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Abstract: This review focuses on different techniques used in the in-silico drug design, such as molecular modeling, molecular docking,
pharmacophore mapping, QSAR, and more, and also highlights and looks at how these techniques are being used to create new potential anticancer
drugs for their effective cancer treatments. Most of the article studies focus on In-silico approaches only but rarely on the In-silico approach used to
develop anticancer drugs with effective targets. Cancer, which is caused by pathophysiological changes in the normal process of cell division, has
become a serious disorder that kills a lot of people every year all over the world. Recently, more than 19.3 million (19,300,000) new instances of
cancer were identified and reported; based on the available data, this will result in almost 10 million fatalities in 2020. The necessity and desire for
powerful medications to treat various malignancies have been sparked by the persistently rising occurrences of cancer worldwide, resulting in millions
of deaths each year. Developing new anticancer drugs is a high priority for researchers and medical professionals, and designing these anticancer
drugs is challenging, expensive, and time-consuming. In-silico drug design, also known as computer-aided drug discovery/design (CADD) approaches,
have been created to get around these restrictions and manage massive amounts of emerging data. It is possible to use computational tools to aid in
the design of experiments and, more crucially, to clarify the links between structure and activity that underlie drug discovery and lead optimization
techniques. To design effective new drugs, one should understand the molecular processes that cause cancer on the molecular level. In Silicodrug
design is a powerful tool for understanding these molecular processes and developing new and effective anticancer drugs.
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l. INTRODUCTION

One of the biggest causes of morbidity and mortality in the
globe is cancer. Based on the impacted cell type, there are
approximately 200 different forms of cancer.' The Food and
Drug Administration (FDA) authorized drugs, causes of each
type of cancer, treatments, and other information are all
provided in the National Cancer Institute (NCI) database.' The
most likely cancers in 2022, according to NCI reports, will be
melanoma of the skin, non-Hodgkin lymphoma, pancreatic
cancer, prostate cancer, thyroid cancer, bladder cancer, breast
cancer, colon and rectum cancer, endometrial cancer, kidney
and renal pelvis cancer, leukemia, lung and bronchus cancer,
and thyroid cancer. At first, cancer was thought to be caused
by uncontrolled cell proliferation and division. Therefore,
finding antiproliferative drugs was the focus of all research
efforts. In contrast to slowly developing solid tumors, the
success rates tend to be higher in lymphoid malignancies.” The
researchers modified the pre-screening and screening
procedures to account for all the various cell lines and cancer
types. The prevention, identification, and treatment of cancer
are all receiving significant financial support on a global scale.
The development of anticancer agents is the main focus of
several pharmaceutical industries and governmental and non-
governmental organizations, including the British Cancer
Research Campaign (CRC), the European Organization for
Research and Treatment of Cancer (EORTC), and the US
National Cancer Institute (NCI). The search for anticancer
drugs began in 1937 by screening more than 3000 substances
in a mouse S37 model.** Cytotoxic compounds, which date
back to the 1950s, was recognized as the first generation of
anticancer medications. In the drug development, substances
with strong cytotoxic or cytostatic activity on cancer cell lines
and inhibited tumor growth in murine tumor allografts or
xenografts were chosen.” Most cytotoxic substances have
been discovered by accident or purposefully targeting
biological pathways important for cell division. The first
anticancer medication created in 1949 and approved by the
FDA was mechlorethamine (Mustargen), and this drug is highly
producing mutagenic analogs of mustard gases. Since the
1990s, anticancer medication development has accelerated.
More than 190 oncology treatments have received FDA
approval in the last two decades. The FDA data indicates that
a total of seven oncology medications have already been
approved for use in 2016. (until April 25).*” Additionally, it has
been stated that the FDA has authorized nearly 300 indications
for oncology medications, covering an average of 4.4
indications annually. Recent years have seen many new
oncology drug approvals, giving patients new therapy
alternatives. Oncology, though there is a robust level of
pipeline activity, is still a difficult field for research and
development. Anticancer medication discovery and design are
challenging, expensive, and time-consuming processes. In-silico
drug design, also known as computer-aided drug
discovery/design (CADD) approaches, have been created to
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get around these restrictions and manage massive amounts of
emerging data.”®It is possible to use computational tools to aid
in designing experiments and, more crucially, to clarify the
links between structure and activity that underlie drug
discovery and lead optimization techniques. The most widely
used CADD techniques are those based on structure and
ligand. Even more remarkable is the assimilation that these two
complementary techniques provide. The rapid development of
new anticancer therapies shows significant potential when
combined with experimental and computational methods.? In
Silicodrug design, homology modeling, molecular docking, and
pharmacophore mapping are all molecular modeling
techniques used to model and study the 3D structure of
molecules. Homology modeling is a method of predicting the
3D structure of a molecule based on an existing sequence of
related molecules. Molecular docking is a method of predicting
the affinity of a molecule by understanding how it fits into a
target molecule, especially an anticancer target.”'®"
Pharmacophore mapping is a method of understanding the
requirements of a molecule to interact with a biological target,
particularly cancer. These techniques are used in many areas
of molecular research, such as drug discovery, protein
structure prediction, and analysis. Together, they provide
important insights into the structure and function of
molecules, which are essential for developing new drugs and
understanding their effects. They are also used in structure-
based drug design and quantitative structure-activity
relationships (QSAR) studies'?. Another method indicating
structure-based methods is a fragment-based drug design; the
discovery of fragments or low molecular weight compounds
that typically bind to the target of interest with limited affinity
is the first step in the fragment-based drug design process. The
fragments that produce high-quality contacts are further
refined to create compounds with high affinity and selectivity.
Most review studies focus on In-silico approaches only but
rarely on In-silico approaches for anticancer drug
development. Hence, in this review, we will explore the
different techniques used in Silicodrug design, such as
molecular modeling, molecular docking, pharmacophore
mapping, QSAR, and more, and explore current
macromolecular targets for anticancer drugs and highlights to
look at how these techniques are being used to create new
and effective treatments for cancer. Any medication that
successfully treats malignant or cancerous disease is called an
anticancer drug, often known as an antineoplastic drug".
Alkylating agents, antimetabolites, natural products, and
hormones are a few of the main classifications of anticancer
medications shown in Figure | Shown Figure-l. Moreover,
various medications that do not belong to such classes yet
have anticancer action are utilized to treat malignant diseases.
Although it is more true to say that chemotherapy refers to
the use of chemical substances to treat disease in general,
chemotherapy is usually used synonymously with anticancer
medications.
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Fig I: Flowchart for Anticancer drug classification

Cancer cells become resistant to anticancer medications when
we use them for a long time'*. The following is a description
of the mechanism through which this resistance arises:

I. A decrease in the number of drugs that cancer cells uptake:
Cancer cells change how drugs enter their cells, lowering drug
uptake. Consider the drug methotrexate'.

2. An increase in medication evacuated by cancer cells: Cancer
cells produce more reflux proteins, such as glycoprotein
transporters, that expel medication from the cell. Vinblastine,
Doxorubicin, Bleomycin, and Etoposide are a few examples '*.
3. A decrease in or change in the target molecule's sensitivity:
The medicine uses a target molecule to pinpoint the cells in
the body. Sometimes cancer cells alter these target molecules
structurally or reduce their production so that medications do
not recognize them. Take methotrexate, mercaptopurine, and
doxorubicin as examples.

4. Cells' ability to repair DNA damage by producing more
DNA repair enzymes: Several drugs function by causing DNA
damage to cells. The medication loses its effectiveness when
cancer cells make additional DNA repair enzymes. Alkylating
agents, for instance, lose their effectiveness over time when
used extensively'.

A significant problem in cancer therapy is the highly
complicated nature of the disease and the non-specificity of
anti-cancer medications. The field of drug discovery in cancer
research has undergone a radical transformation thanks to the
development of high-speed processing units and advanced
molecular modeling software. This review focuses on the value
and most recent developments in Silicomodeling for creating
new, effective anti-cancer medications. Although in
Silicotechnologies have revolutionized the development and
design of small molecule anti-cancer therapies, difficulties,
including acquired resistance and intra-tumor heterogeneity,
still need to be addressed. Moreover, the "Multi Target Drug
Ligands" (MTDL) method for drug creation for the treatment
of cancer is replacing the "One Ligand-One Target" strategy'”.
In-silico drug design, also known as computer-aided drug
discovery/desisn (CADD) techniques, was developed to
overcome these limitations and handle enormous volumes of
developing novel anticancer drugs. It is possible to employ
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computational tools to support experiment design and, more
importantly, to elucidate the relationships between structure
and activity that underlie lead optimization and drug discovery
methods. Understanding the molecular mechanisms that lead
to cancer at the molecular level is necessary for developing
novel treatments with high efficacy. A useful method for
comprehending these molecular processes and creating novel,
potent anticancer medications by using in Silicodrug design
techniques and tools. Hence, the present review focused on
developing anticancer drugs by utilizing the techniques and
tools of in-silico drug design.

2. COMPUTER-AIDED DRUG DESIGN OR IN-
SILICO DRUG DESIGN

A large number of proteins have been solved either by X-ray
or by nuclear magnetic resonance (NMR) spectroscopy and
are available at  open-access protein  databases
(http://www.rcsb.org) since the invention of the X-ray
diffraction to reveal the chemical composition and three-
dimensional (3D) geometry of a small organic molecule in
19327. With the aid of this knowledge, scientists can now
comprehend and describe various physiological processes that
depend on interactions between proteins or between proteins
and tiny molecules (ligands), as in the instance of drug-target
binding'®>. Max Perutz and John Kendrew received the Nobel
Prize in Chemistry in 1962 for figuring out the first high-
resolution protein structure (myoglobin). Up until the most
recent Nobel Prize in Chemistry (2012), which was given
jointly to Brian Kobilka and Robert Lefkowitz for their
structural and functional studies on G-protein-coupled
receptors, several prior works in the crystallographic
determination of protein structure had received the honor
(GPCRs) "*.The search for hit molecules that may act as drugs
have changed significantly as a result of the chemical makeup
and 3D relative positions of each atom in a target: from a blind
screening process that hoped to find molecular hits primarily
by fate to an approach frequently referred to as "rational" drug
discovery and design”. The first medicine to be optimized
using structural data was the angiotensin-converting enzyme
(ACE) inhibitor Capoten (captopril), developed in the 1980s.
Nelfinavir mesylate (Viracept), an HIV protease inhibitor, was

P132



ijlpr 2023; doi 10.22376/ijlpr.2023.13.5.P130-P148

the first medicine authorized for the US market whose design
was entirely determined by the structure of the target. These
findings were just the start of a frenzied career spent looking
for new, quicker, and less expensive approaches and
computational algorithms and procedures for creating and
designing new medications. Also, to sample more compounds
from the target (screening procedure) in less time and to gain
important knowledge and experience beforehand to create a
library of chemical compounds for subsequent screening more
precisely. The relevant revolution occurred when
computational models based on basic physical laws could
replicate the interactions between organic molecules, atom by
atom, following the high-resolution solution of protein
structures. The van der Waals radii of the atoms, the
parameters of covalent bonds, torsions, and dihedral angles
were taken into account in addition to the 3D structure of a
molecule'>'®, With computational tools like powerful
workstations or supercomputers, scientists may now simulate
or conduct in Silicoexperiments to simulate genuine systems.
This development laid the foundation for a more rational
approach to the search for effective, selective medications
with fewer side effects while also making the procedure more
affordable and efficient '*'®. Nowadays, these methods allow
quicker and less expensive screening of more chemicals
(virtual screening). Researchers have advanced in Silicothanks
to the Computer-Aided Drug Discovery and Design
(CADDD) era, where computer simulations of chemical
systems have sparked the potential in this discipline. Among
these developments include computer models to resolve 3D
structures, the optimization and design of new compounds,
and the knowledge of the characterization of the atomic
mechanisms of earlier medications or naturally occurring
molecules. Breaking the mold of orthosteric medications
(drugs binding to the target at a specific active site) has also
led to the discovery of allosteric modulators and bitopic
pharmaceuticals in the search for therapeutic compounds '*'¢

3. CURRENT MACROMOLECULAR TARGET
FOR ANTICANCER DRUGS

Medications or other substances that specifically influence the
molecular targets involved in the onset, progression, and
dissemination of a particular tumor are known as molecularly
targeted anticancer therapy. Contrarily, most conventional
chemotherapeutics operate on both malignant and healthy
cells that are rapidly multiplying.'” Target anticancer
medications function cytostatically rather than cytotoxically
like traditional chemotherapeutics since they are created with
a specific goal. More than 300 biological molecular targets have
currently been discovered. Receptor proteins, signal
transduction proteins, mMRNA thread matrix synthesis proteins
engaging in neoplastic transformation, cell cycle control
proteins, and functional and structural proteins are just a few
of the proteins involved in cellular metabolism. Epithelial
growth factor receptor (EGFR), platelet-derived growth factor
receptor (PDGFR), and vascular endothelial growth factor
receptor are the receptor proteins that anticancer
medications now in use target (VEGFR).'” Target anticancer
medications may impact intracellular or extracellular receptor
domains (antibodies) (tyrosine kinase inhibitors). Another
molecular target of anticancer medications is the inhibition of
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the mRNA thread carrying data about the shape of oncogenes
(signal transduction proteins).”” Clinical trials are being
conducted for this kind of therapy, also known as antisense
therapy. The transition to the following phase of the cycle is
typically impeded when the synthesis of genetic material is
interrupted. Cyclines and cyclin-dependent kinases are the
main proteins causing the blockage (CDK). Clinical trials are
concentrated on using organic and synthetic compounds that
can block different CDKs."”

3.1. Kinases as Targets for Developing Anticancer Drugs

The broad family of enzymes known as kinases is responsible
for transferring the high-energy phosphate group from
adenosine triphosphate (ATP) to a variety of substrates,
including proteins, lipids, carbohydrates, nucleic acids, and
serine-threonine-specific  kinases.  Several  physiological
reactions are brought on by the substrate's phosphorylation,
which modifies its activity and interactions with other
molecules. Protein kinases are important for practically all
aspects of cellular function, including cell development,
proliferation, apoptosis, and signal transduction. It is believed
that 50% of all proteins are constantly undergoing reversible
phosphorylation and dephosphorylation "',  Several
disorders, including cancer, have protein kinases that are
dysregulated, overexpressed or have mutations. Over the past
20 years, these protein kinases have been widely studied as
potential targets for creating new antineoplastic medicines.
Almost 200 potential inhibitors are undergoing various stages
of clinical studies globally, with 53 kinase inhibitors (Kls)
already licensed by the FDA (FDA, 2019) were shown in
Figure 2. The majority of the medications that have been
approved work against different types of cancer when taken
orally'”'®,  Several protein kinases frequently elevated in
cancer cells are the focus of PTK inhibitors. The key target for
medications like erlotinib and gefitinib is the epidermal growth
factor receptor (EGFR), a member of the ErbB family of
tyrosine kinase receptors that are overexpressed or mutated
in non-small cell lung cancer (Bethune et al., 2010)""°.
Lapatinib and neratinib bind to the intracellular domain of
HER2/neu, a different member of the ErbB tyrosine kinases
that is increased in about 20-30% of breast tumors . Imatinib
has been linked to the pathogenesis of nearly all cases of
chronic myeloid leukemia (CML) and acute lymphoblastic
leukemia with the Philadelphia chromosome due to its activity
against non-receptor breakpoint cluster region (Bcr)-Abelson
leukemia virus (Abl) tyrosine kinase. Imatinib has been
approved for this indication even though it is a relatively
specific Bcr-Abl inhibitor and inhibits the CDI17 tyrosine
kinase linked to gastrointestinal stromal tumors. The tyrosine
kinase domain of the vascular endothelial growth factor family
of receptors (VEGFR) can activate signaling pathways that
control cell survival, proliferation, and the development of
tumor angiogenesis. Lenvatinib, sorafenib, and vandetanib are
the VEGFR-targeting medications widely used to treat thyroid
cancer. BRAF is a serine/threonine protein kinase targeted by
vemurafenib, dabrafenib, and encorafenib. About 50-60% of
cutaneous melanomas express this mutation, which results in
ongoing activation of the mitogen-activated protein kinase
(MAPK) pathway and unchecked proliferation of cancer cells.
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Fig 2: Chemical Structures of Clinically Approved PTK-Inhibitors

4. DRUG REPOSITIONING

Pharmaceutical companies spend around $2.6 billion
developing a drug through market approval. Drug
repositioning identifies new indications for known drugs to
minimize risk and development time. Drug repositioning
moves experimental or approved drugs to new indications;
there are several examples of repositioning success stories,
such as sildenafil, which was originally developed for heart
disease and was repurposed for erectile dysfunction, the
sedative thalidomide, which is now approved for the treatment
of multiple myeloma and leprosy”, or the cytotoxic anti-
cancer agent gemcitabine, which was originally developed as
an antiviral *°. Computational approaches have been applied to
the drug- repositioning pipeline. In Silicodrug target
identification, which involves numerous distinct algorithms for
identifying disease-associated genes and proteins, is the first
step in the drug discovery pipeline (Liu et al., 2010)*’. Reverse
docking, first proposed in 2001, refers to the computational
docking of a specific small molecule of interest to a protein
structure database (Chen, Zhi, 2001)%.

4.1. Activity Based Vs. Drug Repositioning

Several examples of successful drug repositioning have drawn
attention to the existing drug market's potential for off-target
effects that could help treat diseases like cancer. As existing
medications have already been administered to humans, they
have  well-established  dosage regimens, acceptable
pharmacokinetics  (PK), pharmacodynamics (PD), and
manageable side effects, making them valuable sources for
developing novel anticancer medications. The Johns Hopkins
Drug Library (JHDL), a novel project to compile a library of
pre-existing medications, was introduced in the early
2000s**?'. Around 2,200 of JHDL's medications have received
FDA approval in the US or from international counterparts,
and about 800 unapproved drug candidates have begun various
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stages of human clinical trials. We point out that the NCGC
Pharmaceutical Collection (NPC), recently developed by the
NIH Chemical Genomics Center (NCGC), contains 2,400
small molecular entities that have received clinical use approval
from the US Food and Drug Administration (FDA), the
European Medicines Agency (EMA), the Japan National Health
Insurance Agency (NHI), and the Health Canada (HC)' '
These are just some of the clinical medication collections that
are now offered commercially. These clinical drug collections
have proven to help identify novel uses for already-approved
medications 2**'. The use of actual medications for screening
is referred to as "activity-based drug repositioning" in this
review. Comparatively, "in Silicodrug repositioning" uses
open-access databases and bioinformatics tools to find
interaction networks between medications and protein targets
2! comprehensively. Due to the development of bioinformatics
and computational science over the past few decades, a wealth
of knowledge on the structure of proteins and
pharmacophores has been gathered, making the latter method
successful. Most pharmaceutical firms have previously adapted
in Silicodrug development models from other chemical
domains. In Silicomedication repositioning, a potentially potent
approach, offers some benefits over activity-based drug
repositioning, including faster processing times and lower
costs. Due to the need for high-resolution structural
information on targets, it does have significant drawbacks.
When a screen does not include protein targets, additional
information such as disease/phenotype details or drug-gene
expression patterns are needed. In contrast, protein target-
based and cell/organism-based screens can be used in activity-
based medication repositioning without needing a database or
structural knowledge about the target proteins. Thus, activity-
based and in Silicodrug repositioning constitute two distinct
and complimentary methods for discovering novel drugs
(Shown Table 1) %', The various tools used for drug
repositioning are shown in Table 2 %',
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Table-|: Activity-Based and In-silico Approaches for the Development of Drug-Repositioning for
Anticancer Drug

Approaches Pros

Cons

Activity Based Drug- No limitation to the screening
Repositioning of target-based and cell-based
assays
Easy to validate screening hits
Lower rate of false positive hits
during the screening

Time and labor efficient

Requires an entire collection of existing drugs
Need to develop a screening assay

Which executes Time and labor
efficient

In-silico Drug
Repositioning

No need for an entire collection
of existing drugs

No need to develop a screening
assay

Limitation for target-based and cell-based screenings (requires
structural information of target proteins and drug-induced

cell/disease phenotype information)

Higher rate of false positive hits during the screening

Table-2: Tools to be used for Reverse Docking for Drug Repositioning

S.No Tools used for Reverse Description
Docking for Drug
Repurposing
l. SurflexDock A program designed to predict interactions between a target protein and compounds
from a database by fitting them together with their surfaces to create plausible
complexes.
2. Raccoon2 Tool for virtual reverse screening providing support for database queries along with
feature enrichment analysis capabilities
3. SybylX Suite Includes three modules designed specifically for virtual reverse screening: High
Throughput Searching (HTS) module, Lead Optimization (LO) module, and Super
Screening (SS) module
4. Glide XP A module of Schrodinger Suite optimized specifically for reverse virtual screening
scenarios involving thousands or millions of compounds through highly parallelized
searches executed on GPUs or CPUs clusters.
5. ICM Explorer Integrated into Accelrys Discovery Studio software suite, which includes, among
others, a de novo library building tool focused on synthesis protocols design
automation features.; - SYBYL X by Tripos is an advanced Software Tool used in
Reverse Docking Studies
6. AutoDock Vina Reverse docking software

5. TYPES OF IN-SILICO DRUG DESIGN

The phrase "in Silicodrug design" refers to "computer-aided
molecular design," which means that pharmaceutical drugs are
rationally designed or discovered utilizing a wide range of
computational techniques. Recently, there has been a
noticeable increase in the use of in-silico chemistry and
molecular modeling for computer-aided drug design fields of
nanotechnology, molecular biology, biochemistry, etc., all use
in-silico drug creation techniques>. The fundamental
advantage of in-silico drug design is that it makes medication
research and development more affordable. This creative
process of discovering novel pharmaceuticals based on
understanding a biological target is known as drug design,
sometimes known as rational drug design or simply rational
design. A protein, for example, is a common example of a
biomolecule whose function is activated or inhibited by the
medicine, which benéefits the patient therapeutically. In its most
basic sense, drug design creates compounds that interact with
and bind to biomolecular targets that are complementary to
one another in shape and charge. Computer modeling
methods are commonly but only sometimes used in drug
design”. Computer-aided drug design is another name for this

kind of modeling. The term "structure-based drug design"
refers to drug development based on understanding the
biomolecular target's three-dimensional structure. In addition
to small molecules, biopharmaceuticals, including peptides and
therapeutic antibodies, are a growingly significant class of
medications. Computational techniques have also been
developed to enhance the affinities, selectivities, and stabilities
of these protein-based therapeutics”*?. In Silicomethods
Shown in Figure-3** are classified into I) Structure-Based Drug
Design, which includes Molecular Modelling and Homology
Modelling, Molecular Docking, Pharmacophore generation and
mapping, and Molecular Dynamic Simulations., Integrated
methods and In-silico target prediction 2) Ligand Based Drug
Design, which includes Quantitative Structure-Activity
Relationship (QSAR) Studies, fragment based-descriptors,
Artificial Intelligence Based Drug Design, Virtual Screening,
and High-throughput screening (HTS)-Virtual Screening. And
Lead optimizations 3) Multi-Targeted Drug Design strategies
2% A critical molecule participating in a certain metabolic or
signaling pathway linked to a particular disease condition or
pathology or to the infectivity or survival of a microbial
pathogen is known as a biomolecular target (most frequently
a protein or a nucleic acid). Prospective pharmacological
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targets must, by definition, be capable of treating or preventing
disease. Small compounds may occasionally be made to either
boost or inhibit the target function in a particular disease-
modifying pathway. Small compounds complementary to the
target's binding site will be created, such as receptor agonists,
antagonists, inverse agonists, or modulators; enzyme
activators or inhibitors; or ion channel openers or blockers
. As medication interactions with off-target molecules may
result in negative side effects, small molecules (drugs) can be
created so as not to affect any other significant "off-target”
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molecules (commonly referred to as anti-targets). Closely
related targets discovered by sequence homology have the
highest likelihood of cross-reactivity and, thus, the biggest side
effect potential because of similarity in binding sites. Drugs are
typically small organic molecules made by chemical synthesis.
However, biopolymer-based medications
(biopharmaceuticals) made through biological processes are
more widespread. Moreover, therapeutic uses for mRNA-
based gene silencing technologies are possible 22*,
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Fig 3: Types and Methods of In-silico Drug Design**

6. STRUCTURE-BASED DRUG DESIGN

Structure-based drug design involves using 3D models of
biological systems to predict which chemical structures would
best bind to their targets, making them more likely to be
successful as drug candidates. By analyzing the structures of
proteins, nucleic acids, and other cellular components at
atomic resolution, it is possible to construct 3D models of
how the target interacts with ligands.* These 3D models can
then be used to virtually screen databases of chemical

compounds to identify candidates with optimal binding
affinities. Structure-based drug design uses 3D computer
modeling to simulate interactions between proteins and small
molecules. It seeks to identify molecules with the best fit in
terms of size and shape, charge, hydrophobicity, and other
properties that enable them to interact effectively with target
proteins. The most effective hits from these simulations can
be further explored as leads for developing new cancer
therapies®.
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6.1. Molecular Modelling and Homology Model
Molecular and homology modeling are two computer-assisted
methods to develop new anticancer drugs. Molecular
modeling, also known as molecular simulation, is a
computational method that uses mathematical algorithms,
physical laws, and empirical data to generate 3D images of
molecules.”® This simulation can identify suitable drug
candidates and predict their properties, such as stability and
solubility. Homology modeling, on the other hand, is a
technique used to reproduce the 3-dimensional structure of
proteins accurately. Homology models use existing data of
known proteins to create structures of unknown proteins.
This method can generate 3D structures of target proteins to
identify suitable binding sites for drug molecules. Both
molecular modeling and homology modeling can be used in
developing new drugs for treating various diseases, including
cancer. Another method of Molecular modeling used for
Protein Modeling involves building 3D models of proteins
based on the amino acid sequence, which is then used to study
the protein's interactions with different compounds and
drugs.”

6.2. Molecular Docking

Molecular docking is an in-silico technique that allows for the
simulation of protein-ligand interactions and the prediction of

Target Protein

Ligand

Pharmacoinformatics

binding modes and affinities between ligands and a target
receptor.”® This technique, including anticancer drugs, is
widely used to aid drug discovery. 3D structures of both the
receptor and the potential ligands are modeled during the
process. Molecular docking is based on finding optimal fit by
exploring all possible orientations and positions of the ligand
molecule relative to the target molecule (receptor) shown in
Figure 4-5. Once identified, the docking results provide
information about key interactions between receptor and
ligand, such as hydrogen bonding or Van der Waals forces. It
can then be used to guide further design optimization or help
elucidate mechanisms of action. Molecular docking is an
essential step in drug design, involving ligands' virtual binding
to receptors. Recent developments in this area have
revolutionized the field of drug discovery, allowing for more
rapid and accurate drug design. To take advantage of these
advancements, a revolutionary study of molecular docking
techniques was conducted to assess their ability to identify
small molecule ligands that could be used to treat cancer.
Another docking method enabled by in-silico docking uses a
computer program to search through databases (Shown
Table-3) of compounds and determine which compounds
could have the highest potential binding affinity to the desired
target protein or enzyme based on their structural
characteristics.?

Protein- Ligand
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Fig 4: lllustration of Molecular Docking
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Table-3: Tools Used for Molecular Docking

S.No Tools Used for
Molecular Description
Docking
|. Autodock Vina It's one of the fastest and most widely used open-source docking engines. It is a turnkey

computational docking program based on a simple scoring function and quick gradient-
optimization conformational search.

2. Maestro Suite It's a streamlined portal for structural visualization and access to advanced predictive

computational modeling and machine-learning workflows for small molecule drug discovery.

3. PLANTS Parallel Molecular Docking using PLANTS software

4. Glide Glide offers the full range of speed vs. accuracy options, from the HTVS (high-throughput virtual
screening) mode for efficiently enriching million compound libraries to the SP (standard precision)
mode for reliably docking tens to hundreds of thousands of ligands with high accuracy to the XP

(extra precision) mode where further elimination of false positives is accomplished by more
extensive sampling and advanced scoring, resulting in even higsher enrichment.

5. OpenEye Omega OMEGA was designed with the large libraries required for computer-aided drug design. It
generates multi-conformer structure databases with high speed and reliability. OMEGA performs
rapid conformational expansion of drug-like molecules, yielding a throughput of tens of thousands

of compounds per day per processor.

6. SMINA Docking with Smina is done from the command line and is very easy to script, thanks to the
possibility of calculating the box from an existing ligand. The —autobox ligand and —autobox add
switches define a docking box that is 8A greater than the ligand specified. The —exhaustiveness |6

switch tells Smina to spend more time finding the best scoring binding mode of the ligand in the
binding site; the default is 8.
7. GOLD GOLD is the validated, configurable protein—ligand docking software for expert drug discovery.
8. Discovery Studio Discovery Studio is a software suite for simulating small molecule and macromolecule systems.
(Catalyst)
6.3. Pharmacophore Mapping

Pharmacophore mapping is a technique used to compare active drug compounds to find structural similarities or differences to
gain insight into the molecular interactions responsible for their biological activity. This process involves building 3D models of
chemical structures using tools such as "pharmacophore databases," which store different active compounds, structural features,
and pharmacological properties.””?® Once a pharmacophore map is created, scientists can analyze the information and search for
novel compounds with similar effects to existing drugs but with improved activity.

Table-4: Tools Used for Pharmacophore Mapping

S.No Software used for S.No Software used for Molecular Docking Mediated Pharmacophore
Pharmacophore Mapping
Mapping
l. Schrodinger Suite l. AutoDock Vina - An open-source software program used for protein-ligand
docking simulations
2. Discovery Studio 2. Schrodinger Suite — A software package for macromolecular structure
determination, including molecular docking and pharmacophore mapping
tools
3. Ligand Scout 4 3. Glide - Software application from Schrodinger used for molecular docking
simulations and pharmacophore mapping
4. CS Chem Space Analyzer 4, MOE — Molecular Operating Environment - All-inclusive integrated modules
Toolbox that combine 3D visualization and modeling, chemistry, high-performance
computing, informatics, and collaboration tools.
5. Hyper Chem HL Chem 5. PyRx for Visualization
6. Autodock Vina for Protein-Ligand Docking
7. Schrodinger Maestro for Preparing 3D Structures
""""" 8. LisandFit from Tripos Sybyl for Docking Studies
6.4. Molecular Dynamics Simulation

6.5. Integrated Methods

It is a computer simulation technique used to model the
movements of molecules in time, which can be used to
understand their interactions better and inform reverse
docking strategies for drug target identification.”®

Structure- and ligand-based approaches, which leverage the
knowledge of the protein's structure or the biological and
physicochemical characteristics of bound ligands, respectively,
are increasingly being combined. By merging pertinent data
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from the ligand and the protein, it is intended to increase the
dependability of computer-aided drug design methodologies.
The simplest combined strategy is creating a 3D
pharmacophore to identify possible ligands and conducting
additional docking studies on the target?. These integrated
methods can be divided into two categories: methods based
on interaction and methods based on docking similarity. Using
the physicochemical information, interaction-based
approaches pinpoint the crucial interactions between the
protein and ligand. Then, small molecule libraries are screened
for compounds that can create such an interaction profile
using these interactions. Comparatively, ligand and structure-
based docking approaches are combined in docking similarity-
based methods. Virtual screening is incredibly effective using
these pairings and enables the exploration of libraries
containing up to 106 small compounds?.

6.6. In=silico Target Prediction

SARS (severe acute respiratory syndrome) broke out in China
in the spring of 2003. A serotonin antagonist known as
cinanserin was found to be a possible inhibitor of the 3C-like
(3CL) protease of SARS, which is crucial for processing the
coronavirus replicase polyprotein, according to docking-
based.'s VS analysis. According to the subsequent laboratory
testing, cinanserin can inhibit 3CL protease at nontoxic drug
concentrations (IC50 = 5 mM) and may also be able to
inactivate the SARS virus. The scientists concluded that
cinanserin might be stored in case of future SARS pandemics
or utilized as an emergency treatment because it was an old,
affordable medicine with a proven safety record®”. Another in
Silicotarget prediction case study was carried out by merging
a human-reconstructed signaling network with microarray
gene expression data, these authors developed a system
biology technique to examine drug-target interactions and
offer novel insights into the torcetrapib side effects that are
not intended to be seen. The findings revealed that detrimental
effects were very relevant to the platelet-derived growth
factor receptor (PDGFR), interleukin-2 (IL-2), hepatocyte
srowth factor receptor (HGFR), and epidermal growth factor
receptor (ErbBl) tyrosine kinase. Torcetrapib's acquired
potential off-targets were also discovered using the reverse
docking approach?. Another case study focused on fibroblast
growth factor receptors (FGFRs), which are targets for the
treatment of various human cancers and consist of an
intracellular domain with tyrosine kinase activity, three
immunoglobulin-like domains, and an extracellular ligand
domain composed of a single transmembrane helix domain.
Applied the reverse pharmacophore mapping approach to
finding potential targets for an active substance that they had
previously synthesized and demonstrated strong in vitro

Pharmacoinformatics

antiproliferative properties. Tyrosine kinases may be the
representative compound's possible targets, according to in
Silicotarget prediction. Following structural optimization,
acenaphtho[l,2-b] pyrrole carboxylic acid esters were found
to be potent inhibitors of FGFRI, with IC50 values ranging
from 19 to 77 nM, and to exhibit favorable growth inhibition
properties against FGFR-expressing cancer cell lines. It was
shown by the structure-activity relationship (SAR) analysis
assisted by molecular docking simulation in the ATP-binding
site?.

7. LIGAND-BASED DRUG DESIGN

Ligand-based drug design utilizes pharmacophore modeling,
chemometric analysis, and machine learning algorithms to
quickly analyze huge amounts of data regarding known active
sites on receptors or enzymes to identify new compounds
with the potential to bind or inhibit their targets.”” These new
compounds can then be further tested and refined in
Silicobefore progressing onto further stages of drug
development. Ligand-based drug design utilizes a library of
known small molecules with known binding activity for a target
protein or other macromolecule of interest. By matching the
three-dimensional shape of the known ligand(s) to that of the
unknown compound, computer modeling techniques are used
to assess their binding ability with potential cancer targets®?'.
In this way, lead compounds can be identified that exhibit
favorable properties for effective drug delivery and maximum
efficacy against cancer cells®>'.

7.1. QSAR

Quantitative structure-activity relationships (QSAR) are a
powerful predictive tool for discovering novel compounds
based on established relationships between chemical
structures and biological activities. This method utilizes
various statistical techniques to measure the relationship
between various physicochemical parameters of a molecule
(e.g., its size, shape, surface charge, and hydrophobicity) and
its biological activity to predict the behavior of other
molecules with similar structures.®* This type of analysis can
provide valuable insight into structure-activity relationships,
aiding in the design of new drugs with enhanced efficacy and
specificity. Another method indicating 3-D QSAR modeling: is
used to predict how changes in molecular structure can
influence activity. They utilize physical parameters like size and
shape and properties like electronegativity and charge density.
It can be useful for predicting the binding affinity of small
molecules for given drug targets without physically
synthesizing each one for testing.’**® The various tools for
studying QSAR models are shown in Table-5.

Table-5: Tools Used for QSAR Studies

S.No Tools Description
| DRAGON Descriptors, Alisnments, and Statistics for Genetic Optimization of Responses
2. RD Kit Rational design kit for QSAR
3. CORAL Comprehensive Organically Regsulated Active Library
4 Amber tools package Parameter for QSAR descriptors studies
5 WEKA Machine learning algorithm with extensive capabilities for data pre-processing,
model construction, evaluation, and optimization
6. ChemMine Tools A suite of machine learning models and applications to process bioactivity

data, such as clustering or virtual screening results
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7. CatRAPID An automated framework developed to support the design of selective
inhibitors targeting small molecules using the CatRAPID algorithm
8. OPUSQSAR Framework based on linear methods (multiple linear regression), developed
to allow easy data curation, development, and validation of QSAR models.
9. DockMaster Pro An advanced tool for efficient comparison of binding sites within multiple
ligand structures with enhanced 3D search capabilities for exploring non-
active site drug discovery
10. SMILE (Structure Modeling Interface & Library Extension) Toolbox to Generate the
QSAR Model Parameters
I1. KNIME To Construct Models by Connecting Nodes and Linking Tools Together
12. Cheminformatics Suite of Chemical For Analyzing Structure-Property Relationships

Computing Group Inc. (CCGQG)

7.2.  Fragment based-Descriptors

The number of molecular descriptors is exploding for
application in chemoinformatics; more than 4000 of these
structural variables have been documented in the literature,
such as functional group counts (FGC) and atom-centered
fragments as descriptors (ACF).* Several QSAR research have
successfully used these descriptors. They offer a wealth of
important knowledge about certain molecular fragments or
functional groups, their capacity to engage in hydrophobic and
dispersive interactions, or their capacity to display a specific
chemical reactivity. The variables utilized in a Free-Wilson
analysis share some characteristics with the previously
described fragment-based descriptors. The spectral moments
of the bond adjacency matrix (lk), the cornerstone of the
TOPS-MODE (topological substructural molecular design)
approach, were another set of fragment-based descriptors.
These descriptors have been used often in QSAR studies, >,
and for evaluating various toxicological profiles.’**

71.3. Artificial Intelligence (Al) Based Drug Design

Artificial intelligence is being utilized to create deep learning
models that can be used to discover novel molecules with
desirable features and optimize existing compounds by
selecting ideal combinations of atom types or substituents
known to produce higher affinities or greater bioactivity
against desired targets.>*

7.4. Virtual Screening (VS)

Virtual Screening (VS): Virtual screening is an in Silicotechnique
used to quickly and cost-effectively identify potential drugs by
comparing them against a target drug molecule, such as a
specific enzyme or receptor site. It allows researchers to
rapidly explore thousands of different structures, each with its
chemical properties, to narrow their focus to molecules with
the most promising properties.**

7.5. High Throughput Screening: High throughput
screening (HTS)

HTS techniques are automated processes that are used to
quickly evaluate large numbers of compounds to identify those
that may be suitable candidates for drug development or target
identification using reverse docking.**

7.6. HTS-Virtual screening

It's a high-throughput screening technique used for drug
discovery and development. This technology uses

computational tools such as virtual libraries, QSAR
(quantitative structure-activity relationships), 3D-QSAR, and
protein-ligand docking to quickly screen thousands of potential
drug molecules and identify those with the most promise for
further study and development.** It also allows exploring
large databases of chemical compounds to find novel drugs
with optimal binding affinity. HTS-Virtual screening is a drug
discovery process that combines high throughput and virtual
screening approaches to identify promising compounds for
developing new anticancer drugs.*“* This process typically
involves rapidly screening large libraries of compounds using
computer algorithms before making a more informed decision
on which compounds should progress further in the drug
development pipeline. Structure-based drug design is used
within HTS-Virtual screening, where the 3D structures of
proteins involved in disease processes are studied to
understand their interactions with small molecules.”* This
information can be used to predict and optimize new
molecules as potential therapeutic agents. Ligand-based drug
design takes this one step further, focusing on identifying and
validating the relationship between biological activities of
potential therapeutics and specific binding sites in a target
molecule. These approaches can provide valuable insights into
how potential new anticancer drugs interact with their targets
and thus form an essential part of modern drug discovery
strategies. The HTS-Virtual screening approach has been used
in drug discovery and the development of potential new
anticancer treatments. It involves utilizing high throughput
screening (HTS) methods and computational models to
identify novel compounds that may have therapeutic effects
against cancer cells. HTS-Virtual screening leverages various
technologies such as cheminformatics, structure-based design,
pharmacophore searches, similarity searching, ligand-based
design, and more to identify candidates from large libraries of
available compounds.*’#¢

7.7. Lead Optimization

The discovery of effective new treatments for cancer
continues to be a major challenge for the medical community.
With the development of more sophisticated technologies and
approaches, it is possible to identify promising leads for
anticancer drug discovery. Lead discovery and optimization is
a complex scientific process involving identifying, testing, and
refining potential drug candidates™®.

7.7.1. Steps for lead optimization

Lead optimization is a key step in anticancer drug discovery. It
involves selecting candidate compounds that show promising
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results in preclinical studies and then modifying them to
improve their efficacy, safety, and bioavailability. Lead
optimization techniques involve a series of steps divided into
three main categories: assessing the target, analyzing the
candidate compounds, and modifying the compounds **'. The
first step in lead optimization is to assess the target. It means
understanding the characteristics of the target protein or
enzyme and how it functions in the disease. It will help identify
the best compounds to target and provide insight into how
they should be modified*'. The next step is to analyze the
candidate compounds. It includes testing the compounds in
preclinical studies and evaluating their efficacy. It will help
identify which compounds have the potential to be effective
anticancer drugs®®'. Finally, compounds promising in
preclinical studies must be modified to improve their efficacy,
safety, and bioavailability. It may include chemical
modifications, such as changing the molecule's structure, or
using other techniques, such as conjugation or adding
functional groups. By making these modifications, the drug can
be more effective in treating cancer®>,

7.7.2. Lead Optimization for anticancer drug discovery

Lead optimization for anticancer drug discovery is important
in developing effective cancer therapies. It involves identifying
and selecting compounds that interact with the target protein,
optimizing their structures, and testing their efficacy in animal
and human models****. Lead optimization involves applying
computational and chemical techniques to improve the drug's
activity and specificity for the target protein. It can include the
introduction of modifications to the drug's chemical structure,
the application of bioinformatics to analyze the structure-
activity relationships, as well as the use of high throughput
screening techniques to identify active molecules®**’. Lead
optimization is essential to improve the efficacy and safety of
anticancer drugs. It helps identify new drug candidates that are
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specific and selective for the target protein and possess
improved properties such as greater stability, bioavailability,
and selectivity. It leads to more effective and safer anticancer
drugs, which can help to improve the outcomes of cancer
patients®****. Lead optimization and discovery are critical steps
in developing anticancer drugs. Lead optimization and
discovery aim to find the most promising chemical compounds
with the highest potential to become effective drugs. The
process involves identifying, optimizing, and testing structural
leads to develop the most promising candidate compounds®*®,
Lead optimization involves the modification of existing
chemical compounds to maximize their potential efficacy and
safety. It can involve changing the chemical structure or how
the compound binds to its target. The optimization process
also includes testing the candidate compounds on cellular and
animal models to assess the safety and efficacy of the
compounds. Lead discovery involves the identification of new
chemical compounds that have the potential to be effective
drugs. It can be done through high throughput screening of
libraries of compounds or the exploration of natural products.
The discovery process also includes testing the compounds on
cellular and animal models to assess their safety and
efficacy’>*>. In-silicoLead optimization and discovery are
essential steps in developing any anticancer drug. By optimizing
and discovering new compounds, researchers can identify the
most promising candidates for further development into
effective drugs through In-silico docking, Pharmacophore
mapping, and QSAR studies®***.

7.7.3. Tools Used for Lead Optimizations

The tools and software programs used for lead optimization
are the Schrodinger-Phase program, mainly focused on lead
optimization by structure-activity relationships, auto dock vina
for drug repurposing and optimization, and Discovery Studio-
Catalyst®>*3,
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Fig-6: Flow Chart for hit identification followed by Lead Identification and Optimization®*

Via data preparation to find new leads. (A) The standard in
Silicodrug design cycle consists of docking, scoring, and ranking
initial hits based on their steric and electrostatic interactions

with the target site, commonly called virtual screening.
Generally, ligand-based virtual pre-screening has been utilized
without structural information of a receptor protein, enzymes,
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or signal transductors and when one or more bioactive
compounds are available. This pre-screening method is carried
out by similarity search. The basic principle behind similarity
searching is to screen databases for similar compounds, which
is based on the backbone of the structural features of lead
molecules. (B) In many situations, 2D similarity searches of
databases use the chemical features of the first-generation hits.
(C) One alternative approach employs a ligand-based
pharmacophore strategy often partnered with structure-based
docking that uses a more stringent scoring matrix to
determine the relative score by matching two characters in a
sequence alignment. It enhances the enrichment of initial hits
and identifies the best compounds for computational
evaluation: the second-generation hits. (D) Based on the
molecular interactions between the target (Receptors,
proteins, or enzymes) and hits (Identified active molecules),
the second phase often identifies ligand-based sites for
optimizing these metrics for a unique molecular chemotype.
(E) Computer algorithms, compounds, or fragments of
compounds from a database are positioned into a selected
region of the structure (docking). These compounds are
scored and ranked based on their steric features and
electrostatic interactions between their target sites. (F)
Structure determination of the target in complex with a
promising lead from the first cycle reveals sites on the
compound that can be optimized to increase potency.

8. MULTI-TARGETED DRUG DESIGN FOR
ANTICANCER DEVELOPMENTS

Three different steps can be used to separate the multi-
targeted drug design strategies: The first phase in developing a

Pharmacoinformatics

multi-targeted medicine is choosing a target and combination;
the second is discovering the pharmacophore against different
targets; and the last step is combining the identified
pharmacophore. Network pharmacology analytic methods
and coordinated high-throughput screening (HTS) are used to
choose target combinations while designing multi-targeted
anticancer drugs.®***” Network pharmacology provides
helpful information regarding target/drug combinations that
have synergistic effects and likely routes for many substances
at the systemic level by investigating complex and multi-
layered networks. After choosing a target combination,
identifying the pharmacophore versus individual targets was
done rationally and computationally using shape-based
pharmacophore matching, 3D QSAR analysis, molecular
docking, and combinations of these methods.****’ To create
multi-targeted  anticancer  medicines, the identified
pharmacophore can be combined with merged, fused, linked
with a cleavable or non-cleavable linker, and so on. A suitable
strategy should be employed to create multi-targeted
medications because the methodology for the combination is
based on the characteristics of important pharmacophore
elements and scaffold architectures.®*’ The multi-targeted
anticancer agent's developed molecule should sustain its
interaction with the primary target while being acceptable to
secondary targets. De novo designing (fragment-based drug
designing), multi-target virtual ligand screening (VLS),
structure-based drug design (SBDD), ligand-based drug design
(LBDD), and combinations of these methodologies are
computational methods that are used to design dual or multi-
targeted anticancer drugs with remarkable methods to speed
up the process.>’
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Fig 7: Flow Chart for Development of Multi-Targeted Anticancer Drugs

9. CASES OF LEAD DISCOVERY AND
OPTIMIZATION

The desired activity of a lead chemical was discovered during
screening; however, further testing is required to confirm this
activity. One of the most used techniques for lead discovery is
docking, which includes predicting ligand shape and orientation
within a particular binding site. Docking is typically integrated
into the workflow of various in Silicoprocedures. Modern drug

development relies heavily on identifying tiny compounds and
turning them into lead series with high content ***”. Zanamivir,
dorzolamide, and captopril are three of the best instances of
lead optimization and discovery compounds. A neuraminidase
inhibitor called zanamivir (Relenza®, Gilead Sciences) is used
to prevent and treat influenza brought on by influenza A and
B viruses. The architecture of the active site of the influenza
neuraminidase protein was revealed by X-ray crystallography,
enabling for the first time the creation of an inhibitor to stop
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the virus from exiting its host cell and infecting other cells **
*7_ A drug design method focused on structure was used to
attain this success. An array of sialic acid analogs was created
using computer-assisted active site modeling. ¥ However,
dorzolamide (Trusopt®, Merck), a carbonic anhydrase
inhibitor that reduces the production of aqueous humor and
is used to treat glaucoma, was the first medication used in
human therapy that was created using structure-based drug
design and ab initio calculations. The project's incorporation
of two ideas that the prototype molecule produces two
enantiomers and that the active-site cavity is amphiphilic was
essential for the successful design of dorzolamide. A last
example of the early efforts and triumphs of structure-based
and ligand-based drug design is the antihypertensive
medication captopril (Capoten®, Bristol-Myers-Squibb), an
ACE inhibitor used to treat some kinds of congestive heart
failure and hypertension. The understanding that the
enzymatic mechanism of ACE was comparable to that of
carboxypeptidase A with the distinction that ACE cleaves off
a dipeptide, whereas carboxypeptidase A cleaves a single
amino acid residue from the carboxyl terminus of the protein,
was important for the design of captopril. The development of
captopril 4 (IC50 =23 nM) was heavily influenced by structure-
activity relationship (SAR) research ***’,

10. INCREASE
CHEMICAL
DISCOVERY

IN BIOLOGICAL DATA ON
MOLECULES FOR DRUG

Pharmacoinformatics

By biological screening, enormous amounts of data have been
gathered over the past few decades on hundreds of thousands
of tiny molecules. This data has been pooled in online
repositories that are open to inquiry. For instance, large-scale
studies including more than one million compounds have been
produced due to developments in HTS methodology.
Information is also growing quickly due to improvements in
chemical synthesis and HTS methods. This biological assay data
has also been aggregated in chemical library databases. The
development of machine learning models and contemporary in
Silicodrug discovery have been made possible by accumulating
data and its availability to the general public. Prioritizing drug
candidates according to their pharmacological characteristics
and potential adverse effects can be done in the early phases
of drug discovery using conventional prediction techniques like
quantitative structure-activity relationship (QSAR) models.
Several machine learning-based prediction techniques have
been created recently due to increased public resources to
forecast drug-target interactions, the permeability of
substances across the blood-brain barrier, and the ADMET-
Tox characteristics of therapeutic candidates. CADD
techniques may find a new path forward by incorporating
machine learning algorithms and accumulating data. Table 6
provides a list and summary of the public databases, which
contain both chemical and biological databases that are
accessible, and Table-7 shows a list of ligand site prediction
too|556,57,58.

Table-6: Currently Available Chemical and Biological Databases for In-silico Drug Design

Database Website

Information for In-silico Drug Design

PubChem https://pubchem.ncbi.nim.nih.gov

Chemical structure, identification, physical and
chemical properties, biological activities, patents,
safety, toxicity

PDB www.rcsb.org

Macromolecules, proteins, Enzymes, Receptors, and
3D structures

ChEMBL www.ebi.ac.uk/chembl

2-D structures, log P, mol weight, Lipinski
parameters, binding constants, pharmacology, and
ADME

Binding DB www.bindingdb.org

binding affinities for drug-like compounds that
interact with proteins (therapeutic targets). It has
1,454,894 binding records for 652,068 small
molecules and 7,082 protein targets

ZINC https://zinc.docking.org

substances for purchasing commercially for
structure-based virtual screening. 90 million
chemicals available. Ready-to-dock, 3D configurations
with molecules depicted in biologically appropriate
shapes

ChemSpider www.chemspider.com

structure searches for more than 63 million
compounds

Drug Bank www.drugbank.ca

|1 1,652 drug entries are included in it, including 5,485
experimental pharmaceuticals and 2,602 authorized
small molecule drugs, as well as 1,075 approved
biotech drugs

GRAC www.guidetopharmacology.org

summaries of the salient characteristics and available
tool compounds and selective ligands. Information on
the pharmacological, physiological, structural, genetic,
and pathophysiological characteristics of each target

ChemBridge www.chembridge.com

chemical compounds like small molecules and target-
focused screening compounds over 14,000 chemical
building blocks

Maybridge www.maybridge.com

chemistry products and services for the drug
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discovery and biotechnology sector.

ChemDiv www.chemdiv.com

It offers a shelf-available set of over |.5M individual
solid screening compounds

Life Chemicals www.lifechemicals.com

It offers over 1,350,000 drug-like and lead-like
screening compounds for HTS

Specs WWW.sSpecs.net ordering system for Screening compounds, Building
blocks, and Natural products gives you FREE secured
access to its entire available compound library of
over 240.000 true novel compounds.
Enamine www.enamine.net It distributes data about structures of offered

compounds in MDL SD Files

ZincPharmer https://zincpharmer.csb.pitt.edu

Free pharmacophore search software.

Procheck https://www.ebi.ac.uk/thornton- Protein, Macromolecule verification server
srv/software/PROCHECK/
Uniport/Swiss-  https://www.expasy.org/resources/uniprotkb-swiss- UniProtKB/Swiss-Prot is the expertly curated
Prot prot component of UniProtKB (produced by the UniProt
consortium). It contains hundreds of thousands of
protein descriptions, including function, domain
structure, subcellular location, post-translational
modifications, and functionally characterized variants.
Swiss-model https://swissmodel.expasy.org/ Protein, macromolecules structure prediction, and
Homology modeling
Blast https://blast.ncbi.nlm.nih.gov/Blast.cgi Protein/receptors/enzymes/ Nucleotides sequence
analysis
CASTp http://sts.bioe.uic.edu/castp/index.html?3igg Computed Atlas of Surface Topography of Proteins
and protein-ligzand active site prediction
Q-Site finder  https://dl.acm.org/doi/10.1093/bioinformatics/bti3 15 An energy-based method for the prediction of
protein-ligand binding sites
Table-7: List of ligand binding site prediction tools.
ligand binding site Link Description References
prediction tools
CASTp http://sts.bioe.uic.edu/castp/index.html?3igg Computed Atlas of Surface
Topography of Proteins and protein- 59
ligand active site prediction
Q-Site finder https://dl.acm.org/doi/10.1093/bicinformatics/bti3 | 5 An energy-based method for the
prediction of protein-ligand binding 60
sites
Meta-PPISP https://pipe.rcc.fsu.edu/meta-ppisp.html meta-PPISP: a meta web server for
protein-protein interaction site 6l
prediction also ligand binding site
3DLigandSite http://www.sbg.bio.ic.ac.uk/3dligandsite/advanced.cgi  3DLigandStie is an automated method

for the prediction of ligand binding
sites. 62

Il. SUCCESSFUL APPLICATIONS IN CANCER
DRUG DISCOVERY

Creating new anticancer medications is exceedingly complex,
expensive, and time-consuming. Given the benefit of requiring
far less investment in technology, resources, and time,
CADDD is gaining importance. Computational techniques are
now being incorporated at nearly every stage of the drug
discovery and development process due to the dramatically
increased information on genomes, small compounds, and
protein structures that is now readily available. Chemical
compounds may have a higher affinity for their target when
they are developed logically with the aid of computational
tools, given the 3D structure of a target molecule. Several
effective uses of structure-based medication design have been
documented in recent years **** The discovery of the p53
upregulated modulator of apoptosis (PUMA) inhibitors is an

intriguing example of structure-based pharmacophore
modeling. A proapoptotic protein belonging to the Bcl-2
protein family, PUMA. The tumor suppressor p53 is in charge
of controlling its expression. PUMA suppression or ablation
results in a lack of apoptosis, which increases the likelihood of
cancer formation and therapeutic resistance. By interacting
with every member of the known anti-apoptotic Bcl-2 family,
this cancer therapeutic target plays a key role in mitochondria-
mediated cell death. Many methods have been used to find
small compounds that can modify the interactions between
BH3-only proteins and Bcl-2-like proteins, suppressing
apoptosis. Most of the work has gone into creating Bcl-2 family
inhibitors that replicate the effects of BH3 domains, which
promote apoptosis. These substances have been found using
computational modeling, structure-based design, and high-
throughput screening of libraries of synthetic and natural
products ***, In contrast, Liu et al®’. published a combinatorial

P144


https://dl.acm.org/doi/10.1093/bioinformatics/bti315

ijlpr 2023; doi 10.22376/ijlpr.2023.13.5.P130-P148

computational method for identifying possible inhibitors
against the insulin-like growth factor-1 receptor (IGF-IR),
which has been linked to a number of malignancies, including
breast, prostate, and lung cancer. The tyrosine kinase family
member |IGF-IR is essential for the signaling pathway that
controls cell growth, proliferation, and death. A focused
library was created using the initial hit from hierarchical VS as
the query scaffold for the substructure search. The library was
subjected to an internal pharmacophore-constrained docking
procedure for IGF-IR screening. Ultimately, enzymatic testing
revealed inhibitory action in |5 out of 39 compounds.
Surprisingly, the two strongest inhibitors showed significant
selectivity over the insulin receptor (IR), similar to the IGF- IR,
and great inhibitory activity (IC50 = 57 and 61 nM,
respectively). The scientists concluded that the prospective
selective IGF-IR inhibitors might be studied as molecular
probes to distinguish between the biological activities of IGF-
IR and IR in addition to being possible anticancer medicines
4 Tubulin inhibitors are a further successful example of
small compounds created employing a ligand-based strategy. A
key target for cancer treatment is tubulin polymerization, a
crucial step in cell cycle progression and cell division. Several
antimitotic drugs, including paclitaxel, colchicine, and the vinca
alkaloids, have been identified and are used in medicine. Still,
they frequently exhibit high toxicity levels, poor bioavailability,
quickly developing resistance, and overexpression of drug-
resistant pumps that expel these mitosis inhibitors from the
cell. Since it is thought that antimitotic drugs might operate to
reduce the blood supply to malignant tumors, researchers
have spent a lot of time and energy trying to find new agents
with more palatable and effective qualities. Liu et al*’. used
structure-activity relationship (SAR) analysis to power their
model generation based on 21 indole derivatives first created
for potential tubulin inhibition. These substances were chosen
so that the range of their inhibitory IC50 values, from 1.2 nM
to 6M, covered three orders of magnitude. Based on the same
chemical properties of these compounds, the authors decided
to build a chemical library using four common pharmacophoric
features: a hydrophobic group, a hydrophobic aromatic group,
a hydrogen bond donor, and a hydrogen bond acceptor. A
human oral squamous carcinoma cell line was then used to test
142 substances (KB) physiologically. Four of these [42
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biologically investigated substances were discovered to inhibit
the KB cell line, with corresponding IC50 values of 187 nM,
20M, 3.0M, and 5.7 M. With IC50 values of 236 nM, 285 nM,
and 319 nM, respectively, the most potent substance of these
four active molecules was also discovered to inhibit the
growth of other cancer cell lines like SF-268 (human central
nervous system cancer), NCI-H460 (human non-small-cell
lung cancer), and MCF-7 (breast cancer). The |-Kappa-B
Kinase (IKK-) inhibitors are another instance of small
compounds created utilizing a computational technique. In
addition to inflammation, 59 IKK-, a crucial component of the
NF- B signaling cascade, is yet another potential target for
cancer therapy. To find novel drugs with affinity to IKK-, Noha
et al.”® opted to apply ligand-based pharmacophore modeling
in 201 1. To create an IKK- inhibitor-specific pharmacophore
model, the ligand-based pharmacophore model for this
investigation was based on a group of five drugs with high
activity (IC50 values of 100 nM or less) and at least a few-fold
difference in selectivity for IKK- over NF B “*. The model
was further improved using a dataset taken from the literature
that included 12,775 different random decoy compounds, 128
active compounds, and 44 physiologically inactive compounds.
The top 10 high-scoring substances underwent in vitro testing.
The most effective compound NSC-719177 had an IC50 value
of roughly 6.95 M and could inhibit IKK-. The capacity of
compound NSC-719177 to suppress NF B activation in
HEK293 cells that had been transfected and contained a
luciferase reporter gene activated by a promoter made up of
several copies of the NF- B response element was also tested
by cell-based analysis. In a cell-based experiment, compound
NSC-719177 was discovered to have an IC50 value of roughly
5.85M and to show dose-dependent efficacy in suppressing
TNF-induced luciferase activity. As a result, Noha et al.”
showed the effective use of ligand-based methods for
discovering low micromolar inhibitors of IKK. The utilization
of high-throughput X-ray crystallography for a target alone or
in complex with small compounds and the advancement of
much more advanced molecular modeling tools has made
rational drug design methodologies an essential tool for
creating target-based therapeutics. The Selected anticancer
drugs/inhibitors developed with computational chemistry and
rational drug design strategies are Shown in Table-8.

Table-8: Selected anticancer drugs/inhibitors developed with computational chemistry and rational drug design

strategies
Molecule/Drug Pharmacological Area Pharmacological References
Name Function
Gefitinib NSCLC EGFR kinase inhibitor 65
Erlotinib NSCLC pancreatic cancer EGFR kinase inhibitor 66
Sorafenib Renal cancer, Liver cancer, Thyroid cancer, HDACi VEGFR kinase inhibitor 67
Lapatinib ERBB2- positive breast cancer EGFR inhibitor 68
Abiraterone Metastatic castration-resistant prostate cancer or hormone- Androgen synthesis 69
refractory prostate cancer inhibitor

12. CONCLUSION

Cancer is one of the leading causes of death worldwide,
making it urgently necessary to find new ways to treat the
disease. In Silicodocking and pharmacophore mapping are
powerful approaches to developing anticancer drugs. These
tools are used to investigate the interactions of a drug
molecule with its receptor and predict its pharmacological
effects. In this concern, we have discussed the revolutionary

study for in Silicostructure-based and ligand-based methods,
which include docking and pharmacophore mapping,
Molecular modeling, Homology modeling, HTS-Virtual
screening, drug repositioning & repurposing, and Multi
Targeted Drug strategies for the development of anticancer
drugs. We also demonstrated how these methods were used
to identify effective drugs for treating cancer. Finally, These In-
silico drug design approaches have the importance of this
innovative research for advancing the fight against cancer.
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