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Abstract: Sigma factors play a crucial role in the gene regulation process, which binds with RNA polymerase to unwind the
gene sequence by identifying the recognition of transcription starting motif pattern, a combination of nucleobases (Adenine(A),
Cytosine(C), Guanine(G), Thymine(T)). The advancements in DNA analysis are useful for the geneticist to learn different
patterns from different perspectives for the identification of mutations in genetic structures, new organisms ranging from
unicellular to multicellular, and useful for creating new gene patterns to get relief from hereditary diseases. To meet all these
challenging needs, the proposed research work aimed to predict the DNA motif patterns of various sigma factors. Thus the
main objective is to create a novel method named "Features of Genetic Sigma Factors Learning Model simulating Neural
Network" to predict the prefix motif patterns of major sigma factors such as sigma 70, sigma 32, sigma 24, sigma 19, and sigma
38(0”° o®, 0%, o'> and ¢®®). Each of the sigma factors possesses significant functionality, like vegetative growth for the
development of nutrients. In the proposed model, the novel idea is a generation of a dictionary of DNA motifs that mimics the
n-gram of natural language processing. The proposed model is trained to feed the DNA motif dictionary, which consists of
positive and negative motif patterns. The model is tested by an array of K-mer motif patterns taken from the whole E.Coli
bacterial genome, downloaded from the NCBI website (Escherichia coli str. K-12 substr. MGI655, complete genome
ACCESSION: NC_000913). The experimental results of the proposed model yielded 100% accuracy. The model's outcome is
a set of patterns that are highly helpful to experts in the biological fields to identify new gene patterns.

Keywords: sigma factors; motif prediction; LSTM; DNA binding motif; pattern learning

*Corresponding Author

Sasikala S , Research Scholar, Sri Sarada College for Received On 17 February, 2023

Women, Tirunelveli, Tamilnadu, Affiliated to Revised On 12 April, 2023
Manonmaniam Sundaranar University, Accepted On 3 May, 2023

Abishekapatti, Tirunelveli, Tamilnadu, India, PIN - 627012 Published On | September, 2023

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Sasikala S and Dr. Ratha Jeyalakshmi T, Features of Genetic Sigma Factors Learning Model Simulating Neural Network.(2023).Int. J.
Life Sci. Pharma Res.13(5), L267-L273 http://dx.doi.org/10.22376/ijlpr.2023.13.5.L.267-L273

This article is under the CC BY- NC-ND Licence (https://creativecommons.org/licenses/by-nc-nd/4.0)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com i@@@ @|

Int J Life Sci Pharma Res., Volumel3., No 5 (September) 2023, pp L267-L273



https://crossmark.crossref.org/dialog/?doi=10.22376/ijlpr.2023.13.5.L267-L273&amp;domain=www.ijpbs.net
https://orcid.org/0000-0003-4270-9184

ijlpr 2023; doi 10.22376/ijlpr.2023.13.5.L.267-273

1. INTRODUCTION

Gene is a region of DNA composed of four nucleobases (A-
Adenine, C-Cytosine; G- Guanine, and T-Thymine). There
are three regions in a gene: promoter, coding region, and
terminator region. A promoter is a short DNA motif of the
gene regulation process onto which the transcription
mechanism holds and instigates the transcription process.
Normally promoters reside near the transcription start site,
but the region of the promoter is not a constant one.
Identifying promoters is an important biological task, given
that they are central to understanding how genes are
regulated. Promoters reside upstream of the genes they
regulate. Though the promoters fluctuate among prokaryotic
genomes, some elements are conserved at the -10 and -35
regions upstream of the beginning site; two promoter
consensus motifs are similar across all promoters and various
bacterial species. The motif of -10 regions, TATAAT, and the
-35 sequence, TTGACA, is recognized and bound by the
sigma factor (o). The Sigma factors represent the specificity
of promoter DNA binding and control how efficiently RNA
synthesis is started. Once this interaction is made, the
subunits of the core enzyme stick to the site. The AT-rich -
10 region facilitates the unwinding of the DNA template, and
various phosphodiester bonds are made. Various algorithms
have been constructed to predict the promoters bound by
sigma factors. A motif is a small sequence used to classify a
promoter with a sigma factor responsible for gene
expression, a protein synthesis process. A layered structure
of a self-organizing Neural Network is applied' to identify
motifs in DNA sequences. CNN-BiLSTM model was
proposed’ to explore the potential contextual relationships
of amino acid sequences and to obtain more other features.
The triad pattern algorithm took a UP-element, required for
interaction with the a subunit, optimally separated patterns
of -35 and -10 boxes, required for interaction with the ¢’°
subunit of RNA polymerase, and was developed® for
predicting strong bacterial promoters. Seven sigma factors
were found in E.Coli bacteria, and ten were found in Bacillus
subtilis bacteria®. The consensus binding sites of different
sigma factors prefix motifs were discovered as they are vital
for transcription. For the gene sequence classification, a
machine learning approach named weightily averaged one-
dependence estimators (WAODE) was conceived®. A
generalization of a nonlinear model based on Information
Theory® that measured two parametric uncertainty
estimators for each TFBS, which were the total amount of
information change produced by assuming position
independence. In contrast, the second estimator measured
the total amount of change of per-position mutual
information. Three models, CNN, CNN-LSTM, and CNN-
Bidirectional LSTM’, were proposed using Label and k-mer
encoding for DNA sequence classification. A method for
predicting the main genome sequences of SARS-CoV-2° was
implemented using the deep learning architecture. An
attention-based Bi-LSTM+CNN hybrid model® that focused
on the advantages of LSTM and CNN with an additional
attention mechanism to classify the movie review data and
trained the model using the Internet Movie Database (IMDB)
movie review data to evaluate the performance of the
proposed model, and the test results obtained more accurate
classification result. Two different deep learning based
methods'® for identifing DNA-Binding Proteins (DBPs):
DeepDBP-ANN and DeepDBP-CNN. The DeepDBP-ANN
used a generated set of features trained on a traditional
neural network, and DeepDBP-CNN used a pre-learned
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embedding and Convolutional Neural Network. To predict
meaningful labels from small motif sequences, a Deep learning
approach'' was suggested. The algorithm CNN-MGP'
showed the ability of deep learning to predict genes in meta
genomics fragments; for the first time'?, it was attempted to
design, implement, and test deep bidirectional long short-
term memory based sequence to sequence (Bi-LSTM $2S)
regression approach. A long short-term memory deep
learning (LSTM) network'*'® was introduced to recognize
emotions using EEG signals. The best-performing
architectures by varying CNN width, depth, and pooling
designs were introduced'®. The overfitting problem can be
resolved using the dropout technique, which improves
significantly over other regularization methods. It was shown
that dropout enhances'” the performance of neural networks
on supervised learning methods in vision, document
classification, and computational biology. For identifying
motifs that abstract the task of finding short conserved sites
in genomic DNA. The planted (I, d)-motif problem, PMP, is
the mathematical abstraction of finding a substring of length I;
an algorithm was proposed'® that combined the voting
algorithm and pattern matching algorithm to find exact
motifs. The notion of regulatory motifs was generalized'
from computational biology and a new methodology with a
custom-designed node applied for gene expression
prediction”®?'?2, There are seven sigma factors found*, each
with a specific role, such as sigma 70(c’®) responsible for
housekeeping, sigma 54 ( **) for nitrogen metabolism, sigma
32 (6?) for heat shock, sigma 24 (c*') for extreme heat
shock, sigma 19(c'?) for iron transport and sigma 38 ( ¢%%)
for the stationary phase, sigma 28(c?®) for Flagellar proteins
with the respective recognition motifs prefix as ‘ttgaca’,
‘ctggeac’, ‘cttgaa’, ‘gaactt’, ‘ggaaat’ and ‘ttgaca’.' As the size of
the prokaryotic genome varies from 2kb to over | Mb, it is
challenging to generate a model for the whole genome to
perform the gene regulation process. The proposed work
aims to create a model to identify the sigma factors prefix
patterns in the whole genome. To make the process an
effective one, a novel idea is implemented that mimics the
natural language process. A dictionary of unigram sigma
factors patterns, including positive and negative sequences, is
generated, which plays a crucial role in the model
implementation. The raw genome sequence is preprocessed
and encoded using the unique codes assigned to the prefix
motifs. This paper concentrated on the five sigma factors
prefix sequences, and the Features of the Sigma Factors
Learning Model are constructed using Python for predicting
the patterns of small prefix motifs of sigma factors (¢”°, %2,
6*, ¢'> and ¢%’). The whole genome of E.Coli bacteria is
taken as a dataset for predicting the motif described above
sequence of various sigma factors. We achieved 100%
accuracy from the experimental results of the proposed
model, and our model can be extended for any pattern-
matching tasks with different length sequences.

2. MATERIALS AND METHODS

Protein synthesis takes place to transcript the encoded gene
for certain functionality. For transcription initiation, RNA
polymerase binds with the promoter with the help of the
sigma factor. Hence the role of the sigma factor, a subunit of
RNA polymerase, is significant for unwinding the gene
sequence. The proposed work was done with the whole
genome of E.Coli bacteria (Escherichia coli str. K-12 substr.
MG1655, complete genome) with about 46, 41,652
nucleobases downloaded from the NCBI website.
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2.1. Model Construction

The proposed model is heavily focused on model
construction in which motif corpus generation plays a vital
role. Only the model can learn the sigma factors' motif and
non-motif sequence features. The model is constructed in
two phases.

Create a list of
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2.1.1. Phase |

In phase |, the DNA motif dictionary is constructed to learn
the features of sigma factors motif vocabulary, which is
shown in Fig. 1. The model considers the recognition motif
prefix of five sigma factors of (¢, %%, ¢*%, ¢*, and °")
provided 6’ and ¢*® share a common prefix.

prefix motifs of Assign label 1
sigma factors ( to the positive
+ve sequences) sequences
Tokenize Compile
Add
the Sequence Lavers and
» sequence » Encoding [~ y » Evaluate
to the the Model
Generate 3 corpus Model e Mode
. Assign label 0
negative > .
"] to the negative
sequences
(using n-grams) sequences

Fig I: Design of Features of Genetic Sigma Factors Learning Model

The length of each of these prefix motifs is equal and treated as positive and labeled as |. The negative sequences are
synthetically patterned as n-grams that resemble motif sequences' vocabulary. The dictionary generation is crucial for feature
identification while implementing the prediction model. The motif sequences are uniquely tokenized to make the model
understand the sigma factors patterns. The proposed neural network model is a deep learning model constructed with LSTM
(Long Short Term Memory), which involves different layers such as the embedding layer, Spatial|ID Dropout layer, LSTM, and

dense layer. The following Fig. 2 explains the layered architecture of the proposed model.

whether it is a2 motif pattern of the sigma factor.

The sigmoid function classifies

N
number \ Motifs
of .
Motift ——1 Embedding ina
ol Layer dimension D
Patterns /
of ACGT /

Spatial Sigmoid
' _’ '
iD LSTM (classifier)
Dropout

Fig 2: Architecture of Features of Genetic Sigma Factors Learning Model

(1) Embedding Layer

This layer accepts the pre-generated k-mer motif patterns as
a motif corpus which consists of both positive and negative
patterns. The corpus is encoded using a tokenizer () to make
the model for understanding the sequence patterns. The
outcome of this layer is a formatted sequence in a specific
dimension.

(2) Spatial 1D Dropout Layer
The spatial |D Dropout layer makes the encoded sequence

independent of each other, which ease the classification
process.

(3) LSTM Layer

In recent studies, Long Short Term Memory (LSTM) plays a
vital role in predicting sequences in deep learning because it
remembers important patterns for a long span of time’?'.
The LSTM layer is defined as a cell state with various
components; the forget gate and input gate are used to
identify the information to be passed through or not to
manage the current information.

(4) Dense Layer
The output of the LSTM is passed to the dense layer, which
uses the sigmoid function as a classifier represented in the

equation (I). The final output of the proposed model
classifies the existence of the five sigma factors.
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Sigmoid
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The binary cross entropy loss function is a convenient choice for estimating the loss function used in a binary classification, as

shown in equation (2).

Binary cross entropy (loss) = - %Z{\Izl yi. Log Vi« (1-yi). log (1- i 2)

Where N is the size of the data set, yiis i* target output, and yiis the i calculated output value.

2.1.2. Phase 2

In Phase 2, the downloaded bacteria genome is preprocessed to generate an array of patterns P for a k-mer motif using the

equation (3).

P={Pi: Pi+k1} (3)

Where ,0 i < (N-k); N - genome size; k - the size of a motif (k-mer sequence)

For example, if the genome sequence length is 40 and the k-mer size is 6, the patterns are generated, as illustrated in Table I.
Then the generated patterns are tokenized and given for testing using the model generated in phase |.

Tablel: Patterns Generation (for 6-mer motif)

acgtaggctagcttacgtgccaacgacgtactggtacctg

Sequence
acgtag
cgtagg
gtaggc
taggct
Patterns generated aggcta
ggctag

tacctg

Here it shows how to split a whole genome into motif patterns of length 6

2.1.3. Data Set

The benchmark dataset used during the current study is
available in the following Link (NCBI Website)

https://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3?report=
fasta

DEFINITION: Escherichia coli str. K-12 substrate. MG1655,
complete genome

ACCESSION: NC_000913

VERSION: NC_000913.3

3. STATISTICAL ANALYSIS
The whole genome of E.Coli Bacteria is preprocessed using

equation (3) and further processed and evaluated using the
model, which is developed in Python.

4. RESULTS AND DISCUSSION

To train the model, the prefix sequences of five sigma factors
(6" &** ¢®% ¢, and ¢'?) of E.Coli bacteria are taken as
positive motifs, and the negative motifs are synthetically
generated. The proposed Sigma Factors Learning Model tests
the computationally processed and confirmed E.Coli bacteria's
Genome to predict trained motif patterns.

4.1. Experimental Outcome

The E.Coli bacteria genome sequence is processed to
generate 6-mer motif patterns and encoded, which are
evaluated using the Features of the Sigma Factors Learning
Model. The model learns the features of sigma factors and
identifies them with a maximum accuracy level of 100%. The
following are the experimental results of the model.
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e OUTPUTI

Features of Genetics Sigma Factors Learning Model Outcome Summary
Model: "sequential_2"

Layer (type) Output Shape Param #

embedding 2 (Embedding)  (None, 1,4) 000
spatial_dropoutld_2 (Spatia (None, I, 4) 0

IDropoutID)

Istm_2 (LSTM) (None, 50) 11000

flatten_2 (Flatten) (None, 50) 0

dense_2 (Dense) (None, I) 51

Total params: 31,051
Trainable params: 31,051
Non-trainable params: 0

None
Training Accuracy

Accuracy: 100.00

Metrics of the Features of Genetic Sigma Factors Learning Model
Precision: 100.000

Recall: 100.000

Accuracy: 100.000

FI Score: 100.000

<Figure size 432x288 with 0 Axes>

e OUTPUT 2
Coonfusion Matrii(
0 4638053 0
n
©
3
!
<
1 0 3594
Predictions
4.2. Performance Analysis positive, false positive, true negative, and false negative

predictions as follows.
The different metrics, including accuracy, precision, recall,
and FlScore, are measured, which are defined based on true Accuracy = TP+ TN/(TP+TN+FP+FN)
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Precision = TP/ (TP+FP)

Recall = TP/ (TP+FN)
FlScore = (2 x Recall x Precision) / (Recall + Precision)

¢ True Positive (TP)

It represents several motif patterns that are correctly
predicted as true.

e True Negative (TN)

It represents the number of motif patterns that are correctly
predicted as false.

¢ False Positive (FP)

Bio informatics

It represents several motif patterns that are incorrectly
predicted as true, which are actually to be false.

e False Negative (FN)

It represents several motif patterns that are incorrectly
predicted as false, which are actually to be true.

The proposed model has split the whole genome sequence
into 4,641647 numbers of 6-mer motifs. The confusion
matrix in output 2 showed no false positive and false negative
prediction, which means the true motif patterns are correctly
predicted as true. The false motif patterns are correctly
predicted as false.

Table 2: Metrics of the Proposed Model

Metrics Features of Genetic Sigma Factors Learning Model
Accuracy 100%
Precision 100%
Recall 100%
Fl-Score 100%

The performance metrics of the proposed model have achieved 100%, as shown in Table 2. In addition, table 3 shows the

proposed model has gained a higher level of accuracy than the other models

7,10

Table 3: Performance Comparison

Metrics DeepDBP-ANN DeepDBP-CNN

CNN

LSTM Bidirectional LSTM Proposed Model

Accuracy 82.8% 84.31 %

93.16 %

93.02 % 93.13 % 100 %

In Fig. 3, it is shown that the proposed Genetic Sigma Factors Learning Model achieved a 100% accuracy level than other

methods.

110

nnnnn 93.13%
=0 o

100 935.107%

90 82, 84.31%

Accuracy (%)

80
70
60
50
40
30
20
10

0

DeepDBP- ANN DeepDBP- CNN

Models

LSTM Bidirectional Proposed
LSTM "Features of
Genetic Sigma
Factors Learning
Model"

Fig.3 Graph compares the accuracy of the proposed model with other models.

5. CONCLUSION

The Sigma factors play a vital role in locating the specificity of
the promoter DNA binding site and determining the
efficiency of the RNA synthesis process. Though more
algorithms have been suggested earlier, a gap still exists to be
resolved. The proposed Features of the Sigma Factors
Learning Model is a novel method that predicts the five Sigma
factors recognition motif in the E.Coli bacterial genome. This
model uses the n-grams approach to generate positive and

negative motif patterns corpus and effectively applies a
tokenizer for encoding, as the neural network works only on
numerical data. The whole bacterial genome is pre-processed
and split into k-mer motif patterns. Finally, the patterns were
tested and showed that this model accurately gained a higher
performance than the other classifiers. Geneticists and
biologists can use this proposed model to learn different
patterns of DNA sequences from different perspectives for
the identification of mutations in genetic structures and new
organisms and useful for creating new gene patterns for
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curing genetic diseases. This model can be extended in the
future by taking n-gram patterns and applied for any text
pattern prediction.
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