

Study on Phytochemical Profiling of *Euphorbia cyathophora* Leaf Extracts and Their Potential Antimicrobial, Larvicidal, and Pupicidal Properties Against *Earias vittella*

Kannan Moorthi^{1*} , Kanagaraju Natesan², Chandramohan Balamurugan³ and Madhiyazhagan Pari⁴

¹* Ph.D. Research Scholar, PG & Research Department of Zoology, Kandaswami Kandar's College, P.Velur Namakkal-638 182, Tamilnadu, India

²Associate Professor & Head (Retd.), PG & Research Department of Zoology, Kandaswami Kandar's College, P.Velur, Namakkal-638 182, Tamilnadu, India

³ Assistant Professor, PG & Research Department of Zoology, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri-636 807, Tamilnadu, India

⁴ Assistant Professor, PG & Research Department of Zoology, J. K. K. Nataraja College of Arts and Science, Komarapalayam, Namakkal -638 183, Tamilnadu, India

Abstract: *Earias vittella* is a very serious polyphagous agricultural pest that can directly or indirectly damage crops and stored products worldwide. The use of synthetic chemicals in pest control has resulted in physiological resistance and adverse environmental effects. However, this alternative to plant-based pest control systems is ecologically friendly and biodegradable. Moreover, *Euphorbia cyathophora* is a medicinal plant used for many therapeutic activities. Therefore, the present study is aimed at evaluating the phytochemical, *in vitro* antimicrobial, larvicidal, and pupal activity of *E. vittella*. A preliminary phytochemical screening of *E. cyathophora* leaf various extracts revealed the presence of numerous bioactive components such as alkaloids, flavonoids, sterols, terpenoids, anthraquinones, carbohydrates, and essential oils. GC-MS analysis of *E. cyathophora* leaf different extracts revealed the presence of 29 phytochemicals. Among the extracts tested, the methanolic leaf extract showed the highest range of growth inhibition against gram-positive bacteria *Streptococcus iniae* (15 ± 0.26) and gram-negative bacteria *Aeromonas hydrophila* (13 ± 0.6), while antifungal activity against *Aspergillus flavus* (14 ± 0.2) and *Aspergillus niger* (12 ± 0.36) compared to other solvent extracts. In addition, the bioefficacy of *E. cyathophora* leaf extract treated against IV instar larvae and pupae of *E. vittella*; however, the highest larval and pupal mortality was observed in the methanol extract at 750 ppm, followed by acetone and chloroform against *E. vittella*. Larvicidal activity of *E. cyathophora* leaf extracts showed LC₅₀ and LC₉₀ values: methanol 298.64 ppm (708.14); Acetone 362.61 ppm (848.56), and chloroform 415.18 ppm (937.31), respectively. Similarly, the pupicidal effect of *E. cyathophora* leaf extracts showed LC₅₀ and LC₉₀ values: methanol 470.25 ppm (958.01); acetone 527.36 ppm (996.35) and chloroform 545.55 ppm (997.88). This study strongly suggests that *E. cyathophora* leaf extract exhibited significant larval and pupal mortality and potential antimicrobial activity, which can be observed as the development of a new botanical preparation for economic pest control.

Keywords: *Euphorbia cyathophora*, Phytochemical screening, GC-MS analysis, *Earias vittella*, antifungal, antibacterial

*Corresponding Author

Kannan Moorthi, Ph.D. Research Scholar, PG & Research Department of Zoology, Kandaswami Kandar's College, P.Velur Namakkal-638 182, Tamilnadu, India

Received On 18 February, 2023

Revised On 25 February, 2023

Accepted On 28 February, 2023

Published On 1 March, 2023

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Kannan Moorthi, Kanagaraju Natesan, Chandramohan Balamurugan and Madhiyazhagan Pari, Study on Phytochemical Profiling of *Euphorbia cyathophora* Leaf Extracts and Their Potential Antimicrobial, Larvicidal, and Pupicidal Properties Against *Earias vittella*.(2023).Int. J. Life Sci. Pharma Res.13(2), L235-L248 <http://dx.doi.org/10.22376/ijlpr.2023.13.2.L235-L248>

I. INTRODUCTION

India is an agricultural country, and our economy is solely driven by agricultural productivity. Insects destroy 5 to 30% of the world's total agricultural production. Both agricultural production and stored agricultural products are under serious threat¹. *Earias vittella* (Noctuidae: Lepidoptera) is a pest that affects a variety of economically significant crops and has a wide range of hosts, including cotton, okra, and peas.^{2,3} *E. vittella* is generally an early and mid-season pest, attacking the delicate terminal shoots, sneaking into the stem, and feeding on flowers and green pods.⁴ Larvae not only attack capsules and fruits, but also damage shoots, buds, and flowers.⁵ However, this pest can cause up to 40% and 41.6% of cotton seed and okra losses, respectively. Conversely, cotton yield losses can reach 50% with a heavy infestation. The larvae cause 50-70% damage, including deformation and poor-quality fruit.^{6,7} Infectious diseases remain a major public health problem, accounting for 41% of the global burden of disease measured in Disability Adjusted Life Years. Because of this problem of antibiotic resistance, attention is now turning to biologically active ingredients isolated from coexisting plant species used as herbal medicine as they could represent a potential new source of antibacterial and antifungal activity. Chemicals such as synthetic pesticides are indispensable to technologically advancing agricultural production processes. Using chemicals is the best strategy to prevent pre- and post-harvest crop losses from insect pests and diseases. However, synthetic insecticides have caused many unexpected problems at the time of their toxicity, causing acute and chronic poisoning of users, mold workers, consumers, fish, birds, and other wild animals, etc., with risks to humans, live animals, and the entire environment and ecosystem. Therefore, searching for plants or biopesticides can be an effective and advantageous substitute for commercial pesticides, resulting in an integrated approach to pest control due to specific and environmentally friendly targets, a small number of applications, higher acceptable properties, and an improvement in pest management insects and plant pests. Pathogenic microorganisms are currently an inevitable trend.^{8,9} Many Euphorbiaceae plants have been used in traditional, complementary, and alternative medicine.¹⁰ The annual herb *Euphorbia cyathophora* is used for many wound-healing, antimicrobial, anticancer, and Ayurvedic remedies, including dwarf star, fire tip, and painted leaf, found locally in North and South America and naturalized elsewhere. Medicinal plants are important because, according to traditional medicinal practices and modern scientific research, they are useful for medicinal purposes to alleviate

diseases and improve human health. Many studies present medicinal plants as valid therapeutic aids for various ailments. Known as biopesticides, these natural plant products have long been used to control microorganisms that cause plant diseases.¹¹ These plants are considered a rich source of ingredients for drug synthesis and production.¹² In recent years, gas chromatography-mass spectrometry (GC-MS) has been widely used to identify various bioactive medicinal compounds in medicinal plants. GC-MS is one of the best, fastest, and most accurate techniques for detecting various compounds, including alcohols, alkaloids, nitro compounds, long-chain hydrocarbons, organic acids, steroids, esters, and amino acids, and requires a small number of plant extracts. Many of these benefits point to the potential role of phytochemicals in disease prevention and treatment and in treating human disease for hundreds of years. They may have a large and diverse collection of natural compounds that plant antioxidants trigger certain physiological movements in the human body. Plants produce a variety of secondary metabolites with significant differences in their structure and are useful to humans in various applications. Secondary metabolites are classified into glycosides, alkaloids, phenols, terpenoids, tannins, essential oils, saponins, resins, steroids, etc. Many of these secondary metabolites, likely true plant isolates, mixtures, and chemically modified derivatives, are of commercial importance. And are used in flavors, fragrances, and pharmaceutical preparations, biologically living compounds worldwide that can protect against diseases.^{13,14,15} Today, several chemicals derived from plants are used as essential pills in several countries worldwide.¹⁶ Therefore, the present study investigated phytochemical screening and GCMS analysis of *E. cyathophora* leaf extract. In addition, this study evaluated the in vitro antimicrobial, larvicidal, and pupicidal -the effective activity of *E. cyathophora* leaf extract against *E. vittella*.

2. MATERIALS AND METHODOLOGY

2.1. Collection and Identification of Plant Material

Fresh leaves of *Euphorbia cyathophora* were collected from in and around Namakkal District, Tamilnadu, India. The plant was taxonomically identified and authenticated by Dr. K. Raju, Associate Professor, PG and Research Department of Botany, KandaswamiKandar's College, Velur-Namakkal, Tamilnadu, Affiliated by Periyar University. The voucher specimen of the plant has been deposited in the college laboratory for further reference. Voucher Number: BSI/KKC/4/11/2017/Tech/212.

Fig 1 and 2: *Euphorbia cyathophora* plant

2.2. Preparation of plant extract

The leaves were washed in tap water and dried in the shade at room temperature ($28 \pm 2^\circ\text{C}$) for 5 to 10 days. Because some compounds denature in the sun, they are dried in the shade to prevent decomposition. Therefore, 250 g of fresh and ripe leaves were rinsed with distilled water and dried in the shade. The dried leaves were placed in a Soxhlet apparatus (Borosil Glass Workers Ltd, Mumbai, India) and the extracts were prepared with chloroform, acetone, and methanol [(LobaChemiePvt. Ltd., Bombay, India. Purity 99%) (the concentration of chloroform, acetone, and methanol is 100%, the extraction time is 72 hours and the temperature is kept at 30-40°C)]. The extract yield was 100 g and evaporated to dryness in a vacuum rotary evaporator. The resulting dried residue was stored in airtight bottles in a refrigerator for later use.

2.3. Preliminary Phytochemical screening

Preliminary phytochemical testing of *E. cyathophora* leaf extracts was performed according to the standard qualitative methods of Harborne and Trease, and Evans. In addition, phytochemicals have been tested to distinguish the presence or absence of specific phytochemical groups.

2.4. Gas chromatography-mass spectrum (GC-MS) analysis

The Clarus 680 GC was used in the analysis using a fused silica column packed with Elite-5MS (5% biphenyl, 95% dimethylpolysiloxane, 30 m \times 0.25 mm ID \times 250 μm df), and the Components were separated using helium as the flow medium constant gas. 1 mL/min. The inlet temperature was set at 260°C during the chromatographic run. 1 μl of the extracted sample was injected into the device; the oven temperature was: 60°C (2 min); then from 300°C to 10°C min-1; and 300°C, holding for 6 min. Mass detector conditions were as follows: transfer line temperature of 240°C; ion source temperature of 240°C; electron collision in ionization mode at 70 eV, sample time 0. of 2 seconds, and a sampling interval of 0.1 seconds—fragments from 40 to 600 Da.

2.5. Collection of bacterial and fungal culture

Pathogenic bacteria were obtained from CMFRI Microbiology Laboratory, Cochin, India. The pathogenic fungus was obtained from TRI-Biotech, Trichy, India. The gram-positive bacterium *Streptococcus iniae* and the gram-negative bacterium *Aeromonashydrophila*, followed by the fungus *Aspergillus niger* and *Aspergillus flavus*, were used for antimicrobial screening.

2.6. Antibacterial activity

The antibacterial activity of *E. Cyathophora* leaf extracts was tested using the standard agar well diffusion method with negligible modifications. Pathogenic bacteria were grown on nutrient agar prepared by dissolving 28 g in 1000 ml distilled water and autoclave at 15 psi and 121°C for 15 min. To disinfect the Petri plate, the medium was poured and let to stand. After solidification, 70 μl of the bacterial suspension of *A. hydrophila* and *S. iniae* were collected. A corkscrew was used to make a well, and each sample (25 μl , 50 μl , 75 μl) was poured in, and amoxycyclav (10 mg) was used as a positive control. After placing the samples, the plates were incubated for 24 hours at 37°C, and the zone of inhibition was measured in mm.

2.7. Antifungal activity

Potato dextrose agar medium was prepared by dissolving 40 g potato infusion, 4 g dextrose, and 3.5 g agar in 200 ml distilled water. The dissolved medium was autoclaved at 15 (lb) pounds at 121°C for 15 minutes. The autoclaved medium was mixed well and poured into 100 mm Petri dishes (25-30 ml/plate) while still molten. The antifungal in the sample was allowed to diffuse through the medium and act on the plate inoculated with the fungal cultures. To be tested. The resulting inhibition zones were uniformly circular because of a confluent growth pasture. Therefore, the diameter of the zone of inhibition was measured in millimeters. Petri dishes containing 20 ml of potato dextrose agar medium were inoculated with a 72-hour culture of a fungal strain (*A. niger* and *A. flavus*). Wells were cut, and different concentrations (25, 50, and 75 $\mu\text{l}/\text{ml}$) of samples were added. The plates were then incubated at 37°C for 48-72 hours. Antifungal activity was determined by measuring the diameter of the zone of inhibition formed around the wells. Amphotericin B

(100 units) was used as a positive control. The values were calculated with the Graph Pad Prism 6 software.

2.8. Collection and Mass Culture of Test Insects

Egg mass and larvae of *E. vittella* were collected from Bhendi fruit field in Namakkal, Tamil Nadu, India. The culture of *E. vittella* was carried out under laboratory conditions. Fresh Bhendis were fed larvae daily until pupation. The *E. vittella* was taxonomically identified and authenticated by Dr. K. Murugan, D.Sc., UGC-Emeritus Professor, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu.

2.9. Insect Mortality Bioassay

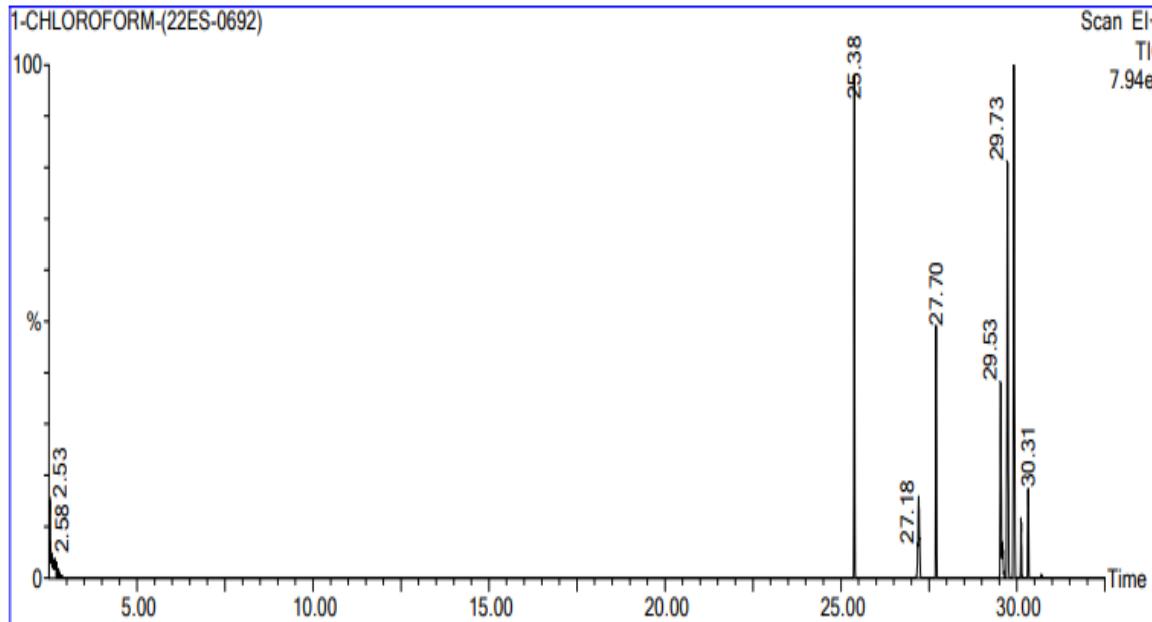
Sliced bhendi pods were treated with different concentrations of *E. cyathophora* leaf extract of 250, 500, 750,

$$P_t = (P_o - P_c / 100 - P_c) \times 100$$

Where,

P_t = Corrected percent mortality
 P_o = Observed mortality
 P_c = Observed mortality in the control

2.10. Statistical analysis


The average adult mortality data were subjected to probit analysis for calculating LC50, LC90, and other statistics at 95% fiducial limits of upper fiducial limit and lower fiducial limit, and Chi-square values were calculated using the SPSS Statistical software package 16.0 version was used. Results with $P < 0.05$ were considered to be statistically significant.

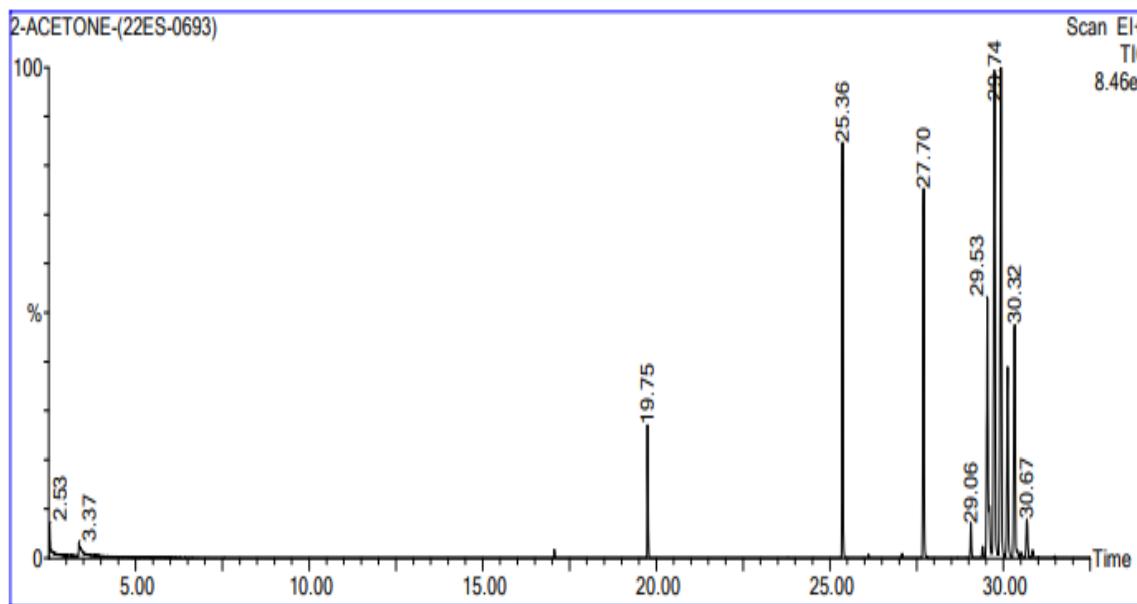
3. RESULTS

A preliminary phytochemical screening of various *E. cyathophora* leaf extracts revealed the presence of numerous bioactive chemical constituents such as alkaloids, flavonoids, sterols, terpenoids, anthraquinones, carbohydrates, and essential oils. The following anthocyanin phytonutrients, proteins, phenols, quinones, tannins, saponins, phytates, cardiac glycosides, glycosides, lignin, and coumarin are absent from all extracts tested. Alkaloids, flavonoids, and carbohydrates were present in all leaf extracts. Sterols were present in chloroform and methanol leaf extracts, except acetone. Terpenoids and anthraquinone are only found in acetone extract. In addition, essential oils were present in chloroform and acetone but not methanol extracts. *E. cyathophora* leaf extract, consisting of chloroform, acetone, and methanol, was analyzed by gas chromatography-mass spectrometry (GC-MS) to identify key phytochemicals. The results of GC-MS analysis of various solvent extracts from *E. cyathophora* leaves showed 29 chemical compounds. These compounds are known to have different therapeutic

1000, and 1250 ppm. Control leaves were treated with distilled water only. The leaves were allowed to dry for 10 min at room temperature and then placed on a damp filter paper disc in 10 cm diameter plastic Petri dishes. Experiments were performed with newly hatched and starved fourth-instar larvae for 3 hours using one larva per dish in five replicates (30 larvae/concentration). After 4 days, the larvae were transferred to fresh, untreated, sliced bhendi pods and stored until they became adults or died. The total number of surviving normal adults was recorded. In addition, the larvae were observed for mortality and morphological changes associated with growth inhibitory effects. The data corrected for percent mortality were subjected to probit analysis to calculate the mean lethal concentration (LC50) (Finney, 1971). The results were modified for mortality in the control group using Abbott's (1925) formula.

effects. Biologically active chemical components were characterized and identified based on retention time, molecular formula, and concentration (% peak area). GC-MS analysis of *E. cyathophora* leaf chloroform extract shows the presence of 10 bioactive compounds, including acidic acid, chloro, 5-dimethyl-2h-1,3-oxazine-3h-2,6-dione, 1-propanol, 2-amino-, (s)-, 6h-purine-6-thione, 1,7-dihydro-7-methyl, dec-9-en-6-oxo-1-acrylamide, phenol, 4-[2-(methylamino) ethyl]-, 4-amino-1-isobutyl piperidine, butylamine, 2,2-dinitro-n-methyl, 1-aziridine-ethanol and pyrimidine, 1,4,5,6-tetrahydro-1,2-dimethyl. The GC-MS chromatogram of *E. cyathophora* acetone extract showed 11 peaks, indicating the presence of 11 compounds shown in table 2 and figure 2. hydroxyurea, pentane, 1,1'-oxy bis, 1-ethyl-2-phenylpyrazolium bromide, 2-azetidine, 3,3-diphenyl, 1-azabicyclo[2.2.2]oct-3-ylamine, urea, n-[2-[1-piperidyl]cyclohexyl]-, methyl 6,11-octadecadienoate, acetamide, n-[3-[3-(4-pyridinyl)ureido]phenyl]-, oxazole, trimethyl, cis,cis-1,6-dimethylspiro[4.5]decane and butylamine, 2,2-dinitro-n-methyl. Based on the GC-MS result, 10 different bioactive compounds were confirmed in the methanolic extract of *E. cyathophora* leaves were confirmed. This was followed by 5h-tetrazole-5-thione, 1-[2-(dimethylamino) ethyl]-1,2-dihydro, 4h-pyran-4-one, henethylamine, 3-methoxy- alpha. -methyl-4,5-(methylenedioxy)-, 5-butyl-2-methyl-. Delta.1-pyrroline trimethadione, 7 azabicyclo[4.1.0] heptane, 1-methyl-4-(1-methylethyl)-, 2-pyrrolidinone, 1-[4-(1-pyrrolidinyl)-2-butynyl]-, 3-azabutyl-1-ol, o-acetyl-4-cyclopropyl-n,n-dimethyl-, bromide, 9-thiabicyclo[3.3.1]nonan-3-one 9,9-dioxide and 4-amino-1-isobutylpiperidine respectively.

Fig 3: GC-MS chromatogram of *E. cyathophora* leaves chloroform extract


Table I: GC-MS analysis of *E. Cyathophoraleaves* chloroform extract

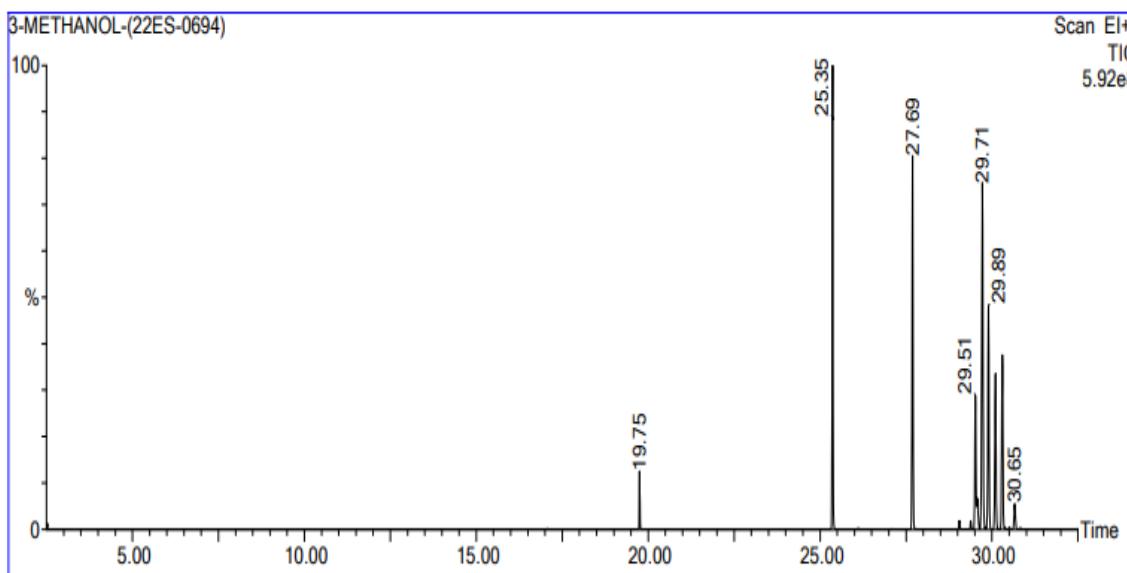
S. No.	RT	Name of the compounds	MF	MW	Area (%)	For	Rev
1	2.528	Acetic Acid, Chloro	C ₂ H ₃ O ₂ Cl	94	4.508	500	500
2	25.378	4,5-Dimethyl-2h-1,3-Oxazine-3h-2,6-Dione	C ₆ H ₇ O ₃ N	141	14.408	412	412
3	27.204	1-PROPANOL, 2-AMINO-, (S)-S	C ₃ H ₉ ON	75	6.150	656	656
4	27.699	6h-Purine-6-Thione, 1,7-Dihydro-7-Methyl	C ₆ H ₆ N ₄ S	166	9.907	525	525
5	29.535	Dec-9-En-6-Oxo-1-Ylamide	C ₁₀ H ₁₇ O ₂ N	183	9.064	429	429
6	29.590	Phenol, 4-[2-(Methylamino)Ethyl]-	C ₉ H ₁₃ ON	151	22.983	931	931
7	29.730	4-Amino-1-Isobutylpiperidine	C ₉ H ₂₀ N ₂	156	22.983	496	593
8	29.910	Butanamine, 2,2-Dinitro-N-Methyl	C ₅ H ₁₁ O ₄ N ₃	177	25.325	431	581
9	30.110	1-Aziridineethanol	C ₄ H ₉ ON	87	2.147	705	705
10	30.315	Pyrimidine, 1,4,5,6-Tetrahydro-1,2-Dimethyl	C ₆ H ₁₂ N ₂	112	3.758	526	526

RT- Retention time; MF- Molecular formula; MW- Molecular weight; For- Forward; Rev- Reverse.

Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the chloroform, acetone, and methanol-based leaf extract of *E. cyathophora* to identify the major phytochemicals. It is shown in Table I and Figure 3. The phytochemicals in the various herbal solvent extracts were identified based on their retention time (RT), molecular formula, molecular weight, and percentage (area), Forward, and Reverse. Several solvent extracts of *E. cyathophora* leaves were subjected to

GC-MS analysis, and the results revealed 29 chemical components. Several medicinal effects of these substances are well-known. Retention duration, molecular composition, and concentration (% peak area) were used to characterize and identify biologically active chemical components. There are 10 bioactive chemicals in the chloroform extract of *E. cyathophora* leaves, including acidic acid.

Fig 4: GC-MS chromatogram of *E. Cyathophora* leaves acetone extract


Table 2: GC-MS analysis of *E. cyathophoraleaves* acetone extract

S. No.	RT	Name of the compounds	MF	MW	Area	For (%)	Rev
1	2.528	Hydroxyurea	CH ₄ O ₂ N ₂	76	1.846	814	814
2	19.745	Pentane, 1,1'-Oxybis	C ₁₀ H ₂₂ O	158	2.902	626	752
3	25.363	1-Ethyl-2-Phenylpyrazolium Bromide	C ₇ H ₁₃ N ₂ Br	204	9.799	324	638
4	27.699	2-Azetidinone, 3,3-Diphenyl	C ₁₅ H ₁₃ ON	223	11.304	396	748s
5	29.059	1-Azabicyclo[2.2.2]Oct-3-Ylamine	C ₇ H ₁₄ N ₂	126	0.997	506	527
6	29.534	Urea, N-[2-[1-Piperidyl]Cyclohexyl]-	C ₁₂ H ₂₃ ON ₃	225	10.835	370	521
7	29.739	Methyl 6,11-Octadecadienoate	C ₁₉ H ₃₄ O ₂	294	22.195	319	597
8	29.924	Acetamide, N-[3-[3-(4-Pyridinyl) Ureido] Phenyl]-	C ₁₄ H ₁₄ O ₂ N ₄	270	20.472	300	576
9	30.120	Oxazole, Trimethyl	C ₆ H ₉ ON	111	7.662	346	346
10	30.320	Cis,Cis-1,6-Dimethylspiro[4.5]Decane	C ₁₂ H ₂₂	166	10.134	315	703
11	30.670	Butanamine, 2,2-Dinitro-N-Methyl	C ₅ H ₁₁ O ₄ N ₃	177	1.854	391	527

RT- Retention time; MF- Molecular formula; MW- Molecular weight; For- Forward; Rev- Reverse

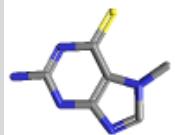
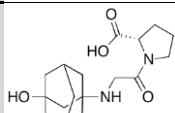
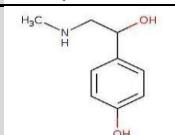
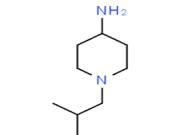
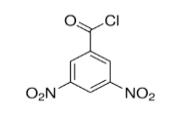
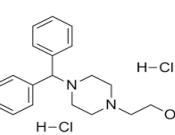
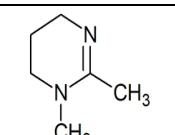
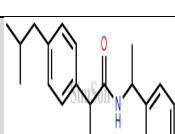
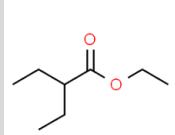
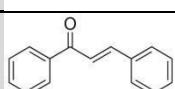
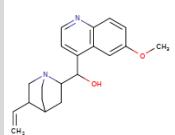
Table 2 and figure:4 shows that 11 peaks were visible in the GC-MS chromatogram of the acetone extract of *E. cyathophora*, indicating the presence of the 11 chemicals such as hydroxyurea, pentane, 1,1'-oxybis, 1,1'-dimethyl-1-ethyl-2-phenylpyrazolium bromide, 2-azetidinone, 3,3-diphenyl, and

1-azabicyclo [2.2.2] Octadecadienoate of methyl, urea, n-[2-[1-piperidyl]cyclohexyl]-, oct-3-ylamine, acetamide, and n-[3-[3-(4-pyridinyl)ureido]phenyl]-, trimethyloxazole, cis,cis-1,6-dimethylspiro[4.5]decane, and butanamine 2,2-dinitro-n-methyl.

Fig 5: GC-MS chromatogram of *E. Cyathophora* leaves methanol extract

Table 3: GC-MS analysis of *E. cyathophoraleaves* methanol extract

S.No.	RT	Name of the compounds	MF	MW	Area (%)	For	Rev
1	19.745	5h-Tetrazole-5-Thione, 1-[2-(Dimethylamino)Ethyl]-1,2-Dihydro	C ₅ H ₁₁ N ₅ S	173	1.782	654	664
2	25.363	4h-Pyran-4-One	C ₅ H ₄ O ₂	96	17.047	460	672
3	27.689	Phenethylamine, 3-Methoxy-.Alpha.-Methyl-4,5-(Methylenedioxy)-	C ₁₁ H ₁₅ O ₃ N	209	17.232	478	729
4	29.514	5-Butyl-2-Methyl-.Delta.1-Pyrroline	C ₉ H ₁₇ N	139	6.960	393	491
5	29.569	Trimethadione	C ₆ H ₉ O ₃ N	143	1.810	606	628
6	29.714	7-Azabicyclo[4.1.0]Heptane, 1-Methyl-4-(1-methyl ethyl)-	C ₁₀ H ₁₉ N	153	21.920	320	559
7	29.895	2-Pyrrolidinone, 1-[4-(1-Pyrrolidinyl)-2-Butynyl]-	C ₁₂ H ₁₈ ON ₂	206	12.750	347	486
8	30.100	3-Azabutyl-1-Ol, O-Acetyl-4-Cyclopropyl-N,N-Dimethyl-, Bromide	C ₁₀ H ₂₀ O ₂ N	186	8.540	305	470
9	30.295	9-Thiabicyclo[3.3.1]Nonan-3-One 9,9-Dioxide	C ₈ H ₁₂ O ₃ S	188	10.352	345	614
10	30.655	4-Amino-1-Isobutylpiperidine	C ₉ H ₂₀ N ₂	156	1.609	537	537

RT- Retention time; MF- Molecular formula; MW- Molecular weight; For- Forward; Rev- Reverse

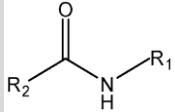
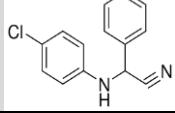
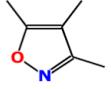
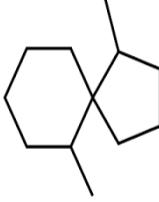
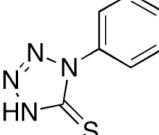
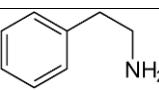
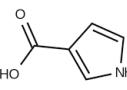
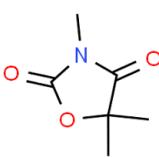
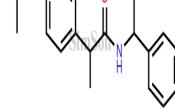
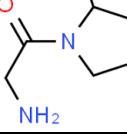











Table 3 and figure: 5 exhibits GC-MS result in methanolic leaf extract of *E. cyathophora*, confirming the presence of 10 different bioactive compounds, 5h-tetrazole-5-thione, 1-[2-(dimethylamino)ethyl]-1,2-dihydro, 4h-pyran-4-one, phenethylamine, 3-methoxy-.alpha.-methyl-4,5-(methylenedioxy)-, 5-butyl-2-methyl-.delta.1-pyrroline

trimethadione, 7 azabicyclo[4.1.0]heptane, 1-methyl-4-(1-methylethyl)-, 2-pyrrolidinone, 1-[4-(1-pyrrolidinyl)-2-butynyl]-, 3-azabutyl-1-ol, o-acetyl-4-cyclopropyl-n,n-dimethyl-, bromide, 9-thiabicyclo[3.3.1]nonan-3-one 9,9-dioxide and 4-amino-1-isobutylpiperidine.

Table 4: The GC-MS identified chemical compounds from *E. cyathophora* leaves extract and their biological properties

S.No.	Name of the compounds	Nature of the compound	Chemical structure	Biological Activity
1	Acetic Acid, Chloro	Chloroacetic acid		Anti-microbial activity,
2	4,5-Dimethyl-2h-1,3-Oxazine-3h-2,6-Dione	Alcohol		Anti-leukemia, Anti-malarial
3	1-Propanol, 2-Amino-, (S)-	Alcohol		Antiseptic and Disinfectants activity

4	6h-Purine-6-Thione, 1,7-Dihydro-7-Methyl	Ketone		Anti-bacterial, Anti-fungal
5	Dec-9-En-6-Oxo-1-Ylamide	Ketone/amide		Anti-parasitic, Anti-tumour, Cholesterol-lowering agent
6	Phenol, 4-[2-(Methylamino)Ethyl]-	Phenol		Anti-bacterial activity
7	4-Amino-1-Isobutylpiperidine	Heterocyclic compound		Natural repellents
8	Butanamine, 2,2-Dinitro-N-Methyl	Nitro/amine		Anti-microbial Insecticidal
9	1-Aziridineethanol	Alcohol		Anti-Bacterial activity
10	Pyrimidine, 1,4,5,6-Tetrahydro-1,2-Dimethyl	Heterocyclic compound		Anti-Bacterial activity
11	Hydroxyurea	Diamide		Cytotoxic and Anti-bacterial
12	Pentane, 1,1'-Oxybis	Ketone		Anti-microbial activity
13	1-Ethyl-2-Phenylpyrazolium Bromide	Heterocyclic compound		Anti-microbial activity
14	2-Azetidinone, 3,3-Diphenyl	Ketone		Anti-oxidant and Anti-bacterial activity
15	1-Azabicyclo[2.2.2]Oct-3-Ylamine	Bicyclic compound/amine		Anti-viral activity
16	Urea, N-[2-[1-Piperidyl]Cyclohexyl]-	Amide / Heterocyclic compound		Anti-microbial activity

17	Methyl 6,11-Octadecadienoate	Ester		Anti-bacterial activity
18	Acetamide, N-[3-[3-(4-Pyridinyl)Ureido]Phenyl]-	Amide / Heterocyclic compound		Anti-microbial activity
19	Oxazole, Trimethyl	Azo		Anti-Microbial,
20	Cis,Cis-1,6-Dimethylspiro[4.5]Decane	Spiro compound		Anti-microbial activity
21	5h-Tetrazole-5-Thione, 1-[2-(Dimethylamino)Ethyl]-1,2-Dihydro	Ketone		Anti-microbial, activity
22	4h-Pyran-4-One	Ketone		Anti-mycobacterium activity
23	Phenethylamine, 3-Methoxy-.Alpha.-Methyl-4,5-(Methylenedioxy)-	Amine		Anti-bacterial, Anti-fungal
24	5-Butyl-2-Methyl-.Delta.1-Pyrroline	Heterocyclic compound		Anti-microbial activity
25	Trimethadione	Ketone		Anti-microbial,
26	7-Azabicyclo[4.1.0]Heptane, 1-Methyl-4-(1-methyl ethyl)-	Heterocyclic compound		Anti-oxidant, Anti-bacterial
27	2-Pyrrolidinone, 1-[4-(1-Pyrrolidinyl)-2-Butynyl]-	Heterocyclic compound		Anti-microbial activity
28	3-Azabutyl-1-Ol, O-Acetyl-4-Cyclopropyl-N,N-Dimethyl-, Bromide	Alicyclic compound		Anti-microbial activity

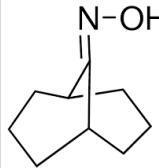

29	9-Thiabicyclo[3.3.1]Nonan-3-One 9,9-Dioxide	Bicyclic compound		Anti-bacterial activity
----	---	-------------------	--	-------------------------

Table 4 indicates the results of GC-MS analysis of various solvent extracts from *E. cyathophora* leaves showed 29 chemical compounds. These compounds are known to have different therapeutic effects and potential biological properties.

3.1. Antimicrobial activity

The antibacterial and antifungal activity of various solvent extracts from *E. cyathophora* leaves were tested against gram-positive and gram-negative pathogenic bacteria and fungi at 25 μ l, 50 μ l, and 75 μ l. The greatest antibacterial activity was observed for the methanol extract, followed by the chloroform extract with a zone of inhibition (ZOI) of 15 \pm 0.26, 14 \pm 0.17 at a concentration of 75 μ L against *S. iniae*. The acetone extract showed the lowest inhibitory activity (7 \pm 0.36) against *S. iniae* at a concentration of 50 μ l. In contrast, at the concentration of 25 μ l, no inhibitory activity

was observed for the two bacterial strains tested, except the methanolic extract against *S. iniae* (8 \pm 0.45). Furthermore, the methanol extract showed the largest inhibition zone with a diameter of 13 \pm 0.6 compared to *A. hydrophila* at a concentration of 75 μ l. The three concentrations of *A. niger* and *A. flavus* were very sensitive to the methanolic leaf extract of *E. cyathophora*. The methanol extract showed the largest zone of inhibition of 14 \pm 0.2 (*A. flavus*) and 12 \pm 0.36 (*A. niger*) at a concentration of 75 μ l. At the same time, minimal inhibitory antifungal activity was identified in an acetone extract of *E. cyathophora* leaves against *A. flavus* with a ZOI of 5 \pm 0.34 at 50 μ l concentration.

Table 5: Antibacterial activity of *E. cyathophora* leaf extract

S. No	Solvent extracts	Concentration μ l	Zone of inhibition (mm) Mean \pm SD	
			Gram-positive bacteria	
			<i>S. iniae</i>	<i>A. hydrophila</i>
1	Methanol	25 μ l	8 \pm 0.45**	-
		50 μ l	12 \pm 0.2**	9 \pm 0.1**
		75 μ l	15 \pm 0.26**	13 \pm 0.6**
		Disc	20 \pm 0.43**	15 \pm 0.6**
2	Acetone	25 μ l	-	-
		50 μ l	7 \pm 0.36	-
		75 μ l	13 \pm 0.51**	8 \pm 0.7**
		Disc	17 \pm 0.62**	14 \pm 0.6**
3	Chloroform	25 μ l	-	-
		50 μ l	-	-
		75 μ l	14 \pm 0.17**	11 \pm 0.6**
		Disc	12 \pm 0.55**	19 \pm 0.34**

(-Nil activity), SD – Standard Deviation; **Significance $p < 0.01$.

Table 5 shows the antifungal activity of *E. cyathophora* leaves treated with three different concentrations against *A. niger* and *A. flavus*. The methanol extract showed a wide zone of inhibition of 14 \pm 0.2 (*A. flavus*) and 12 \pm 0.36 (*A. niger*) at a concentration of 75 μ l. At the same time, low inhibitory antifungal activity was identified in an acetone extract of *E. cyathophora* leaves against *A. flavus* with a Zone of Inhibition of 5 \pm 0.34 at the concentration of 50 μ l.

Table 6: Antifungal activity of *E. cyathophora* leaf extract

S.No	Solvent extracts	Concentration μ l	Zone of inhibition (mm) Mean \pm SD	
			Aspergillusniger	
			<i>Aspergillusniger</i>	<i>Aspergillusflavus</i>
1	Methanol	25 μ l	9 \pm 0.36**	6 \pm 0.55**
		50 μ l	10 \pm 0.1**	8 \pm 0.7**
		75 μ l	12 \pm 0.36**	14 \pm 0.2**
		Control	18 \pm 0.26	19 \pm 0.65
2	Acetone	25 μ l	6 \pm 0.45**	-
		50 μ l	7 \pm 0.17**	5 \pm 0.34**
		75 μ l	9 \pm 0.62**	6 \pm 0.36**
		Control	16 \pm 0.81	13 \pm 0.51
3	Chloroform	25 μ l	7 \pm 0.55**	-
		50 μ l	8 \pm 0.43**	6 \pm 0.1**
		75 μ l	11 \pm 0.17**	10 \pm 0.43**
		Control	17 \pm 0.75	15 \pm 0.4

(-Nil activity), SD – Standard Deviation; **Significance $p < 0.01$.

The results of Table 6 showed the antibacterial activity of *E. cyathophora* leaves against *S. iniae* and *A. hydrophila*. The greatest antibacterial activity was observed for the methanol extract, followed by the chloroform extract with a zone of inhibition (ZOI) of 15 ± 0.26 , 14 ± 0.17 at a concentration of $75 \mu\text{L}$ against *S. iniae*. On the other hand, the acetone extract showed the lowest inhibitory activity (7 ± 0.36) against *S. iniae* at a concentration of $50 \mu\text{l}$. In contrast, at the concentration of $25 \mu\text{l}$, no inhibitory activity was observed for the two bacterial strains tested, except the methanolic extract against *S. iniae* (8 ± 0.45). Furthermore, the methanol extract showed the largest inhibition zone with a diameter of 13 ± 0.6 compared to *A. hydrophila* at a concentration of $75 \mu\text{l}$.

3.2. Larvicidal and Pupicidal bioassay

This study investigated the larvicidal bioefficacy of *E. cyathophora* leaves treated with different concentrations (150, 300, 450, 600, and 750 ppm) against stage IV larvae of *E. vittella* under laboratory conditions. The larvicidal activity of *E. cyathophora* leaf extract in chloroform, acetone, and methanol showed significant mortality at a higher concentration of 750 ppm than at the other concentrations. Of the leaf extracts tested against fourth-in star *E. vittella* larvae, methanol extracts showed the highest larval mortality at 94.71%, followed by acetone at 86.72% and chloroform at 83.37% at a concentration of 750 (ppm). Larval mortality was directly proportional to the concentration of leaf extracts.

Table 7: Larvicidal activity of *E. cyathophora* leaf extract against IV instar larvae of *E. vittella*

leaf extract	Mortality (%) (mean \pm SD)					LC ₅₀ (LC ₉₀)	95% confidence limitLC ₅₀ (LC ₉₀)	Regression equation	χ^2				
	Concentration (ppm)												
	150	300	450	600	750								
Chloroform	28.62 \pm 2.07	39.51 \pm 1.41	47.32 \pm 2.30	65.67 \pm 2.60	83.37 \pm 3.03	415.18 (937.31)	364.99 (835.15)	462.44 (1095.03)	y=-1.019 +0.002x				
Acetone	32.26 \pm 2.38	43.48 \pm 2.07	52.63 \pm 1.92	71.82 \pm 2.28	86.72 \pm 2.54	362.61 (848.56)	311.31 (762.81)	407.23 (976.88)	y=-0.956 +0.003x				
Methanol	36.58 \pm 2.23	47.25 \pm 1.92	63.62 \pm 2.07	82.48 \pm 1.81	94.71 \pm 2.22	298.64 (708.14)	248.91 (645.80)	339.69 (795.90)	y=-0.935 +0.003x				

Mortality rates are means \pm SD of triplicate replicates. No mortality was observed in control. LC₅₀ lethal concentration that kills 50 % of the exposed organisms, LC₉₀ lethal concentration that kills 90 % of the exposed organisms, LCL lower confidence limit, Table 7 shows that Larvicidal activity of *E. cyathophora* leaf extracts LC₅₀ and LC₉₀ values: methanol 415.18 (937.31); Acetone 362.61 (848.56) and chloroform 298.64 (708.14), respectively. *E. Cyathophora* leaf extract's potential activity against *E. vittella* larvae.

Table 8. Pupicidal activity of *E. cyathophora* leaf extract against *E. vittella*

leaf extract	Mortality (%) (mean \pm SD)					LC ₅₀ (LC ₉₀)	95% confidence limitLC ₅₀ (LC ₉₀)	Regression equation	χ^2				
	Concentration (ppm)												
	150	300	450	600	750								
Chloroform	13.54 \pm 2.07	25.62 \pm 1.41	37.78 \pm 2.30	53.18 \pm 2.60	74.42 \pm 2.28	545.55 (997.88)	503.30 (899.80)	594.39 (1143.31)	Y=-1.546+ 0.003 x				
Acetone	16.29 \pm 2.38	27.76 \pm 2.07	38.12 \pm 1.92	56.31 \pm 2.28	75.39 \pm 2.28	527.36 (996.35)	484.25 (895.66)	576.22 (1146.99)	Y=-1.441+ 0.003 x				
Methanol	21.54 \pm 2.38	32.62 \pm 2.07	45.78 \pm 1.92	61.18 \pm 2.28	79.42 \pm 2.28	470.25 (958.01)	425.66 (859.31)	516.55 (1106.74)	Y=-0.003+ -1.236 x				

Mortality rates are means \pm SD of triplicate replicates. No mortality was observed in control. LC₅₀ lethal concentration that kills 50 % of the exposed organisms, LC₉₀ lethal concentration that kills 90 % of the exposed organisms, and LCL lower confidence limit Table: 8 shows that *E. cyathophora* leaf extracts, the highest pupal activity was observed in the methanol extract, followed by acetone and chloroform. The LC₅₀ and LC₉₀ values were 545 methanol.55 (997.88); Aceton 527.36 (996.35) Chloroform 470.25 (958.01). To our knowledge, this is the first report of the use of *E. cyathophora* for the toxic effects of *E. vitella* pupae.

4. DISCUSSION

The current phytochemical screening study of *E. cyathophora* leaf extracts showed the presence of several bioactive chemical components. These components of plant origin, such as flavonoids, quinine, terpenoids, etc., have certain biological functions that enhance therapeutic effects, such as B. anti-cancer, anti-mutagenic, anti-inflammatory and antioxidant properties.¹⁷ Phytochemical screening not only

helps to identify the components of plant extracts and which of them are dominant, but is also helpful in finding bioactive substances that can be used in the synthesis of useful drugs.¹⁸ The presence of classes of phytochemicals as such; Flavonoids, alkaloids, and tannins have shown cytotoxic activity.¹⁹ Plants containing many flavonoids can be useful as antibacterial agents and reduce the risk caused by flavonoids, mainly in cardiovascular diseases and cancer. The flavonoids that provide color and flavor have been shown to have anti-cancer properties.²⁰ This study demonstrated the existence of bioactive compounds. These phytochemicals included alkaloids, tannins, flavones, flavonoids, terpenoids, and steroids, present in all solvent extracts, while cardiac glycosides and anthraquinone were absent from all solvent extracts. The qualitative phytochemical study of *P. marsupium* pearls showed that alkaloids, tannins, terpenoids, carbohydrates, flavonoids, glycosides, cardiac glycosides, proteins, and phenol were present in both the PAH extract and ethanol. At the same time, saponins were only present in the ethanol extract. Twenty-one reviewed preliminary phytochemical studies of MEEC showing the presence of saponins, terpenes, glycosides, alkaloids, and flavonoids.

Based on the phytochemical analysis, the extracts of petroleum ether, ethyl acetate, and ethanol (whole plant) from *Euphorbia cyathophora* show the presence of secondary metabolites such as flavonoids, alkaloids, glycosides, tannins, terpenoids, carbohydrates, proteins, saponins, and sterols. The phytochemical study found that *Olea africana* leaf extract contains alkaloids, flavones, flavonoids, steroids, tannins, terpenoid compounds, and potential antimicrobial activity. All extracts are rich in secondary metabolites; However, the activity depends not only on the presence of secondary metabolites in the plant extracts but also on their concentration and possible interaction with other components.²² The presence of tannins, phenols, saponins, and alkaloids found in this study contradicts the report by other researchers who indicated that these components were not present in the ethanolic extract of *C. dichogamous* root. According to, the extraction of phytochemicals can depend on the polarity and molecular weight of the chosen solvent.²³ In addition, GC-MS analysis was to identify 64 chemical compounds from an ethanol extract of the aerial parts of *Calendula suffruticosa*. Ukwubile observed that GC-MS analysis of methanol extract from *M. capitatum* leaves showed the presence of six important bioactive compounds, namely 9,12-octadecadienoic acid, methyl ester (Z, Z), hexadecanoic acid, methyl ester, and methyl stearate. the most common are methyl tetra decanoate, -9-dodecanoic acid, methyl ester E, and methyl 18-methyl decanoate. The recent report shows that a GC-MS study of leaf and rhizome extracts of *A. nilgiricum* revealed the presence of 25 phytochemicals. However, some of the compounds identified were similar to those previously documented by Azwid. butanoic acid, 1,5-heptane, 3,3-dimethyl-(E) and 2-propanoic acid, 2-propanoic esters in leaves and squalene, 1 -Hexanol, 2-ethyl-2-propyl, 1,2-benzene dicarboxylic acid, hexanedioic acid, heptane, heptanoic acid and isoctanol from the bark of *Moringa concanensis*. These identified organic compounds may be responsible for antimicrobial, anticancer, analgesic, hepatoprotective, and anti-inflammatory properties that support their widespread use as health aids by traditional medicine practitioners. Medicinal plant extracts that inhibit plant pathogens do not cause problems in the habitat, and the world is interested in ways to replace the chemicals. The antimicrobial properties of plants are related to their ability to produce multiple secondary metabolites with relatively complex structures that exhibit antimicrobial activity. *Morus alba* ethanolic extract has antibacterial activity against 15 species of bacteria and fungi. It was also confirmed by those who noted that the most active extracts of *M. alba* were observed against gram-positive and gram-negative bacteria. This activity may be due to the plant being rich in phytonutrients such as Tannins, phytosterols, sitosterols, saponins, anthraquinones, glycosides, and oleanolic compounds. Previous studies reported that ethanol extracts have better antibacterial activity than aqueous or plant extracts. Previous studies found a difference in the antimicrobial activity of different strains of *E. tirucalli*, which depend on biologically active phytochemicals.²⁴ Our results are consistent with several studies showing that olive leaf extracts have antimicrobial activity against multiple pathogenic organisms.²⁵ The antibacterial activity was measured in terms of the diameter of the zone of inhibition. Acetone and IPA extract (50 mg/ml) showed antibacterial activity against gram-positive bacteria, e.g., *Staphylococcus aureus* (8 mm zone of inhibition) and *Bacillus cereus* (8 mm zone of inhibition). Still, they showed no antibacterial activity against gram-negative bacteria, i. H. the ethanolic extract (50

mg/ml) showed no antibacterial activity. The zone of inhibition for the control (50 µg/ml ofloxacin) was 13 mm for *S. aureus*, 12 mm for *B. cereus*, 24 mm for *E. coli* and 8 mm for *S. Typhi*. Some plants, like *O. africana* extracts, showed antibacterial and antifungal activity; however, the highest antibacterial activity was observed for the ethanolic extract against the organisms tested. The lowest inhibitory activity was obtained for the aqueous extract.²⁶ The methanol extract showed the highest inhibitory activity against *S. aureus* (28 mM). The susceptibility of fungal pathogens to *O. africana* leaf extracts was compared to nystatin. The methanol extract showed the highest inhibitory activity against fungal pathogens, followed by the ethanol extract, and the hexane extract showed the lowest inhibitory activity.²⁷ found the good antibacterial properties of *Abrus precatorius*, *Terminalia phanerophlebia*, *Indigofera arectia*, and *Pentanisia prunelloides* confirm their traditional use in the treatment of respiratory diseases. A study on the methanolic extract of this plant showed significant antibacterial and antifungal activity against most pathogenic organisms: *Bacillus subtilis*, *Proteus mirabilis*, *Staphylococcus aureus*, *Escherichia coli*, *Shigella dysenteriae*, *Proteus mirabilis*, *Salamonella typhi*, and two *Candida albicans* fungi, *tineacapitis*, particularly effective against dermatophytes (*tineacapitis*). Manandhar et al. (2019) evaluated the antibacterial potential of methanolic extracts of *Oxalis corniculata*, *Artemisia vulgaris*, *Cinnamomum tamala*, and *Ageratina adenophora* tested against twelve pathogenic microorganisms and two reference bacterial strains were subjected to a single agar diffusion test.²⁸ The greatest potential was observed in the extract of *O. corniculata* against *Escherichia coli*, *Salmonella Typhi*, MDR *Salmonella Typhi*, *Klebsiella pneumonia*, and *Citrobacter koseri* with a zone of inhibition (ZOI) of 17 mm, 13 mm, 16 mm, 11 mm, and 12 mm, respectively. Our survey also agrees with other studies that found that ethanol and methanol leaf extracts were equally effective against most strains tested. Our results were consistent with reports from *Momordica cymbalaria*. Phytochemicals extracted from plant parts using various solutions act as toxins, repellents, and insect growth regulators.^{29,30,31} Previous authors have also described several important controls of *E. vitella*. Consistent with our findings, several plant extracts have been suggested as possible sources of bioinsecticides. Several reports describe many compounds isolated from different plants with different biological properties against different pests. The results of this study indicate that the plant-derived compound may be an effective alternative to traditional synthetic pesticides, with plant-derived toxins undoubtedly representing a variable source of potential insecticides. These insecticides and other natural products may be more important in future pest control programs. The results of these studies will significantly reduce the routine use of insecticides. A less expensive botanical insecticide that readily biodegrades to non-toxic products for use in a pest control program. The plant extracts showed insecticidal activity against *Callosobruchus maculatus*.³² These results are consistent with those of Hassam et al., 2022 who reported the larvicidal toxicity of a *C. colocynthis* seed extract with methanol, ethanol, hexane, water, and profenofos for "*E. Vitella*" first stage. Between *colocynthis* and methanol seed extract showed the highest mortality compared to the others.³³ The current results were similar to those of LeNT et al. (2021) on extracts from *E. tirucalli*.³⁴ The extract from *E. cyathophora* leaves was revealed to have several possible bioactive chemicals, and this study also discovered that these

compounds have extremely effective antimicrobial activities and insecticidal effects against *E. Vitella*.

5. CONCLUSION

The study results highlight the promising potential of *E. cyathophora* leaf extract as a convenient and environmentally friendly means of controlling agricultural pests and medically important microbial pathogens. In addition, research is needed to identify the structure of the biologically active compound and the biological properties of the leaf extract of *E. cyathophora*, which can be used for drug development and the pharmaceutical industry.

6. ACKNOWLEDGMENTS

The authors would like to acknowledge the PG and Research Department of Zoology, KandaswamiKandar's College, Namakkal for providing the required facilities to perform the research work.

9. REFERENCES

- Jeyasankar A, Premalatha S, Elumalai K. Biological activities of Solanumpseudocapsicum (Solanaceae) against cotton bollworm, *Helicoverpaarmigera*Hübner and armyworm, *Spodopteralitura*Fabricius (Lepidoptera: Noctuidae). Asian Pac J Trop Biomed. 2012 Dec 1;2(12):981-6. doi: 10.1016/S2221-1691(13)60010-6, PMID 23593579.
- Syed TS, Abro GH, Khanum A, Sattar M. Effect of host plants on the biology of *Eariasvittella* (Fab)(Noctuidae: Lepidoptera) under laboratory conditions. Pak J Zool. 2011 Feb 1;43(1).
- Rahman MM, Uddin MM, Shahjahan M. Management of okra shoot and fruit borer, *Eariasvittella* (Fabricius) using chemical and botanical insecticides for different okra varieties. Int Res J Appl Life Sci. 2013 Jan 1;2(1).
- Kranthi S, Kranthi KR, Siddhabhatti PM, Dhepe VR. Baseline toxicity of Cry1Ac toxin against spotted bollworm, *Eariasvittella* (Fab), using a diet-based bioassay. Curr Sci. 2004 Dec 10:1593-7.
- Aziz MA, Hasan MU, Ali A, Iqbal J. Comparative efficacy of different strategies for management of spotted bollworms, *Earias* spp. on Okra, *Abelmoschusesculentus* (L.). Moench. Pak J Zool. 2012 Oct 1;44(5).
- Hasan W. Evaluation of some insecticides against spotted bollworm, *Eariasvittella* (Fab.) on different okra cultivars. Trends Biosci. 2010;3(4).
- Aziz MA, Hasan MU, Ali A, Iqbal J. Comparative efficacy of different strategies for management of spotted bollworms, *Earias* spp. on Okra, *Abelmoschusesculentus* (L.). Moench. Pak J Zool. 2012 Oct 1;44(5).
- National Research Council. The future role of pesticides in US agriculture. National Academies Press; 2000 Dec 2.
- Rohani A, Chu WL, Saadiyah I, Lee HL, Phang SM. Insecticide resistance status of *Aedesalbopictus* and *Aedesaegypti* collected from urban and rural areas in major towns of Malaysia. Trop Biomed. 2001;18(1):29-39.
- Reddy BS, Rao NR, Vijepallam K, Pandy V. Phytochemical, pharmacological and biological profiles of *Tragia* species (family: Euphorbiaceae). Afr J Tradit Complement Altern Med. 2017 Apr 13;14(3):105-12. doi: 10.21010/ajtcam.v14i3.111, PMID 28480421.
- Shankar SR, Rangarajan R, Sarada DVL, Kumar CS. Evaluation of Antibacterial Activity and Phytochemical Screening of Wrightiaintectoria L Pharmacogn J. 2010 Sep 1;2(14):19-22. doi: 10.1016/S0975-3575(10)80066-5.
- Oladeji OS, Odelade KA, Oloke JK. Phytochemical screening and antimicrobial investigation of *Moringaoleifera* leaf extracts. Afr J Sci Technol Innov Dev. 2020 Jan 2;12(1):79-84. doi: 10.1080/20421338.2019.1589082.
- Banso A, Adeyemo SO. The phytochemical and antimicrobial evaluation of ethanolic extract of *Dracaena mannii*. Nig. J Biotechnol. 2007;18(1-2):27-32.
- De Fátima A, Modolo LV, Conegero LS, Pilli RA, Ferreira CV, Kohn LK et al. Styryl lactones and their derivatives: biological activities, mechanisms of action and potential leads for drug design. Curr Med Chem. 2006 Dec 1;13(28):3371-84. doi: 10.2174/092986706779010298, PMID 17168711.
- Padalia RC. Medicinal and aromatic plants: chemical goldmines. Med Aromat Plants. 2012;1:e113.
- Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008 May 13;585(2-3):325-37. doi: 10.1016/j.ejphar.2008.03.008, PMID 18417116.
- Batiha GE, Beshbishi AM, Alkazmi L, Adeyemi OS, Nadwa E, Rashwan E et al. Gas chromatography-mass spectrometry analysis, phytochemical screening, and antiprotozoal effects of the methanolic *Viola tricolor* and acetonic *Laurusnobilis* extracts. BMC Complement Med Ther. 2020 Dec;20(1):87. doi: 10.1186/s12906-020-2848-2, PMID 32183812.
- Okoli RI, Turay AA, Mensah JK, Aigbe AO. Phytochemical and antimicrobial properties of four herbs from Edo State, Nigeria. Report and opinion. 2009;1(5):67-73.
- Chowdhury S, Poddar SK, Zaheen S, Noor FA, Ahmed N, Haque S, et al. Phytochemical screening and evaluation of cytotoxic and hypoglycemic properties of *Mangiferaindica* peels. Asian Pac J Trop

7. AUTHORS CONTRIBUTION STATEMENTS

Mr. M. Kannan conceptualized the manuscript, conducted the experimental bioassay, and scrutinized the results. Dr.N.Kanagaraju contributed to the statistical data analysis. Dr.B.Chandramohan contributed to the literature collection and the definition of intellectual content and manuscript preparation and revised the carried-out corrections in the manuscript. Dr.P.Madhiyazhagan contributed to the drafted introduction and methods. Finally, all authors discussed the results and contributed to the final manuscript.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

Biomed. 2017 Jan 1;7(1):49-52. doi: 10.1016/j.apjtb.2016.09.009.

20. Bailly C, Vergoten G. Esculentosides: insights into the potential health benefits, mechanisms of action and molecular targets. *Phytomedicine*. 2020 Dec 1;79:153343. doi: 10.1016/j.phymed.2020.153343, PMID 33002830.

21. Chitra M, Senthilkumar N, Asraf Ali M. Antimicrobial and wound healing activities of *Euphorbia cyathophora*. *Int J Pharm Res*. 2014;4:59-61.

22. Dzotam JK, Touani FK, Kuete V. Antibacterial and antibiotic-modifying activities of three food plants (*Xanthosoma maffa* Lam., *Moringa oleifera* (L.) Schott and *Passiflora edulis* Sims) against multidrug-resistant (MDR) Gram-negative bacteria. *BMC Complement Altern Med*. 2015 Dec;16:1-8.

23. Ben Younes A, Ben Salem M, El Abed H, Jarraya R. Phytochemical Screening and Antidiabetic, Antihyperlipidemic, and Antioxidant Properties of *Anthyllis henoniana* (Coss.) Flowers Extracts in an Alloxan-Induced Rats Model of Diabetes. *Evid Based Complement Alternat Med*. 2018 Jun 24;2018:8516302. doi: 10.1155/2018/8516302, PMID 30034500.

24. Sultan S, Kimaro CC, Amri E. Antifungal activity and phytochemical screening of different *Euphorbia tirucalli* Linn solvent extracts. *JABB*. 2016;7(1):1-9. doi: 10.9734/JABB/2016/26727.

25. Aliabadi MA, Darsanaki RK, Rokhi ML, Nourbakhsh M, Raeisi G. Antimicrobial activity of olive leaf aqueous extract. *Annals Biol Res*. 2012;3(8):4189-91.

26. Magassouba FB, Diallo A, Kouyaté M, Mara F, Mara O, Bangoura O et al. Ethnobotanical survey and antibacterial activity of some plants used in Guinean traditional medicine. *J Ethnopharmacol*. 2007 Oct 8;114(1):44-53. doi: 10.1016/j.jep.2007.07.009, PMID 17825510.

27. Madikizela B, Ndhlala AR, Finnie JF, Staden JV. In vitro antimicrobial activity of extracts from plants used traditionally in South Africa to treat tuberculosis and related symptoms. *Evid Based Complement Alternat Med*. 2013 Mar;2013:840719. doi: 10.1155/2013/840719, PMID 23533527.

28. Manandhar S, Luitel S, Dahal RK. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. *J Trop Med*. 2019 Apr 2;2019:1895340. doi: 10.1155/2019/1895340, PMID 31065287.

29. Ahmad SF, Gulzar A, Tariq M, Asad MJ. Field Evolved Resistance in *Earias vittella* (Lepidoptera: Noctuidae) From Punjab, Pakistan Against Commercial Formulations of *Bacillus thuringiensis kurstaki*. *J Econ Entomol*. 2021 Oct;114(5):2204-13. doi: 10.1093/jee/toab137, PMID 34268576.

30. Amer A, Mehlhorn H. Larvicidal effects of various essential oils against *Aedes*, *Anopheles*, and *Culex* larvae (Diptera, Culicidae). *Parasitol Res*. 2006;99(4):466-72. doi: 10.1007/s00436-006-0182-3, PMID 16642386.

31. Choudhury MA, Mondal MF, Khan AU, Hossain MS, Azad MO, Prodhan MD, et al. Evaluation of biological approaches for controlling shoot and fruit borer (*Earias vittella* F.) of okra grown in a peri-urban area in Bangladesh. *Horticulture*. 2021;7, 7:701007. doi: 10.3390/horticulturae.

32. Obembe OM, Kayode J. Insecticidal activity of the aqueous extracts of four under-utilized tropical plants as a protectant of cowpea seeds from *Callosobruchus maculatus* infestation. *Pak J Biol Sci*. 2013 Feb 1;16(4):175-9. doi: 10.3923/pjbs.2013.175.179, PMID 24171265.

33. Hassam UA, Gulzar A, Rasool B, Zafar S, Younis T, Shakeel M et al. Efficacy of *Citrullus colocynthis* seed extract on *Earias vittella*, Fabricius, (Lepidoptera: Noctuidae): sustainable environment approach. *Braz J Biol*. 2022 Jan 7:84.

34. Le NTM, Cuong DX, Thinh PV, Minh TN, Manh TD, Duong TH et al. Phytochemical screening and evaluation of antioxidant properties and antimicrobial activity against *Xanthomonas axonopodis* of *Euphorbia tirucalli* extracts in Binh Thuan province, Vietnam. *Molecules*. 2021 Feb 10;26(4):941. doi: 10.3390/molecules26040941, PMID 33578946.