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Abstract: Sigma factors play a crucial role in the gene regulation process, which binds with RNA polymerase to unwind the 
gene sequence by identifying the recognition of transcription starting motif pattern, a combination of nucleobases (Adenine(A), 
Cytosine(C), Guanine(G), Thymine(T)). The advancements in DNA analysis are useful for the geneticist to learn different 
patterns from different perspectives for the identification of mutations in genetic structures, new organisms ranging from 
unicellular to multicellular, and useful for creating new gene patterns to get relief from hereditary diseases. To meet all these 
challenging needs, the proposed research work aimed to predict the DNA motif patterns of various sigma factors. Thus the 
main objective is to create a novel method named "Features of Genetic Sigma Factors Learning Model simulating Neural 
Network" to predict the prefix motif patterns of major sigma factors such as sigma 70, sigma 32, sigma 24, sigma 19, and sigma 

38(σ70, σ32, σ24, σ19, and σ38).   Each of the sigma factors possesses significant functionality, like vegetative growth for the 
development of nutrients. In the proposed model, the novel idea is a generation of a dictionary of DNA motifs that mimics the
n-gram of natural language processing.  The proposed model is trained to feed the DNA motif dictionary, which consists of 
positive and negative motif patterns. The model is tested by an array of K-mer motif patterns taken from the whole E.Coli
bacterial genome, downloaded from the NCBI website (Escherichia coli str. K-12 substr. MG1655, complete genome 
ACCESSION:   NC_000913). The experimental results of the proposed model yielded 100% accuracy. The model's outcome is 
a set of patterns that are highly helpful to experts in the biological fields to identify new gene patterns.  
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1. INTRODUCTION 

 
Gene is a region of DNA composed of four nucleobases (A-
Adenine, C-Cytosine; G- Guanine, and T-Thymine).  There 
are three regions in a gene: promoter, coding region, and 
terminator region. A promoter is a short DNA motif of the 
gene regulation process onto which the transcription 
mechanism holds and instigates the transcription process. 
Normally promoters reside near the transcription start site, 
but the region of the promoter is not a constant one. 
Identifying promoters is an important biological task, given 
that they are central to understanding how genes are 
regulated. Promoters reside upstream of the genes they 
regulate. Though the promoters fluctuate among prokaryotic 
genomes, some elements are conserved at the -10 and -35 
regions upstream of the beginning site; two promoter 
consensus motifs are similar across all promoters and various 
bacterial species. The motif of -10 regions, TATAAT, and the 
-35 sequence, TTGACA, is recognized and bound by the 

sigma factor (σ). The Sigma factors represent the specificity 
of promoter DNA binding and control how efficiently RNA 
synthesis is started. Once this interaction is made, the 
subunits of the core enzyme stick to the site. The AT-rich -
10 region facilitates the unwinding of the DNA template, and 
various phosphodiester bonds are made.  Various algorithms 
have been constructed to predict the promoters bound by 
sigma factors. A motif is a small sequence used to classify a 
promoter with a sigma factor responsible for gene 
expression, a protein synthesis process. A layered structure 
of a self-organizing Neural Network is applied1 to identify 
motifs in DNA sequences. CNN-BiLSTM model was 
proposed2 to explore the potential contextual relationships 
of amino acid sequences and to obtain more other features. 
The triad pattern algorithm took a UP-element, required for 
interaction with the α subunit, optimally separated patterns 

of -35 and -10 boxes, required for interaction with the σ70 
subunit of RNA polymerase, and was developed3 for 
predicting strong bacterial promoters.  Seven sigma factors 
were found in E.Coli bacteria, and ten were found in Bacillus 
subtilis bacteria4. The consensus binding sites of different 
sigma factors prefix motifs were discovered as they are vital 
for transcription. For the gene sequence classification, a 
machine learning approach named weightily averaged one-
dependence estimators (WAODE) was conceived5.  A 
generalization of a nonlinear model based on Information 
Theory6 that measured two parametric uncertainty 
estimators for each TFBS, which were the total amount of 
information change produced by assuming position 
independence. In contrast, the second estimator measured 
the total amount of change of per-position mutual 
information. Three models, CNN, CNN-LSTM, and CNN-
Bidirectional LSTM7, were proposed using Label and k-mer 
encoding for DNA sequence classification. A method for 
predicting the main genome sequences of SARS-CoV-28 was 
implemented using the deep learning architecture. An 
attention-based Bi-LSTM+CNN hybrid model9 that focused 
on the advantages of LSTM and CNN with an additional 
attention mechanism to classify the movie review data and 
trained the model using the Internet Movie Database (IMDB) 
movie review data to evaluate the performance of the 
proposed model, and the test results obtained more accurate 
classification result. Two different deep learning based 
methods10 for identifying DNA-Binding Proteins (DBPs): 
DeepDBP-ANN and DeepDBP-CNN. The DeepDBP-ANN 
used a generated set of features trained on a traditional 
neural network, and DeepDBP-CNN used a pre-learned 

embedding and Convolutional Neural Network.  To predict 
meaningful labels from small motif sequences, a Deep learning 
approach11 was suggested. The algorithm CNN-MGP12 
showed the ability of deep learning to predict genes in meta 
genomics fragments; for the first time13, it was attempted to 
design, implement, and test deep bidirectional long short-
term memory based sequence to sequence (Bi-LSTM S2S) 
regression approach. A long short-term memory deep 
learning (LSTM) network14,15 was introduced to recognize 
emotions using EEG signals. The best-performing 
architectures by varying CNN width, depth, and pooling 
designs were introduced16. The overfitting problem can be 
resolved using the dropout technique, which improves 
significantly over other regularization methods. It was shown 
that dropout enhances17 the performance of neural networks 
on supervised learning methods in vision, document 
classification, and computational biology. For identifying 
motifs that abstract the task of finding short conserved sites 
in genomic DNA. The planted (l, d)-motif problem, PMP, is 
the mathematical abstraction of finding a substring of length l; 
an algorithm was proposed18 that combined the voting 
algorithm and pattern matching algorithm to find exact 
motifs. The notion of regulatory motifs was generalized19 
from computational biology and a new methodology with a 
custom-designed node applied for gene expression 
prediction20,21,22. There are seven sigma factors found4, each 

with a specific  role, such as sigma 70(σ70) responsible for 
housekeeping, sigma 54 ( σ54)  for nitrogen metabolism, sigma 

32 (σ32) for heat shock, sigma 24 (σ24) for extreme heat 

shock, sigma 19(σ19)  for iron transport and sigma 38 ( σ38)  

for the stationary phase, sigma 28(σ28) for Flagellar proteins   
with the  respective recognition motifs prefix as ‘ttgaca’, 
‘ctggcac’, ‘cttgaa’, ‘gaactt’, ‘ggaaat’ and ‘ttgaca’.' As the size of 
the prokaryotic genome varies from 2kb to over 1 Mb, it is 
challenging to generate a model for the whole genome to 
perform the gene regulation process. The proposed work 
aims to create a model to identify the sigma factors prefix 
patterns in the whole genome. To make the process an 
effective one, a novel idea is implemented that mimics the 
natural language process. A dictionary of unigram sigma 
factors patterns, including positive and negative sequences, is 
generated, which plays a crucial role in the model 
implementation. The raw genome sequence is preprocessed 
and encoded using the unique codes assigned to the prefix 
motifs. This paper concentrated on the five sigma factors 
prefix sequences, and the Features of the Sigma Factors 
Learning Model are constructed using Python for predicting 
the patterns of small prefix motifs of sigma factors (σ70, σ32, 

σ24, σ19, and σ38). The whole genome of E.Coli bacteria is 
taken as a dataset for predicting the motif described above 
sequence of various sigma factors. We achieved 100% 
accuracy from the experimental results of the proposed 
model, and our model can be extended for any pattern-
matching tasks with different length sequences.  
 
2. MATERIALS AND METHODS 
 
Protein synthesis takes place to transcript the encoded gene 
for certain functionality.  For transcription initiation, RNA 
polymerase binds with the promoter with the help of the 
sigma factor. Hence the role of the sigma factor, a subunit of 
RNA polymerase, is significant for unwinding the gene 
sequence. The proposed work was done with the whole 
genome of E.Coli bacteria (Escherichia coli str. K-12 substr. 
MG1655, complete genome) with about 46, 41,652 
nucleobases downloaded from the NCBI website. 
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2.1. Model Construction 
 
The proposed model is heavily focused on model 
construction in which motif corpus generation plays a vital 
role. Only the model can learn the sigma factors' motif and 
non-motif sequence features. The model is constructed in 
two phases. 
  

2.1.1. Phase 1 
 
In phase 1, the DNA motif dictionary is constructed to learn 
the features of sigma factors motif vocabulary, which is 
shown in Fig. 1. The model considers the recognition motif 
prefix of five sigma factors of (σ70, σ38, σ32, σ24, and σ19) 

provided σ70  and σ38  share a  common prefix.  

 

 
 

Fig 1: Design of Features of Genetic Sigma Factors Learning Model 
 
The length of each of these prefix motifs is equal and treated as positive and labeled as 1. The negative sequences are 
synthetically patterned as n-grams that resemble motif sequences' vocabulary. The dictionary generation is crucial for feature 
identification while implementing the prediction model. The motif sequences are uniquely tokenized to make the model 
understand the sigma factors patterns. The proposed neural network model is a deep learning model constructed with LSTM 
(Long Short Term Memory), which involves different layers such as the embedding layer, Spatial1D Dropout layer, LSTM, and 
dense layer. The following Fig. 2 explains the layered architecture of the proposed model.  The sigmoid function classifies 
whether it is a motif pattern of the sigma factor.  
 

 
 

Fig 2: Architecture of Features of Genetic Sigma Factors Learning Model 
  
(1) Embedding Layer   
 
This layer accepts the pre-generated k-mer motif patterns as 
a motif corpus which consists of both positive and negative 
patterns. The corpus is encoded using a tokenizer () to make 
the model for understanding the sequence patterns. The 
outcome of this layer is a formatted sequence in a specific 
dimension.  
 
(2) Spatial 1D Dropout Layer  
 
The spatial 1D Dropout layer makes the encoded sequence 
independent of each other, which ease the classification 
process. 
 
 

(3) LSTM Layer 
 
In recent studies, Long Short Term Memory (LSTM) plays a 
vital role in predicting sequences in deep learning because it 
remembers important patterns for a long span of time7,21. 
The LSTM layer is defined as a cell state with various 
components; the forget gate and input gate are used to 
identify the information to be passed through or not to 
manage the current information.  
 
(4) Dense Layer  
 
The output of the LSTM is passed to the dense layer, which 
uses the sigmoid function as a classifier represented in the 
equation (1). The final output of the proposed model 
classifies the existence of the five sigma factors. 
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                             Sigmoid     =     𝑒𝑥𝑒𝑥+ 1                          (1) 

 
 
The binary cross entropy loss function is a convenient choice for estimating the loss function used in a binary classification, as 
shown in equation (2). 
 

Binary cross entropy (loss) = - 1N ∑ yNi=1 i. Log ŷi + (1- yi ).  log (1- ŷi  (2) 

 
Where N is the size of the data set, yi is i

th target output, and ŷi is the ith calculated output value. 
 
2.1.2. Phase 2  
 
In Phase 2, the downloaded bacteria genome is preprocessed to generate an array of patterns P for a k-mer motif using the 
equation (3).  

 

P = {pi: pi + k-1}   (3) 

 
Where ,0 ≤ i ≤ (N-k); N - genome size; k - the size of a motif (k-mer sequence) 
 
For example, if the genome sequence length is 40 and the k-mer size is 6, the patterns are generated, as illustrated in Table 1. 
Then the generated patterns are tokenized and given for testing using the model generated in phase 1.   
 

Table1:  Patterns Generation (for 6-mer motif) 
Sequence a c g t a g g c t a g c t t a c g t g c c a a c g a c g t a c t g g t a c c t g 

 
 
 
 

Patterns generated 

a c g t a g 
   c g t a g g 
      g t a g g c 
         t a g g c t 
            a g g c t a 
               g g c t a g 

…   …  … 
t a c c t g 

 
Here it shows how to split a whole genome into motif patterns of length 6 

 
2.1.3. Data Set 
 
The benchmark dataset used during the current study is 
available in the following Link (NCBI Website) 
 
https://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3?report=
fasta 
 
DEFINITION:  Escherichia coli str. K-12 substrate. MG1655, 
complete genome  
ACCESSION:   NC_000913 
VERSION:        NC_000913.3   
 
3. STATISTICAL ANALYSIS 
 
The whole genome of E.Coli Bacteria is preprocessed using 
equation (3) and further processed and evaluated using the 
model, which is developed in Python.  

4. RESULTS AND DISCUSSION 
 
To train the model, the prefix sequences of five sigma factors 
(σ70, σ38, σ32, σ24, and σ19) of E.Coli bacteria are taken as 
positive motifs, and the negative motifs are synthetically 
generated. The proposed Sigma Factors Learning Model tests 
the computationally processed and confirmed E.Coli bacteria's 
Genome to predict trained motif patterns.  
 
4.1. Experimental Outcome 
 
The E.Coli bacteria genome sequence is processed to 
generate 6-mer motif patterns and encoded, which are 
evaluated using the Features of the Sigma Factors Learning 
Model.  The model learns the features of sigma factors and 
identifies them with a maximum accuracy level of 100%. The 
following are the experimental results of the model. 

 
 
 
 
 
 
 
 
 
 



 
ijlpr 2023; doi 10.22376/ijlpr.2023.13.5.L267-273                    Bio informatics 

 

 

L271 

 

 OUTPUT I 
 
Features of Genetics Sigma Factors Learning Model Outcome Summary 
Model: "sequential_2" 
__________________________________________________________ 
Layer (type)                Output Shape              Param # 
================================================================= 
embedding_2 (Embedding)     (None, 1, 4)              20000 
 
spatial_dropout1d_2 (Spatia  (None, 1, 4)             0 
lDropout1D) 
 
lstm_2 (LSTM)               (None, 50)                11000 
 
flatten_2 (Flatten)         (None, 50)                0 
 
dense_2 (Dense)             (None, 1)                 51 
 
================================================================= 
Total params: 31,051 
Trainable params: 31,051 
Non-trainable params: 0 
_________________________________________________________________ 
None 
 
Training Accuracy 
 
Accuracy: 100.00 
 
145052/145052 [==============================] - 390s 3ms/step 
 
Metrics of the Features of Genetic Sigma Factors Learning Model 
 
Precision: 100.000 
 
Recall: 100.000 
 
Accuracy: 100.000 
 
F1 Score: 100.000 
 
<Figure size 432x288 with 0 Axes> 
 

 OUTPUT 2 

 
 
 
4.2. Performance Analysis 
 
The different metrics, including accuracy, precision, recall, 
and F1Score, are measured, which are defined based on true 

positive, false positive, true negative, and false negative 
predictions as follows. 
 
Accuracy = TP+ TN/(TP+TN+FP+FN) 
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Precision = TP/ (TP+FP) 
Recall       = TP/ (TP+FN) 
F1Score   = (2 x Recall x Precision) / (Recall + Precision) 
 

 True Positive (TP) 
 
It represents several motif patterns that are correctly 
predicted as true. 
 

 True Negative (TN) 
 
It represents the number of motif patterns that are correctly 
predicted as false.   
 

 False Positive (FP)  

 
It represents several motif patterns that are incorrectly 
predicted as true, which are actually to be false. 
 

 False Negative (FN)  
 
It represents several motif patterns that are incorrectly 
predicted as false, which are actually to be true.  
 
The proposed model has split the whole genome sequence 
into 4,641647 numbers of 6-mer motifs. The confusion 
matrix in output 2 showed no false positive and false negative 
prediction, which means the true motif patterns are correctly 
predicted as true. The false motif patterns are correctly 
predicted as false. 

   

 Table 2:  Metrics of the Proposed Model 

Metrics Features of Genetic Sigma Factors Learning Model 

Accuracy 100% 

Precision 100% 

Recall 100% 

F1-Score 100% 

 
The performance metrics of the proposed model have achieved 100%, as shown in Table 2. In addition, table 3 shows the 
proposed model has gained a higher level of accuracy than the other models7,10.   
 

Table 3: Performance Comparison 

Metrics DeepDBP-ANN DeepDBP-CNN CNN    LSTM    Bidirectional  LSTM   Proposed Model 

Accuracy 82.8% 84.31 % 93.16 % 93.02 % 93.13 % 100 % 

   
In Fig. 3, it is shown that the proposed Genetic Sigma Factors Learning Model achieved a 100% accuracy level than other 
methods. 
 

 
 

Fig.3 Graph compares the accuracy of the proposed model with other models. 
 
5. CONCLUSION 
 
The Sigma factors play a vital role in locating the specificity of 
the promoter DNA binding site and determining the 
efficiency of the RNA synthesis process. Though more 
algorithms have been suggested earlier, a gap still exists to be 
resolved. The proposed Features of the Sigma Factors 
Learning Model is a novel method that predicts the five Sigma 
factors recognition motif in the E.Coli bacterial genome. This 
model uses the n-grams approach to generate positive and 

negative motif patterns corpus and effectively applies a 
tokenizer for encoding, as the neural network works only on 
numerical data. The whole bacterial genome is pre-processed 
and split into k-mer motif patterns. Finally, the patterns were 
tested and showed that this model accurately gained a higher 
performance than the other classifiers.  Geneticists and 
biologists can use this proposed model to learn different 
patterns of DNA sequences from different perspectives for 
the identification of mutations in genetic structures and new 
organisms and useful for creating new gene patterns for 
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curing genetic diseases. This model can be extended in the 
future by taking n-gram patterns and applied for any text 
pattern prediction. 
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