutations in mice by boosting the
generation of ROS, according to Mei et al '®"'®2 Hsin et al.
claim that nano-Ag activates ROS in the mitochondrial
pathway to induce cytotoxicity'®’. According to Akhtar et al.,
nano-CuO lipid peroxidation and ROS generation from silica
nanoparticles cause cytotoxicity in cell membranes and mouse
embryonic fibroblasts'®'®, According to Girgis et al., nano-Au
toxicity in mice was brought about by increased oxidative
stress'®. Shvedova et al. claims that keratinocytes and
bronchial epithelial cells are cytotoxic to single-walled carbon
nanotubes, forming ROS and mitochondrial dysfunction'?’.
According to Winnik and Maysinger, quantum dots cause
cytotoxicity by boosting ROS production'®. According to
reports, nano-ZnO damages human bronchial epithelial cells
by causing them to produce more ROS'®’, When the cytotoxic
effects of nano-Ti02, Co304, ZnO, and CuO in hepatocyte
cells were evaluated, it was observed that nano-CuO had the
highest cytotoxic effect. Nano-FeO was shown to have a
cytotoxic effect via enhancing ROS production and
apoptosis'™®'?'. Nanomaterial toxicity is affected by various
parameters, including surface area, surface coating, molecular
size and shape, oxidation status, solubility, and the degree of
aggregation and agglomeration'?. It has been found that the
size of the nanoparticles directly affects how dangerous they
are. Amorphous nano-silica is hazardous to human cells,
according to Yoshida et al., since it increases the production
of ROS and damages DNA®'?, Additionally, based only on
size, nanoparticles are more harmful to organs the smaller
they are'”. According to studies, the formation of ROS by
wire-shaped nanoparticles damages DNA and has harmful
effects'”. Studies on the relationship between nanomaterial
shape and toxicity have found that the shape does not
significantly affect the toxicity of nano Au in human skin
keratinocyte cells'*. In contrast, hexagonal crystals are more
hazardous than rod-shaped crystals, according to a study on

nano-ZnO crystals'”. Biocompatibility and nanoparticle

contact area are closely proportional. In a study of zebrafish
embryos, Ispas et al. found that dendritic zebrafish embryos
were more hazardous than spherical ones'®. A typical
nanomaterial utilized in medication delivery systems is silica.
Nano-silica has various harmful effects at different pore
volumes'*, The cationic-charged nano silica-titanium particles
are extremely poisonous, according to Oh et al '®'*—studies
on the dimensions, form, and association of the surface
components of quantum dots with nanotoxicity'®'”®. In
investigations on the toxicity of fullerene, the groups attached
to the surfaces of these nanoparticles are crucial. Given that
fullerenes are thought to produce free oxygen radicals, which
are thought to cause cytotoxicity, there are fullerenes with
antioxidant activity by adding malonyl groups to their
surface'”?. The impact of a nanomaterial's solubility on toxicity
has been studied. ZnO nanoparticles are less hazardous than
soluble copper metal, claim Studer et al'”’. Shen et al. found
that dissolving nano-ZnO cells is useful for bringing about the
cytotoxic impact®®. According to Mahto et al®', When
quantum dots are dissolved in water, more ROS are produced,
which results in cytotoxicity. Nano-TiO2 and nano-ZnO
materials are negatively impacted by UV and visible light. It is
how toxicity is caused by photoexcitation using electrons®”.
Studies on the toxicity of graphene and aggregation have been
carried out in various biological sectors, including drug
delivery systems, biosensors, and labelling?®. In addition, Kim
et al'® highlighted the significance of aggregation and
accumulation in the toxicity caused by nano-Ag. It is still being
researched in toxicity tests on various organisms, including
plants, rodents, and people. In engineering, metallic and carbon
nanomaterials are frequently used in various applications.
Additionally, metal nanoparticles are frequently applied in
food, medicine, and cosmetics?®. Depending on how often
they are used, sun creams and lotions containing nano titanium
and nano zinc can harm the skin and the environment®®.
Researchers have shown that carbon nanotubes harm cells and
that nano copper oxide is effective in cytotoxicity and DNA
damage™2"’,
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Table 4: Properties and applications of mostly used metal oxide nanoparticles

Metal oxide
nanoparticles

Physical and chemical
properties

Potential applications in medicine
(tested in vitrolin vivo)

Biomedical and
applications in life science
(in use and commercial
products)

Aluminium
oxide® (AL,Os)

high melting point, strong
corrosion resistance, high
melting stability, and high
thermal and mechanical
stability.

Drug delivery.

Copper
oxide?®”?'° (CuO)

Catalyst and high-temperature
superconductorsClick or tap
here to enter text.

Anticancer treatment.

Antimicrobial coating agents.

Iron oxide
209'2"(a-Fe203, v-
Fe203, and Fe;O4)

Superparamagnetic and
magnetic hyperthermia
properties, catalyst.

Antibacterial agent, drug delivery,
anticancer treatment (photothermal
therapy, chemotherapy, and magnetic
hyperthermia therapy), theragnostic
(near-infrared imaging and positron
emission tomography, single-photon
emission computed tomography, and
ultrasound imaging).

Iron-deficient anemia
treatment (Venofer®,
Feraheme®, and Rienso®).
Solid tumor treatment
(NanoTherm®).

Magnetic resonance imaging
(in liver: Feridex LV.®,
Endorem®, and Resovist®; in
gastrointestinal:

Gastromark™

Lumirem®; and in
pooling: Supravist®).

and
blood

Magnesium
oxide?®?” (MgO)

High ionic character, catalyst,
and semiconductor.

Antibacterial agent and anticancer
treatment (hyperthermia therapy) and
tissue engineering.

Antimicrobial agents (in the
food industry).

Nickel oxide?'"

(NiO)

Catalyst, magnetic properties,
and high electrochemical
stability.

Anticancer treatment (cytotoxic
properties).

Silica dioxide

Low density.

Antibacterial agent, drug and gene

Additive in drugs and

212(5i0,) delivery, anticancer treatment, and cosmetics.
biosensor.

Titanium oxide’®  Semiconductor, photocatalyst, ~ Anticancer treatment (photodynamic, UV-A and UV-B radiation

(TiOy) and high chemical stability. photothermal, so no dynamic therapy, filters (in sunscreens,
chemodynamic therapy, and cosmetics).

radiotherapy), theragnostic Antimicrobial agents (in food

(bioimaging), drug delivery, and tissue  packaging and biomedical

engineering. devices and dentistry &

orthopedic implants).

Zinc In semiconductor, Anticancer treatment (photodynamic, UV-A and UV-B radiation

oxide?*(ZnO) photocatalyst has high photothermal, and sonodynamic filters (in sunscreens,
chemical stability, large therapy), theragnostic (bioimaging), cosmetics).

exciton binding energy, and
high isoelectric point.

drug delivery, and tissue engineering.

Antimicrobial  agents  (in
toothpaste, dental implants,
food packaging, and as a food
additive).

Table 5: Impact of IO NPs on zebrafish

Stage NP Treatment Tested General toxicity Specific ROS responses
diameter time concentrations response
Embryos®"” 22 nm 144 h 0.3; 0.6; 1.25;2.5; High mortality rate —
5; and 10 mg/L and cardiotoxicity
(reduction of
heartbeat rate) and
morphological
alterations.
Embryos®'® 6-12 nm 120 hpf SP IONs, S PION- SP ION-CS: reduced —

DX, SP ION-CS,

survival rate, SPI ON-
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SP ION-T, SPI
ON-T-PEG, SP
ION@SiO::
0.125 mM,
0.5 mM, 2.0 mM,
and 8.0 mM

CS, and SP ION@SiO,
delay in hatching rate;
SP ION-DX, SP ION-
T-PEG, and SP ION-T:
slightly premature
hatching; SP ION-CS
and SPI ON@SiO;:
reduction in
locomotor activity;
and SP |ON-CS, SP
ION-T-PEG SP
ION@SiO, reduction
in escape behavior.

Embryos?”

168 hpf

0.1, 0.5, | and 5,
10, 50, and
100 mg/L

Mortality
concentration
exposure
dependent;
LC50 = 53.35 mg/L;
delay in hatching rate,
LC50 = 36.06 mg/L;
and different
malformations
(pericardial edema and
tissue ulceration and
body arcuation).

and
time-

Embryos*'®

40 nm 96 h

Fe;O4 NPs: 100-
800 ug/mL bare
Cr@Fe3O4: 5,
150, 300, and
600 mg/mL

Fe;O4 NPs: dose- and
time-dependent delay
in hatching rate; slight
decrease in embryo
viability; Cr@Fe;Ox:
NPs high mortality in
2-week-old larvae;
dose-dependent
accumulation in the
digestive tract.

Embryos?"”

100-
250 nm

168 hpf

I, 5, 10, 50, and
100 mg/L

LC50 = 10 mg/L; delay
in the hatching rate.

Embryos®"”

22-45 nm 96 hpf

10, 20, 40, 60, 80,
110, 120,140 ppm

LC50=60.17 ppm;
delay in hatching rate;
reduction in heartbeat
rate; and increased
teratogenicity.

Dose-dependent decrease of
Na+K*-ATPase activity; the
dose-dependent increase of
AChE; increased levels of lipid
peroxidation ROS, PC, and
NO; an increase of apoptotic
bodies; and a decrease of
antioxidant enzymes, CAT,
SOD, and Gpx.

220

Embryos/adults

I15nm Embryos:
96 hpf
Adults: 2

weeks

Embryos: I, 10,
100, and
1000 ppm

Adults: |, 10 ppm

Embryos: no adverse
effect observed
Adults: reduced
locomotor and
exploration  activity,
increased anxiety,
reduced social
interaction, tightened
shoaling behavior,
dysregulation of
circadian rhythm
locomotor activity and
reduction of short-
term memory
retention, and
reduction of serotonin
and dopamine.

Increased CAT, cortisol level
in the brain; reduction of
AChE activity.

Adults™'

2] nm 7 days

100 mg/L

Bare 10 NPs
accumulate mainly in

Altered expression of genes
involved in inflammation,
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the gills, and coated IO

NPs in the liver.

immune response, oxidative
stress, antioxidant response,
and mitochondria in the gills of
Fe3O4-treated fish.
Upregulation in the liver of
genes involved in immune and
inflammation responses and
downregulation  of  genes
involved in DNA damage and
repair in both exposures and
different expression of genes
involved in DNA damage/repair
and apoptosis (tp53) for starch-
coated NPs and upregulation of
cypla; and dysregulation of

genes  involved in  the
mitochondrial dysfunction
pathway.
Adults®'"® Fe,O;: 80- 28 days 4 and 10 mg/L Shift in coloration, —
90 nm extravasated blood,
FesOu and chronic toxicity in
140- the gut.
160 nm
Adults** 23 nm 48 h 20, 50, 100. 140 Reduction of AChE Increased expression of
and 200 mg/kg activity; impaired transcriptional jun, caspase-
swimming. 8, caspase-
9, gclc, Gpxla, CAT, gstp |,
and sod2.
Table 6: Impact of ZnO NPs on zebrafish.
Stage NP Treatment Tested General toxicity Specific ROS responses
diameter time concentrations response
Embryos™ 20 nm 96 h 0.1,05, 1,5 10, Significant decrease of —
and 50 mg/L survival rate and delay
in hatching rate dose-
dependent; 96 h
LC50 = 1.793 mg/L;
and several
abnormalities  (body
accusation and
pericardial edema).
Embryos™* 20 nm 96 hpf 0.1,05 1,5 10 Decrease of survival Increase in ROS production, low
and 50 and rate and delay in levels of Gstp2 and Nqo/

100 mg/L hatching rate and expressions, and a downfall in
incidence of counteracting the ROS by oxidative
pericardial edema stress responses.
dose-dependent.

Embryos™® <100 nm 144 hpf [,510,20,50, No effect on the Important elevation in the SOD
and 100 mg/L survival rate, a activity and MDA levels in a dose-
significant decrease in dependent way; decrease in CAT
the hatching rate, and activity; high levels of ROS; DNA
different damage only at the highest
malformations (spinal concentration tested; and
curvature and important downregulation in Bcl-
hyperemia). 2, Nqgol, and Gstp2 transcriptions
and upregulation in Ucp-2 level.
Embryos™® 30 nm 96 hpf I,5, 10,25, 50, Decrease in survival —
and 100 mg/L rate and increase in
hatching rate dose-
dependent; severe
decrease in body
length.
Embryos®" <100 nm 96 hpf I, 5, 10, 20, 50, — Increase in the lipid peroxidation
and 100 mg/L and SOD activity; upregulation in

the expression of
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the ppaa and sod/; downregulation
of cat; altered expression of
antiapoptotic genes (bcl-2) and
proapoptotic (Bax, puma, and apaf-
I; upregulation of p53 gene, with
overexpression of its protein; and
increase in the activity of caspase-3
and caspase-9.

Embryos®*

9.4 nm

96 hpf

0.2, |, and
5 mg/L

Dramatic delay in
hatching.

Upregulation of the cat and Cu/Zn-
sod transcripts in embryos and
downregulation in  eleuthero;
important upregulation of Mt2<;
different expression of mRNA of IL-
18, TNFa, and proinflammatory
cytokines in eleuthero-embryos in
comparison to embryos; alteration
in the jun proto-oncogene (c-jun)
embryos  treated with high
concentration; and perturbation in
antiviral and immune-related gene
Myxovirus resistance A.

Embryos?

50-70 nm

144 hpf

0.1,0.5, 1,5, and
10 mg/L

Significant delay in
hatching for ZnO
NPs and Zn ions; no
significant difference
in cotreatment with
ZnO NPs and NAG;
and increased rates of
delay in hatching in
cotreatment with
BSO.

ROS generation; cotreatment with
BSO: lower production of GSH.

Embryos*®

Nanospheres:
27 nm; nano
sticks: 32x81
nmM; and
SMPs: 202 nm

120 hpf

2, 4,8, 16, and
32 mg Zn/L

LC50 for
Zn*=79mg  ZnlL,
LC50 ZnO
SMPs =10.0 mg Zn/L
LC50 nano sticks =7.1
Zn/L LC50
nanospheres

=11.9 mg Zn/L,
respectively;  higher
toxicity of Zn ions
compared to the
different shaped NPs;
and decrease of
hatching rate dose-
dependent in the
embryos treated with
all the different kinds
of nanoparticles and
sulfate, strongest
delay in  samples
exposed to nano
sticks. Decrease
dose-dependent  of
swimming activity;
nano sticks are more
toxic than the other
NPs.

Embryos™

5, 10, 15, 26,
34, 62, and
70 nm

120 hpf

0.016 to
250 mg/L

Significant mortality at
24 hpf for all the
coated NPs; no
alteration in mortality
with bare
nanoparticles.
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Embryos™ 20-30 nm 96 hpf 0.01,0.1, I,and Higher mortality rate Downregulation
10 mg/L by ZnO NPs than of ogfrl2 and intl2 transcripts;
ZnSO4 LC25  for upregulation of cyb5d|.
ZnO NPs =2.64 mg/L;
LC25 for
ZnSO,4=7.75 mg/L;
and significant
embryonic

malformations

after

both treatments (tail

malformation,
pericardial

edema,

and yolk sac edema).

Table 7: Some of the main physicochemical properties of nanoparticles, as well as the exposure routes and
main findings on various animal models

Animal Administration Nanoparticle Surface Chemistry Size/nm Major observations
Model route and
exposure time
Mouse®®  i.p. and i.v. injection, Gold Without surface 2,40 Macrophage uptake in the
I,4,24 h modification liver is less in the spleen,
small intestine, and lymph
nodes.
Rat?' i.v. injection, 24 h Gold Without surface 10-205 NPs of 10 nm entered the
modification testis and brain.
Mouse?? i.v. Injection, 0.5,2, MWCNTs Carboxylated and 20-30 x 0.5-  Accumulation in testis.
and 24 h. aminated surface 2 mm
Mouse™ i.v. injection, 0.17, I, SWCNTs Without or coated by ~ 1-3 x |00  Accumulation in liver and
and 24 h paclitaxel (PTX)- (diameter x spleen, less in the heart,
polyethylene glycol length) lung, kidney, stomach,
(PEG) intestine,
muscle.
Rat'*¢ Whole body MnO, Without surface 30 Accumulation in CNS via
inhalation 12 days modification olfactory bulb.
Pig?* Intradermal injection ~ CdTe (CdSe) core Oligomeric, 10 (naked); Accumulation in the
<5 min (shell) type Il QDs Phosphine 18.8 sentinel lymph node.
(coated)
Rat*® Gavage Polystyrene Without surface 50, 100, and, Accumulation in the liver
microspheres modification 300 and spleen via lymph.
Mouse™ Intranasal instillation, TiO, Without surface 10, 25, and Accumulation in brain
2, 10, 20, and 30 days modification 60 through the olfactory
bulb.
Hairless Dorsal skin expos TiO; Hydrophobic or 80, 155 Accumulation in the
Mouse?’ hydrophilic surface spleen,

lung, kidney, and brain.

Il. TOXICITY TESTING

Dosing concerns are crucial in determining toxicity, and in
vitro, tests are more frequent than in vivo research. One of
the models utilized in the toxicity test is the in vitro
sedimentation diffusion and dosimeter. This model's core
concept is the fundamental separation between exposure
(concentration in the cell environment), dose accumulated on
the cell surface, and cellular dosage. By being aware of how
long it takes for a given dose to be released, we may assess
the dose rate as a predictor of response®’. Because in vitro
techniques that assess cell viability and proliferation are widely

used, gene expression analysis, genotoxicity detection, and in
vitro hemolysis are also used to diagnose toxicity. Additional
techniques for assessing the physicochemical structure of the
cell include scanning electron microscopy/energy dispersive X-

ray spectroscopy (SEM-EDX), transmission electron
microscopy (TEM), atomic force microscopy (AFM), video-
enhanced differential interference contrast (VEDIC)

microscopy, and fluorescence spectroscopy. The combination
of these tests makes it simpler to identify nanotoxicity?®.
Current toxicity experiments, their intended use, and the
tested nanomaterials are all summarised briefly in the table

below.

P178



ijlpr 2023; doi 10.22376/ijlpr.2023.13.5.P162-P191

Pharmacy

Table 8: A summary of literature-related toxicity tests of nanomaterials.

Toxicity test

Purpose Nanomaterials

Transmission electron microscopy

Determination of intracellular

TiO2, silver, fullerene?*2*
localization

Light microscopy

Physicochemical properties

Singled walled carbon nanotubes,
silver?4024

Hemoglobin estimation

Homolysis Si02*#

Micronucleus test

Genotoxicity

Different types of nanoparticles?*

Commet assay test DNA damage Metal, metal oxide nanoparticles**
Lactate dehydrogenase Cell viability Carbon nanoparticles®***
Tetrazolium salts Carbon nanoparticles,
fullerenes®*2¥
Alamar Blue Quantum dots”'
Propidium iodide Carbon nanoparticles®*°
Neutral red assay test Carbon nanotubes™%!
Caspase-3 activity Apoptosis Silver nanoparticles**

Acridine orange/ethidium bromide

Silver nanoparticles™’

ROS production

Oxidative stress

Tio2%

Levels of glutathione peroxidase, catalase,
superoxide dismutase

Polymeric nanoparticles™”

Lipid peroxidation, vitamin

Singled walled carbon nanotubes'®’

Lung injury from nanoparticle exposure through the
respiratory tract is common. Therefore, organ-on-a-chip
research has become more significant in recent years, and
many studies have been undertaken to establish the detection
of lung toxicity. By more accurately simulating human
reactions with the chip in a 3D human lung model that
simulated in vivo settings, Zhang et al. explored nanotoxicity.
Using accurate models, this study further illustrated the
importance of organ-based toxicity®*. According to studies,
nanoparticles have a harmful effect after passing through the
placenta of mice. In the 3D human placenta model, chip and
TiO2 nanoparticle exposure studies may have similar harmful
consequences, claim Yin et al »*°. Additionally, research on
nanotoxicity was conducted using a cell-on-a-chip (CoC) and
a microfluidic system®®.

12. REGULATORY CHALLENGES

12.1. Importance of  Nanomedicines in the
Pharmaceutical Market

Over the last two to three decades means the last 20-30 years,
the successful introduction of nanomedicine in both clinical
practice and the continuous development in pharmaceutical
research has created more sophisticated ones which are
mainly entering clinical trials. The nanomedicine market in
European Union is composed mainly of nanoparticles,
liposomes, nanocrystals, nanoemulsions, polymeric-protein
conjugates, and nano complexes®™. There are currently
available nanomedicines made and approved by the EU
(European Union)®®,

12.2. Nanomedicines and Nanosimilars

In the approval process, nanomedicines were introduced
under the traditional benefit or risk analysis framework.
Another challenge related to the framework is developing a
framework mainly for evaluating the follow-on nanomedicines
at the time of reference medicine patent expiration®’.
Nanomedicine is comprised of both biological and non-
biological medical products. Biological nanomedicines are

obtained mainly from biological sources. At the same time, the

non-biological products are mentioned as non-biological
complex drugs (NBCD), where we can find that the active
principle consists of different structures®. In introducing
generic medicines in the pharmaceutical market, we must
demonstrate several parameters, as described elsewhere. A
more complete analysis is needed for biological and non-
biological nanomedicines, which mainly go beyond the plasma
concentration measurement. The therapeutic equivalence and,
consequently, interchangeability can be requirable by a
stepwise comparison of bioequivalence, safety, and efficacy and
this relation to the related medicine®®'. The biological
nanomedicines are under the regulatory framework set by the
European Medicines Agency (EMA)'. This framework is an
approach to the regulatory system for follow-on biological
nanomedicines, which includes the recommendations for the
comparative quality, clinical and non-clinical studies?2 The
regulatory approach for the follow-on "Non-Biological
Complex Drugs (NCBD)" is still a process. The industry
frequently asks for scientific advice, and the EMA analyzes a
case-by-case analysis. Sometimes, the biological framework is
the basis for the regulation of the "Non-Biological Complex
Drugs (NCBDs)" because they have some common features:
the structure cannot be fully characterized, and the in-vivo
activity is dependent on the process of manufacturing, and
consequently, the comparability needs to establish throughout
the life cycle, as happens to the biological nanomedicines.
Besides this, for some "Non-Biological Complex Drugs
(NCBDs)" groups like glatiramer, liposomes, and iron
carbohydrate complexes, there are draft regulatory
approaches, which may help the regulatory authorities or
regulatory bodies to create a final framework for the different
"Non-Biological Complex Drugs (NCBDs)" families?®. EMA
has already released some papers regarding nanomedicines
with a surface coating, block copolymer micelle, intravenous
liposomal, and iron-based nano colloidal nanomedicines*.
These papers released by the EMA are applied to new
nanomedicines and nanosimilers, guiding developers in
preparing marketing authorization applications. The principles
outlined in these documents address general issues that are
regarding the complexity of these nanosystems and provide
basic information for the development of the pharmaceutical
industry, both the non-clinical and early clinical studies of the
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block-copolymer micelle, "liposome-like" and the nanoparticle
iron (NPI) medicinal products mainly the drug products that
have been created to affect the pharmacokinetics, distribution,
and stability of incorporated or conjugated active substances
in vivo. The important factors are mainly related to the exact
nature of the characteristics of the particle, and that can
influence the kinetic parameters and, consequently, the
toxicity, such as the physicochemical nature of the coating, the
stability, and respective uniformity (both in terms of
susceptibility to degradation), the bio-distribution of the
product and its intracellular fate are especially detailed.

12.3. Market Access and Pharmacokinetics

After obtaining nanomedicine by marketing authorization,
there is a long way up to the introduction of nanomedicine in
clinical practice or clinical trials in all the European Union
countries. It occurs because of the reimbursement and pricing
decisions for medicines taken at an individual level in each
member state of the European Union (EU)**. In case to
provide patients access to medicines, the multidisciplinary
process provided by Health Technology Assessment (HDT) is
being developed. The Health Technology Assessment HDT
generates information about effectiveness, medicine safety,
and cost-effectiveness to support the health and political
decision-maker®*. The study of pharmacoeconomics assumes
a crucial role before the commercialization of nanomedicines
at the current time. They mainly assess the economic and
social importance through the added therapeutic value using
indicators such as quality-adjusted life expectancy years and
hospitalization®. To harmonize and enhance the entry of new
medicines into the clinical trial, they have created the
EUnetHTA to provide patients with novel medicines. The main
goal of EUnetHTA is to develop decisive, appropriate
transport information to help the HTAs in European Union
countries.

13. ARGUMENTS FOR
TOXICITY

NANO-SPECIFIC

It is appropriate to mention that in contrast to the view taken
in the published literature, nanoparticles do have nano-specific
effects®. For example, Krug and Wick® refer to surface
composition, size, and transport as the factors that contribute
to the toxicity of any nanoparticle?®. They suggest that for any
specific nanoparticle, these three factors come together to
form a unique combination forming®® ‘. . . a basis for the
description of specific reactions and interactions between
nanomaterials/nanoobjects and biological systems . . .2, These
authors argue the obvious result of this contention, namely
that each nanoparticle 'must be tested individually?. We
reject a 'counsel of despair' above, arguing that the lack of
nano-specific toxicity forms a basis for benchmarking the large
amount of available data on conventional particle-mediated
pathogenicity®*. We note that the final common pathways for
pathological effects, oxidative stress®®, inflammation, and
genotoxicity, are entirely shared by both nanoparticles and
conventional particles, and no novel pathogenic pathways are
anticipated®®. Therefore while the proximate events such as
the transport of nanoparticles into cells may be unusual or
even novel®®, the final common pathways of oxidative stress
inflammation and genotoxicity are impacted by all pathogenic

Pharmacy

particles®®. Therefore, we can see no reason to invoke nano-

specificity to the adverse effects, nor should we anticipate
novel pathologies®. Kreyling has demonstrated that the
translocation of NP from the lungs varies depending on the
nanoparticle size’’, with a greater fractional translocation of
the smaller nanoparticlesw. However, the translocation
fraction is extremely small and so of questionable
significance?’. That it is not significant is supported by the
striking absence of reports of extra-pulmonary pathology in
many chronic?®, high exposure, rat inhalation studies carried
out with low solubility, low toxicity nanoparticles in the
eighties and nineties, for example?®, In the case of human
epidemiology of ambient combustion-derived nanoparticles
(air pollution/PM) exposure, the only clear extra-pulmonary
effects — in cardiovascular disease — are now considered
most likely to arise from oxidative stress or inflammatory
signals from the lungs. However, translocation is not
completely ruled out™’.

14. CONCLUSION

There is a huge amount of research and regulatory activity in
nanoparticle health and safety. Toxicologists need to
comprehensively understand this hazard in the context of
varying composition, shape, and size for use in risk assessment.
It is very important as the sheer degree of adaptability and
variability of engineered nanoparticles against detailed testing
of every form produced, so other judgments from other
sources as to potential toxicity or mechanism of toxicity of
nanomaterials are required. Current research shows that
exposure to nanoparticles when administered in high
concentrations, can cause severe adverse effects, as shown in
zebrafish. TiO; NPs, IO NPs, and ZnO NPs are considered
nontoxic and widely approved but can also show harmful
effects. ZnO NPs cause an increase in the reactive O in
response to fluorescent light. ZnO NP increases ROS, which
stimulates the apoptotic pathways regulated by caspases and
mitochondria, which causes extensive cellular dysfunction
even at a lower concentration. |[O NPs are associated with
oxidative stress and induction of redox-signal pathways(AP);
NP size and coating seem to cause cellular dysfunction.
Further research is needed to unravel the mechanism of
nanotoxicity due to nanoparticles.
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