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Abstract: One of the most significant issues faced by humanity today is antibiotic resistance. Drugs are used in such vast amounts 
for human health, aquatic life, and agricultural animals that harmful bacteria have developed antibiotic resistance to various 
antibiotics. Further, the usage of antibiotics is increasing because of situations such as increased infections and chronic diseases 
that need antimicrobial treatment. Since antimicrobial resistance is rising, it is necessary to take action to help reduce and eliminate 
infectious diseases and ensure animal and human health. Because of this, many attempts are being made to tackle multi-drug-
resistant bacteria. Among the many advanced techniques that are occurring, the use of phage therapy is one such emerging 
procedure. The main aim of this prospective review is to identify the various new phage formulations available as a potential 
therapeutic intervention to combat multidrug resistance among bacteria and the objective is to identify the various reasons 
associated with the induction of the phenomenon of "multidrug resistance" among different bacteria, focusing on the use of phage 
therapy, its advantages as well as disadvantages over antibiotics as a possible therapeutic intervention. Various phage formulations, 
such as phage cocktails with antibiotics, nanoparticles, phage-delivering hydrogels, and many more, are emerging formulations that 
have successful results in fighting against multi-drug-resistant bacteria. Commercial phage solutions have helped combat 
antimicrobial resistance in poultry and livestock farms, improving everyone's health worldwide. As a result, this study shall serve 
as a source of information and understanding of the concerns mentioned above for the entirety of society and every human 
community. 
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1. INTRODUCTION  
 
Public health is still at risk due to the growth of multidrug-
resistant bacteria (MDR) and antibiotics' decreasing efficacy in 
treating severe bacterial illnesses1. Antibiotics have proved as 
a significant step forward in modern medical practice since 
their discovery2. However, the appropriate treatment of 
various serious illnesses and disorders in the medical field is 
constantly compromised due to the growth of multidrug-
resistant bacteria. The first instance of antibiotic resistance 
among bacteria was reported during the second world war3. 
Much before, in 1959, Maurois warned about the 
consequences of penicillin resistance among “Staphylococcus 
aureus”4. The facts he stated came true when multiple 
antibiotic-resistant strains of "Streptococcus pneumoniae” and 
“Staphylococcus aureus” against penicillin and methicillin, 
respectively, were discovered 5. Bacteria can avoid the 
antimicrobial effects of antibiotics via three different strategies: 
resistance, tolerance, and persistence. Although key bacterial 
activities intolerant bacteria have been found to slow down, 
tolerant bacteria are metabolically more active than persistent 
subpopulations6. The "ESKAPE" pathogens, also known as 
“Enterococcus faecium”, “Klebsiella pneumoniae”, “Staphylococcus 
aureus”, “Acinetobacter baumannii”, “Enterobacter species”, and 
“Pseudomonas aeruginosa”, are a group of multidrug-resistant 
organisms that cause serious healthcare-associated illnesses7. 
In recent years, “Escherichia coli”, “Neisseria gonorrhoeae”, and 
“Staphylococcus aureus” have demonstrated increased death 
rates due to multidrug-resistant strains of “Klebsiella 
pneumoniae”, “Neisseria gonorrhoeae”, and “Staphylococcus 
aureus”, according to "World Health Organization (WHO)" 
reports7. Furthermore, several published reports say 
approximately 2 million Americans contract antibiotic-
resistant germs each year, and about 23,000 people died from 
exposure to them8. This problem is exacerbated by the lack of 
infection control in healthcare facilities, poor public 
cleanliness, the abuse of antibiotics, low educational 
attainment about antibacterial drugs, and the absence of 
supervisory authority over their use, production, and sale2. 
Several antimicrobial compounds are considered adequate for 
treating bacterial ailments, including compounds that block the 
function of efflux pumps in bacterial cells and 
"metalloantibiotic compounds" that are thought to enhance 
the efficacy of standard antibiotic medications2. Further, 
"antimicrobial peptides" induce the formation of pores in the 
bacterial cell membrane and disrupt the process of synthesis 
of DNA in bacteria2. Among all the therapeutic intervention 
methods available, phage treatment is an excellent antibiotic 
substitute for multidrug-resistant organisms since new 
techniques have been discovered to battle these diseases due 
to rising antimicrobial resistance. Bacteriophages or phages 
are viruses that may infect and multiply inside bacteria and aid 
in the fight against multidrug-resistant organisms. They are 

diverse and prevalent everywhere in nature. Phages have 
essential advantages over antibiotics in the case of antibiotic 
resistance since they can lower bacterial populations. 
Bacteriophage life can be divided into two types: lytic and 
lysogenic cycles9-11. The host cell ruptures during the lytic 
cycle, releasing many viral offspring. Here, phage replication 
occurs within the host bacteria, causing a bacterial rupture and 
cell death that results in the release of offspring virions12. The 
phage genome is combined with the host chromosome 
throughout the lysogenic or temperate cycle, and the 
prophage state is maintained until environmental cues initiate 
the lytic pathway. Lysogens are viral cells that have progeny. 
Multidrug resistance in various bacteria has been a significant 
challenge for civilization for a long time. Also, the phenomena 
of "multidrug resistance" and "phage treatment" has garnered 
the interest of scientists worldwide. Therefore, the authors 
bring to the attention of the general public, through this 
review, the various causes associated with the induction of 
multidrug resistance in diverse bacterial species, with a 
particular emphasis on the use of phage, by employing the 
different phage formulations available to combat this long-
recognized problem of multidrug resistance among diverse 
bacterial species that coexist with humans in nature. The 
review will now focus on the life cycle of the bacteriophages 
present. 
 
2. LIFE CYCLE AND BIOLOGY OF 

BACTERIOPHAGES 
 
Bacteriophages are the specific group of viruses that can infect 
only bacterial cells, as bacteria have the necessary receptors 
to facilitate phage attachment on the bacterial surface10. 
However, the phage life cycle can be divided into two parts: 
the lytic cycle and the lysogenic cycle9-11. Phages entering the 
lytic cycle exploit the replication machinery of the host 
bacterial species to produce progeny viruses within the host 
cell. The process continues unless a "critical mass" is achieved, 
at which point, the host bacterial cell lyses, releasing the new 
progeny viruses. These offspring restart the lytic cycle again 
(Figure 1)10. On the other hand, in the case of the lysogenic 
cycle (Figure 2), the viruses incorporate their genetic material 
into the host bacterium. This is known as a prophage, 
permitting the horizontal transfer of genetic information from 
the parent virus to the progeny bacterial cells due to cell 
division9-11. Less frequently, the virus does not integrate its 
genetic material into the chromosome of the host bacterium 
but instead stays as a distinct plasmid inside the host 
bacterium, which is nonetheless passed from one bacterial 
generation to another, i.e., from parent bacterium to its 
offspring. Rarely factors involving the environment can change 
the life cycle of bacteriophages, from lytic to lysogenic, but 
only under extraordinary conditions11.   
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Fig 1. Lytic cycle of bacteriophage10 
 

 
 

Fig 2. Lysogenic cycle of bacteriophage11 

 
Now that bacteriophage biology has been covered in detail. 
The following primary objective is to define the steps that lead 
to the emergence of "drug resistance" in virulent bacteria. 
 
3. PROCEDURE OF INDUCTION OF 

ANTIBIOTIC RESISTANCE IN PATHOGENS 
 
Bacterial mutations are often at the root of increased 
resistance to antibiotics. Using bactericidal or bacteriostatic 
chemicals arbitrarily and incorrectly can function as a selective 
pressure that leads to these changes. Eventually, the antibiotic-
resistant bacteria that have been chosen could pass their 
resistance gene on to other bacteria if the screening process 
is allowed to continue2. Bacteria can evolve resistance to many 
antibiotic drugs through distinct mechanisms. The first 
mechanism followed is the inactivation of the antimicrobial 
drug by the action of enzymes, as found in the case of 
enzymatic inactivation of “beta-lactamase” antibiotics12. 
Second, altering the binding sites of antimicrobial medications 
might potentially contribute to the spread of antibiotic 
resistance, as found in the case of penicillin-binding proteins in 
the case of methicillin-resistant "Staphylococcus aureus”13. 

Thirdly, bacteria are capable of acquiring many genes for 
enacting metabolic activities. This modification of bacterial cell 
membranes renders antimicrobial agents incapable of binding 
to their bacterial targets. Lastly decrease in drug accumulation 
inside the bacterial cells due to the upregulation of efflux 
pumps or reduction in permeability towards the antimicrobial 
drugs is also responsible for developing resistance to antibiotic 
drugs in different bacterial populations. Commonly identified 
efflux mediators include "major facilitator superfamily (MFS)", 
"resistance nodulation cell division superfamily (RND)", "ATP 
binding cassette transporters (ABC)", "multidrug and toxic 
compound extrusion superfamily (MATE)", Infectious 
pathogens can acquire resistance to antibiotics via above 
methods, rendering the medications ineffective2,14,15. The 
review will now address 
the therapeutic use of bacteriophages to overcome bacterial 
drug resistance. 
 
4. PHAGES AS A PROMISING ALTERNATIVE 

THERAPY AGAINST MULTIDRUG 
RESISTANCE BACTERIA 
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Viruses that infect bacteria solely are called bacteriophages. 
They are the smallest and most numerous organisms in the 
troposphere. There is a wide variety of phages, but they all 
have two primary life cycles: the Lytic cycle and the Lysogenic 
cycle9-11. Phage treatment has recently emerged as a valuable 
method for fighting antibiotic-resistant pathogens16. A 
significant benefit of utilizing phages as a therapeutic 
intervention instead of antibiotics is that they can eliminate 
bacteria whether or not they have developed resistance to the 
antibiotic. For instance, phage therapy can combat drug-
resistant Acinetobacter baumanii infection16. In addition, phages 
multiply randomly upon contact with the site of infection, 
which is an additional benefit of phage treatment. This is 
advantageous as a single dose of phage can cure difficult-to-
reach infections17 (Figure 3). 

Moreover, phages are incredibly particular to their host 
bacteria. Therefore, phage cocktails, which comprise an 
assortment of phages, may be used to modulate a broad 
spectrum of bacteria18. It should be emphasized that bacteria 
and bacteriophages have coexisted in the environment for 
many years. This shall also occur when phage therapy is used 
as a potential therapeutic intervention since co-evolution will 
render the treatment adaptable16,19. Therefore, compared with 
the use of individual phages, phage cocktails have a greater 
tendency to reduce the development of phage-resistant 
pathogens20. It is also possible that they will interact differently 
with the immune system. In addition, the features of the 
infection, such as its size, severity, or composition of the 
bacterial cell, will affect how effective these treatments are. 
Their interaction with many plasma proteins is another area 
that is mainly unexplored21.

 

 
 

Fig 3. Bacteriophage vs Antibiotics20,21 
 
The inability of phages to survive in the stomach's low acidic 
environment is a significant drawback of phage therapy, which 
hinders its use as a therapeutic intervention. Therefore, 
administering phages orally is not feasible. Hence, effective 
encapsulation of phages is crucial for overcoming this issue. 
According to the published literature, numerous phage 
encapsulation strategies with low change in phage titer are 
available. Encapsulating phages in silver nanoparticles ("Phage 
M13" encapsulation against "Fusobacterium nucleatum"22), 
hydrogels ("Phage T7" encapsulation against "enterotoxic 
Bacteroides fragilis"23), or sodium alginate beads combined with 
gelatin or honey ("Phage ZCEC5" encapsulation against the 
same bacterial pathogen24,25), are just a few examples. Lastly, 
liposomes can also be used for phage encapsulation 
(“PhageUAB_Phi20”, “PhageUAB_Phi78”, “PhageUAB_Phi87” 
encapsulation against “Salmonella typhimurium”26). Apart from 
employing phages as prospective therapeutic intervention 
approaches, another way to overcome antibiotic resistance is 
to use enzymes produced from phages that promote the lysis 
of bacterial cells. Some enzymes that fall within this category 
include Holins20,27, Lysin28, and Depolymerases29. The canonical 
endolysins are regarded as the most effective lysin to 
overcome antibiotic resistance. To offer just one illustration, 
tests were conducted on a mouse model infected with 
Acinetobacter baumannii. The lysine known as "LysSS" proved 
successful in eliminating the infection20,27. Another example is 
that depolymerase "Dp42" enhanced the overall survival and 

significantly decreased the bacterial burden in the liver and the 
lung of the treated mice infected with Klebsiella pneumoniae30. 
After discussing the several variables that make phage 
treatment a viable alternative intervention for halting the 
development of multidrug-resistant bacteria, this review will 
focus on the specific drug-resistant bacterial infections that can 
be treated using phage therapy. 
 
5. RELEVANT ANTIBIOTIC-RESISTANT 

BACTERIAL PATHOGENS FOR WHICH 
PHAGE TREATMENT CAN BE APPLIED 

 
Antibiotics are being used more often and improperly, which 
has led to a rise in bacterial infections that have acquired 
resistance to antibiotics that are usually effective against them. 
The following are examples of bacterial pathogens: 
 
5.1 Staphylococcus Aureus 
 
Staphylococcus aureus has emerged as a drug-resistant pathogen 
over the years. It is considered a pathogen, gram-positive, and 
is usually found in the nasal passages along with layers of skin31. 
Staphylococcus aureus has developed resistance towards “beta-
lactam antibiotics” through the synthesis of the enzyme 
penicillinase (plasmid-mediated synthesis of the enzyme) that 
causes degradation of the “beta-lactam antibiotics”. This led to 
the development of methicillin, a more advanced form of 
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penicillin. However, all this success became painful when the 
bacterium acquired the “mecA gene", encoding the penicillin-
binding protein (PBP2a), making the bacterium resistant to 
antibiotic drugs31. However, the strains have also developed 
resistance to vancomycin, which can be attributed to the 
"vanA gene" transfer. These strains are notoriously challenging 
to identify and are often related to unsuccessful treatment. 
The methicillin-resistant Staphylococcus aureus has developed 
into a predicament that poses an increasingly severe threat 
since it is no longer confined to settings within hospitals but 
has spread into other places in the community and has since 
spread around the world31. 
 
5.2 Yersinia Pestis 
 
The highly contagious bacteria Y. pestis is responsible for the 
pathophysiology of plaque. As gram-negative bacteria, they are 
unable to preserve gram staining. This kind of bacteria is 
classified as an "Enterobacteriaceae". The bacteria begin their 
destructive process by infecting the local macrophages and 
then making their way to the lymph nodes. The death of 
infected macrophages triggers the discharge of the bacteria, 
which then spreads to and colonizes other vital organs, 
eventually causing death32.  
 
5.3 Salmonella 
 
Salmonella has many hosts and is effective against potent plant 
or animal pathogens. Salmonella enterica of the Salmonella sp. is 
the most common pathogen responsible for producing food 
poisoning, contaminating vegetables, poultry, food, nuts, etc32. 
According to the Centre for Disease Control and Prevention 
(CDC), fifteen per cent of Americans will contract Salmonella-
related illnesses, and in the worst circumstances, these 
illnesses may prove fatal33.  
 
5.4 Listeria Monocytogenes 
 
The bacterium is gram-positive and implicated in developing 
infectious disorders like influenza, fever, gastroenteritis, and 
most notably, "Listeriosis". Children, the elderly, and those 
with impaired immune systems are most vulnerable to 
listeriosis, a deadly illness characterized by meningitis, 
septicemia, and abortion34. It's also considered a potentially 
dangerous infection that may spread through food35. 
 
5.5 “Escherichia Coli O157H7” 
 
To be specific, E. coli is a potentially fatal bacterium that causes 
various diseases, including diarrhoea or colitis. In addition, the 
enterohaemorrhagic ones of the bacterium are responsible for 
the pathogenesis of "hemolytic-uremic syndrome" or 
"haemorrhagic colitis" in humans. Furthermore, the strain 
"O157:H7" differs from the other strains of the bacterium with 
its ability to produce "Shiga toxin". The foodborne pathogen is 
spread mainly by consuming uncooked meat, raw dairy 
products without pasteurization, and crops tainted with 
bovine excrement36.  
 
5.6 Mycobacterium Tuberculosis 
 
M. tuberculosis is regarded as another powerful, potent 
pathogen capable of infecting humans. The alveolar area of the 
lungs is the bacterium's target, and the macrophages there 
provide a haven and a fertile breeding ground. Further, 
antigenic peptides are released from the lymph nodes once 

programmed cell death has occurred, thanks to the dendritic 
cells that transported them there. Anti-infective defences rely 
on T-cell activation, which results in the formation of "T 
effector cells" that travel back to the lungs' passageways to 
continue the battle against the infection. These steps culminate 
in the development of granulomas that trap the infection37. The 
formation of drug-resistant strains is a challenge despite the 
availability of numerous drug-based treatment strategies to 
regulate the pathogenesis. For instance, various medications 
are being developed to treat drug-resistant pathogenic M. 
tuberculosis and drugs for handling Staphylococcus aureus 
resistance to methicillin31. 
 
6. BENEFITS AND DRAWBACKS OF PHAGE 

THERAPY OVER ANTIBIOTICS 
 
There are benefits and drawbacks to using phage treatment 
rather than antibiotics. Here are some of the advantages and 
disadvantages to consider: 
 
6.1 Specificity 
 
Viruses are notoriously particular in killing off their prey 
bacteria. They can only infect bacteria with the corresponding 
receptor for phage antigen38. In certain phage families, infection 
is limited to a single type of bacteria, whereas in others, the 
phage may infect a wide variety of bacteria. For instance, no 
reports of alteration of other gut microbiomes were found 
after oral delivery of four "T4 coliphages" for treating 
diarrhoea triggered by E. coli in mouse models39. No different 
microbiota was affected by applying phages to S. soneii-caused 
infection in mouse models40. It is unlikely that a phage would 
wipe out all of the local flora or cause secondary infections 
because of its targeted approach. On the other hand, antibiotic 
use has been linked to health issues such as asthma, diabetes, 
and obesity41-43, whereas such health issues are not applicable 
in the case of phage therapy. This characteristic of phages is 
not without its restrictions, though. Therefore, in the event of 
polymicrobial illnesses, doctors must identify which species 
they are treating before administering a phage or phage 
cocktail. Since antibiotics are often broad-spectrum 
antimicrobials44, their use in these settings becomes preferable 
to phage treatment. Example: T4 phages were used in a 2014 
study to combat E. coli found in Mexico and Bangladesh. Study 
results were more encouraging when phage was tested against 
bacterial isolates from the exact geographical locations than 
when the bacterial and phage isolates were cross-applied45. 
Supporting this research was a clinical experiment that gave 
"T4 coliphages" collected from Russia to 120 youngsters in 
Bangladesh infected with Escherichia coli (Enteropathogenic) 
for four days46. Unfortunately, the final results were 
unsatisfactory since they yielded no helpful information on the 
efficacy of phage treatment. Therefore, in vitro and in vivo 
experiments have shown that phages are very particular for 
their host bacteria. Thus, the phage treatment is most effective 
when applied to a specific host bacterium collected from the 
exact location. 
 
6.2 Safety  
 
Antibiotics have been widely used, yet their usage, misuse, and 
abuse have all been documented in scientific literature. Allergic 
reactions, either from an overdose of the medicine or from 
the drug's primary interaction with the body, are often 
considered the most prevalent side effect of antibiotic use47,48. 
Antibiotic penicillin, for instance, has been linked to various 
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adverse human responses, including cardiovascular system 
collapse and, in extreme cases, death49. On the other hand, 
bacteriophages have stayed and co-evolved with humans for a 
long time. Thus, they are considered safer, with no adverse 
effects on health or an individual's well-being. This topic has 
attracted the attention of researchers worldwide, and several 
clinical trials have been undertaken to understand the efficacy 
of phage therapy. The tests have administered phages orally, 
in topical applications, or by preparing a cocktail of different 
phages to combat several bacterial populations at a time46,50,51-

53,18. However, a 2016 study showed that giving rats an oral 
cocktail of phages increased cytokine levels or made the 
intestinal wall more porous. Healthy "albino rats" were given 
a mixture of Salmonella and Pyobacteriophage in the study. In 
addition, the ratio of lactose to mannitol was monitored to 
determine intestinal permeability. Increases in both ratios 
were found, indicating a rise in intestinal permeability, as 
demonstrated by research54. 
 
6.3 Resistance Development Against Host Bacterium 
 
Antibiotic resistance can emerge from various causes, such as 
the improper use of antibiotic drugs and the horizontal 
transfer of genes from one bacterium to another. However, 
bacteria can develop resistance to phages through mechanisms 
such as mutational changes in the surface receptors facilitating 
phage binding, secretion of chemical compounds to prevent 
phage binding to bacterial cells (such as Extracellular polymeric 
substances), inhibition of bacteriophage replication, and 
blocking the injection of phage genetic material into bacterial 
cells55. Additional research revealed that the presence of 
extracellular polymeric compounds generated by Pseudomonas 
sp. or “glycoconjugates” as well as “alginates” produced by 
Enterobacteriaceae prevented phage adhesion56. In another 
study, mutational alterations in the "OprM" surface receptor, 
which is the target receptor of Bacteriophage OMKO1, 
impede the binding of the same57. Another method 
contributing to antibiotic resistance among the bacterial 
population is phage therapy. Phage treatment is another 
approach that contributes to antibiotic resistance in bacterial 
populations. This is facilitated by lysogenic bacteriophages, 
which incorporate their DNA into the host genome. 
Consequently, horizontal transfer of drug-resistant genes can 
occur not just across bacterial populations but also between 
phages and bacteria58. Phages have a significant function as a 
reservoir of antibiotic resistance genes, as demonstrated by 
research in which the prevalence of resistant genes in phage 
DNA was significantly greater than in bacterial DNA59. In a 
later study, bacterial isolates from hospital effluents and water 
treatment plants were found to contain genes such as 
"blaTEM" (for resistance against "beta-lactam antibiotics"), 
"qnrS" (for resistance against "fluoroquinolones"), "sull" (for 
inducing resistance against "sulphonamides"), and "tetW" (for 
causing resistance against "tetracyclines")60. 
 
6.4 Cost and Administration of the Therapy Technique 
 
The use of phage treatment to combat antibiotic-resistant 
bacteria is inexpensive. As long as it is not regarded as a 
treatment of last resort, phage therapy is economically less 
expensive than antibiotic administration, according to a 
study61. Furthermore, in contrast to antibiotics, 
bacteriophages can multiply themselves. This characteristic of 
phages prohibits the administration of multiple doses of 
bacteriophage over time. Nonetheless, the 
"pharmacodynamic" and "pharmacokinetic" features of the 

phages constitute a significant restriction to phage treatment. 
Therefore, this review will now concentrate on its most 
prominent subject: the many phage formulations available to 
fight this long-recognized problem of drug resistance among 
harmful bacteria. 
 
7. VARIOUS PHAGE FORMULATIONS   
 
7.1 Powder Formulations of Phage Against 

Pseudomonas Aeruginosa for Treating Respiratory 
Infection.   

 
Pseudomonas aeruginosa significantly increases the risk of 
morbidities and mortality in patients suffering from cystic 
fibrosis, non-cystic fibrosis, bronchospasms, and sepsis9,11,62-64. 
When ciprofloxacin and phage PEV20 were combined, they 
had a highly synergistic effect against Pseudomonas aeruginosa, 
which was multidrug resistant. There were found to be two 
formulations: Formulation A, which contains ciprofloxacin, 
lactose, and "L-leucine" in a mass ratio of 1:1:1; Formulation B, 
which contains ciprofloxacin as well as "L-leucine" without 
lactose in a mass ratio of 2:1. "L-leucine" functions as a 
dispenser enhancer65, increasing the fine particle fraction (FPF). 
Using a “Buchi spray drier (B-290, Buchi Labortechnik AG)”, 
powder formulations of ciprofloxacin and the “phage PEV20” 
were created66. “P. aeruginosa FADD1-PA001” and “P. 
aeruginosa JIP865" strains were used, and "phage PEV20" doses 
of 108 pfu/mL and 109 pfu/mL were added. In both strains, 
both formulations had a potent antimicrobial-killing synergy. 
Significant regrowth was seen in areas treated with 
ciprofloxacin or PEV20. However, after 24 hours, regrowth 
was inhibited by the powder formulations. Spray drying of the 
three Pseudomonas aeruginosa phages, PEV20 (both 
myoviruses), PEV1, along with PEV2 (podovirus), with the 
addition of both lactose (80%), leucine (20%) as excipients, 
resulted in phage cocktail powder. This proved the feasibility 
of the work by introducing patients to a biochemically stable 
formulation of phage PEV20 along with ciprofloxacin that can 
be inhaled to reduce the pathogenesis of the bacterium and 
simultaneously cure the disease. Dry powder compositions of 
phage and a cocktail of different phages for inhalation are 
produced using spray drying67-70. The mixture slightly 
decreased the titer of the phages, and all of the phages were 
still viable when the spray-dried powder was used. 
Subsequently, "high-performance liquid chromatography 
analysis was performed (HPLC)". The mass fraction of 
particles with a diameter smaller than 5.0 m with the loading 
dose was used to calculate the fine particle fraction (FPF). No 
matter which phage was employed, the spray-dried phage 
powders with identical excipient content exhibited similar 
shapes and particle sizes67. The phage cocktail formulation with 
three different phages provided equivalent biological stability 
and physicochemical powder qualities to single phage 
powders71. 

 
7.2 Application of Phage Therapy Against Antibiotic-

Resistant Pseudomonas Infection 
 
Pseudomonas sp. has come to be seen as a harmful organism 
with the inbuilt power to destroy humanity. But more 
concerning than its pathogenic potential is its capacity for 
medication resistance. A wide variety of infections have been 
brought on by drug-resistant Pseudomonas in numerous 
situations, according to multiple previously published scientific 
literature. Additionally, using phage treatment to treat these 
infections has been successful in various positions. For 
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instance, phage therapy in conjunction with antibiotics like 
meropenem, ciprofloxacin, ceftazidime, and Gentamicin has 
helped patients suffering from urinary tract infections brought 
on by pathogenic Pseudomonas aeruginosa. Phage therapy was 
performed with a bacteriophage dosage of 20 ml (2 x 107 PFU) 
every 12 hours for ten days. The trial confirmed the 
effectiveness of phage therapy to treat urinary infections 
caused by Pseudomonas aeruginosa when examined at the end 
of the tenth day and found no trace of pathogenic Pseudomonas 
aeruginosa in urine samples72. In a further study, it was found 
that using phage therapy in conjunction with the antibiotic 
formulations ciprofloxacin and ceftazidime to treat an aortic 
transplant that had become infected with Pseudomonas 
aeruginosa during heart surgery once again produced 
encouraging outcomes. This time, the bacterium had 
developed ciprofloxacin resistance. To remove the biofilm that 
encourages antibiotic drug resistance, phage therapy was 
provided by injecting one dosage of phage (1 x 107 PFU) 
straight into the fistula established in the chest. The trial 
indicated that the patient's condition had improved73. 
Furthermore, phage therapy has once again demonstrated its 
effectiveness in lowering the pathogenesis of Pseudomonas 
putida infection generates otitis in another experiment where 
ear otitis was caused as a result of disease owing to 
Pseudomonas putida. A decrease in the bacterial community 
was seen in the investigation after each of the 12 subjects was 
given a single dosage of a phage cocktail containing 105PFU 
(below 80 per cent)74. 
 
7.3 Single and Cocktail Phage Therapy for 

“Uropathogenic Escherichia Coli (UPEC)” In Vitro 
Bacterial Death Test  

 
A multidrug-resistant bacteria-targeting phage with a broad 
host range was to be isolated. Both MDR UPEC bacteria and 
the "E. coli ST 131" strain were targeted. To separate phages 
from the sewage water, they were employed. One phage and 
cocktail phage treatments were used in a 24-hour mortality 
assay to test the infectivity capacity of phages in vitro. Single 
and cocktail phage-killing experiments were performed using 
a 96-well plate and OD600nm measurements over a 24-hour 
period. On infecting the bacteria host at various multiplicity of 
infection (MOI) ratios, phage infectivity for single phage 
treatment was achieved. All of the phages were able to 
demonstrate infectivity for the UPEC S79EC strain as a result 
of this. Even after displaying infectivity at all MOI levels75, Phage 
A4 was isolated from UPEC S79EC with an average bacterial 
growth suppression varied from 2 to 5 hours. For the phage 
cocktail treatment, ten distinct phage combinations were used. 
Phage cocktail combinations were created by combining 
phages with wide and restricted host ranges, such as A1 and 
A2, with A3 and A5. Several UPEC strains were infected for 
24 hours with an MOI of 10 for the cocktail-killing test. The 
most considerable average bacterial growth suppression 
period was demonstrated by phage cocktails75. According to 
what is known about phage therapy, it is simple to isolate 
infectious phage from bacterial hosts that are linked to 
pathogenicity or infectious diseases76-78. 
 
 

7.4 Antibiotic-Phage Combination  
 
There is a synergy observed between antibiotics and phage. 
So, this phage-antibiotic synergy can work with great potential 
to help in bacteria killing79-80. In a study, there are 11 different 
phages that are used with a combination of 8 other antibiotics. 
Around 88 phage and antibiotic combinations were tested 
along with bacterial swelling in cocci or antibiotic-induced 
bacterial filamentation81. P. aeruginosa biofilm eradication was 
improved when the Pseudomonas-targeting “phage PEV20” 
was coupled with ciprofloxacin, showing the possibility for 
lowering the antibiotic dose required to tackle extremely 
refractory infections associated with biofilms82. It is believed 
that raising the antibiotic concentration in phage–antibiotic 
treatment will improve synergy, however, several 
investigations have found that when antibiotics are used in 
conjunction with phages, the antibiotic minimum inhibitory 
concentration (MIC) is reduced82-86. Similar to the previous 
work, the imipenem-resistant strain “Klebsiella pneumoniae 
K2534” and persistent strain “Klebsiella pneumoniae K3325” of 
the Gram-negative bacterium were treated with “mitomycin 
C”, “imipenem”, and the lytic “phage vB KpnM-VAC13". 
Except for the strain resistant to the antibiotic imipenem, 
which was co-treated with phage plus "mitomycin C" or 
"imipenem", the survival rate of the larvae increased to 50% 
and 75%, respectively, as compared to either antibiotic 
formulations or phage monotherapy. This was brought on by 
imipenem being hydrolyzed by resistant strains of lactamase. 
However, the larvae mortality rate was reduced substantially 
with the help of the other therapeutic measures87.  
 
7.5 Hydrogels for Phage Delivery 
 
The primary prerequisites of a steady phage preparation for 
therapeutic applications are complete physical consistency of 
the formulation and assurance of phage steadiness. Hydrogels 
have been utilized to deliver biologics, such as phages, to the 
target place of interest, such as wounds and implants88-94. Phage 
hydrogels, which combine the advantages of both phages and 
hydrogels, have been utilized to treat and prevent multidrug-
resistant bacterial infections. Multiple preclinical investigations 
have been conducted in vitro and in vivo 95, suggesting that 
hydrogels may be the optimum phage delivery method. 
Different hydrogel formulations are mixed with phage to 
combat bacteria that have developed a resistance to many 
drugs; some of their specifications are addressed. "PEG 
(polyethene glycol) hydrogels", due to their adaptive 
physicochemical characteristics, minimal toxicity, and 
constrained protein adsorption, are among the most 
frequently utilized synthesized hydrogels in the field of 
biomedicine88. Many formulations can be created by combining 
PEG hydrogels with different functional groups, such as “PEG-
4-MAL (Polyethylene Glycol-4-Maleimide)” and “PEG 
(Polyethylene Glycol)-Polyurethane” 88. Because of their 
remarkable capabilities for integrating biological elements, 
hydrogels are an excellent medium for the delivery of phages. 
Similarly, other hydrogel compositions have been employed to 
treat bacterial infections resistant to antibiotics. Table 1 is a 
discussion of certain hydrogels, phages, and the bacteria that 
they target.
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Table 1. Different types of hydrogels and the phages used with their antimicrobial properties 
Hydrogel Bacteria Strain Phage Antimicrobial activity Reference 

 
 
 
 

Alginate 

Escherichia coli 
 

K12 strain of 
Escherichia coli 

(A324) 
 

Λ vir 
 

Coating a bone ceramic material 
with 1% alginate–CaCl2 hydrogel 
enhances the lytic activity and 
permits the phages to release for 
longer periods of time. 

88,95-97 

Enterococcus 
faecalis 

E. faecalis 201 -
strain 

vB_EfaS_LM99 
(LM99) 

Planktonic bacteria were strongly 
suppressed (approximately 99 
percent) in the presence of phage-
loaded hydrogels after 24 hours of 
incubation. 

88,95-97 

Poly (ethylene 
glycol)-4-

maleimide (PEG-
4-MAL) 

 

 

 

Pseudomonas 
aeruginosa 

Collection of 
Pseudomonas 
aeruginosa 

strains 

Φ Paer4, 
Φ paer14, 

Φ paer22, and 
Φ W2005A 

Pseudomonas aeruginosa 
bacteriophage-treated cultures did 
not significantly vary in optical 
density over the course of the 6-
hour treatment period and had a 
significantly decreased optical 
density at the halfway point. 

35,89,95 

PVA-SA (Polyvinyl 
Alcohol-Sodium 

Alginate) 

Klebsiella 
pneumoniae  

 
Staphylococcus 

aureus 
(Resistant to 
Methicillin) 

 
Pseudomonas 
aeruginosa 

B5055 
 
 
 
 

43300 
 
 

PAO1 

Kpn5 
 
 
 
 

MR10 
 
 

PA5 
 

When the phages were enclosed 
in a "PVA-SA crosslinked 
membrane" and cultured with the 
bacterial host, the activity of the 
phages on their surface was 
maintained. As a result, the host 
was lysed, and an obvious zone of 
inhibition formed around the 
membrane. 

36, 90,95 

HPMC 
(Hydroxypropyl 
Methylcellulose) 

Hydrogel 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

dog-ear strain 
PAV237 

PEV1 
PEV31 

“PEV31” was comparatively stable 
in "HPMC hydrogels" (0.4 log). 
“PEV1” remained stable in PEO as 
well as PVA hydrogels with no 
titer loss, although a small titer 
drop (0.4–0.8 log) was seen in 
other compositions. 

37, 91,95 

 
7.6 Synergistic Effect of Nanoparticles and Phage 
 
Bacterial resistance to phages may also emerge throughout the 
phage treatment process98-101. In order to increase phage 
effectiveness, tolerance, and overall delivery, recent methods 
suggest combining phages with other bio-control agents 
including antibiotics102, natural products (such as venom and 
propolis), as well as syntactic compounds and 
nanoparticles24,103,104. Phage and nanoparticles (NP) like AgNPs 
together have demonstrated very significant impacts on 
various multidrug-resistant bacteria. Salmonella105,106 and other 
multidrug-resistant bacteria are those whose development is 
restricted by AgNPs. The ability of green AuNPs and phage 
combinations to destroy multidrug-resistant Staphylococcus 
aureus biofilms has also been demonstrated107. It was 
investigated whether the Salmonella "phage ZCSE2 
(MK673511)" could be utilized to control Salmonella growth. 
In various conditions, including pH and temperature, the phage 
was remarkably stable108. It can be characterized by colour 
change, Zeta potential “UV-Vis spectrum”, “Fourier transform 
infrared spectroscopy (FTIR)”, and “transmission electron 
microscope (TEM)”. In order to evaluate the antibacterial 

activity of AgNPs alone and in combination with “phage 
ZCSE2” against Salmonella, time killing curve, measurements 
of MIC, minimum bacterial concentration (MBC), bacterial 
survival, and reduction were made. The data demonstrated 
that the combination of AgNPs and “phage ZCSE2” 
significantly suppressed bacterial growth109 in comparison to 
other treatments. This reflects the potential for phage 
applications that combine phage and nanoparticles to manage 
bacterial diseases. Bacteriophages, combined with diverse 
formulations, have demonstrated promising outcomes. These 
therapies show that phage therapy is an innovative and 
successful treatment that will soon provide an excellent 
replacement for antibiotics in the fight against multidrug 
resistance. 
 
7.7 Commercialized Phages 
 
Various phage products (as listed in Table 2) have been 
commercialized for food safety. In addition, phages and their 
derivatives are becoming more widely recognized as viable 
complementary approaches for use in food safety at various 
stages of the manufacturing process110. 
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Table 2. Commercialized phage products and their effectivity 
Phage 

product 
name 

Microorganism Phage Effect Reference 

SalmoFresh™ Salmonella enterica 

“SKML-39” 
“SBA-1781” 
“SSE-121” 

“STML-13-1” 
“SPT-1” 

“STML-198” 

It eradicated 780 (85%) of the 916 Salmonella 
isolates. 

111,112 

Phageguard   
ListexTM P100 

 

Listeria 
monocytogenes 

“P100” 
 

P100 insensitive Listeria monocytogenes were 
looked for in 486 isolates of Listeria 
monocytogenes from 59 diaries during a 15-year 
period. Immunities were noted in 5 diaries. The 
non-susceptible isolates found weren't just 
discovered at random; rather, they were 
connected to phage treatments. 

113,114 

ListShieldTM  

“LIST-36” 
“LMSP-25” 
“LMTA-34” 
“LMTA-57” 
“LMTA-94” 
“LMTA-148” 

Ensures a wider host range by lysing all tested 
strains Listeria monocytogenes strains 

112,115-118 

EcoShield 
PX™ 

Escherichia coli 
O157:H7 

3 to 8 lytic 
phages 

The use of 5× 106 and 1×107 PFU/g bacteriophage 
in 8 different food products infected with 
Escherichia coli O157:H7 resulted in significant 
reductions of up to 97% in all foods. 

112,119 

ShigaShield™ Shigella sonnei 

“SHSML45” 
“SHFML-26” 
“SHSML-52-

1” 
“SHFML-11” 
“SHBML-50-

1” 

With the exception of melon, where the decrease 
was only around 45% at the lowest phage dosage 
(9x105 PFU/g), all phage-treated food items had 
significantly lower shigella levels when compared 
to controls. 

112,120 

In addition to focusing on the numerous phage formulations 
available to combat drug resistance among harmful bacteria, 
the study will now examine pertinent topics such as "Phage-
based assay" and "Phage-based biosensor" to contribute to 
society in its battle against drug-resistant pathogens.  
 
8. PHAGE-BASED ASSAY AND PHAGE-BASED 

BIOSENSOR 
 
The utilization of phage-based assays and biosensors has 
expanded dramatically in recent years, greatly aiding the fight 
against multidrug resistance. Several types of phage-based 
treatments and phage-based biosensors are reviewed below. 
 
8.1 Phage Amplification Assay 
 
Phage amplification methods have recently advanced, 
removing the requirement for complex apparatus and 
requiring just a small number of the original target pathogens 
31. This method's primary benefit is that it enables the 
detection of target bacteria in a mixed bacterial sample31, even 
when such bacteria are present at initially low quantities. 
Mycobacteriophages, or viruses that invade mycobacterial 
hosts, have been studied extensively as a vital tool in the 
diagnostic and drug susceptibility evaluation of Mycobacterium 
species since their discovery more than 70 years ago. 
Understanding their structure and function has been greatly 
aided by recent developments in genetic engineering 121,122. 
Because bacteriophages can only reproduce within living cells, 
the phage amplification method allows the detection of viable 

mycobacterial cells between 24 to 48 hours, making it 
significantly more sensitive than standard culture methods and 
requiring no sophisticated equipment123. Adsorption capacity, 
a single-step growth curve, and lytic capability were used to 
characterize "Salmonella phage PBST32" in research 
comparing antibiotic-sensitive and -resistant Salmonella 
Typhimurium by the phage amplification test31,124. The phage 
amplification experiment was performed at 50% of the drug's 
minimal inhibitory concentration (MIC) 125 to detect “STCIP”, 
which includes phage infection, phagecidal treatment, 
neutralization, and amplification in the presence of 
ciprofloxacin. Using the “PBST32” based technique in 
combination with antibiotic treatment, it was detected that 
“STCIP” could be selectively identified in combination cultures 
of S. aureus, “STWT” and K. pneumoniae, and also identified that 
the “PBST32” amplification experiment is a simple and 
effective tool for the quantitative and targeted recognition of 
antibiotic-resistant Salmonella124. 
 
8.2 Phage Lytic Assay 
 
The lysis of the host bacterium and the subsequent release of 
intracellular components and progeny viruses into the 
extracellular environment are the results of lytic dispersion by 
bacteriophages31,124. Therefore, two "Yersinia pestis lytic 
phages (A1122 and PST)" were tested to see if they could 
infect and kill off a fluorescent "Y. pestis EV76" strain. At the 
same time, it was suspended in "Brain Heart Infusion (BHI)"-a 
rich medium or whole human blood, both miming the host 
environment126. Prior research indicated that "phage A1122" is 
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a universal phage that can lyse all studied strains of Y. 
pestis127,128. Hence it has been used by the CDC for Y. pestis 
diagnostics. Further, it has already been found to have the 
quickest lysing ability in investigating bacteria cultured in 
broth127,128. 
 
8.3 Phage Based Electrochemical Biosensor 

 
A phage-based electrochemical biosensor for the quick and 
accurate detection of Yersinia pseudotuberculosis is described in 
a study where the electrode's surface is modified using the 
conductive poly (“indole-5-carboxylic acid”), reduced 
graphene oxide, as well as using gold nanoparticles. On 
modified electrodes, the particular “bacteriophages vB YepM 
ZN18” were immobilized by an Au-NH2 link between gold 
nanoparticles and the phages129. The phage incubation duration 
and the reaction time for detection are crucial elements that 
must be tuned to maximize the efficacy of the phage-based 
biosensor129. In order for sensors to be successfully 
commercialized, qualities like reproducibility and storage 
stability are of the utmost importance130. Furthermore, the 
phage-based biosensor is more effective due to its low 
detection limit, rapid testing, and ability to distinguish between 
living and dead Y. pseudotuberculosis cells129. Furthermore, 
optimizing the density of phage immobilization can help the 
phage-based biosensor operate even better129. However, it is 
not possible to reuse the created “PI-5-
CA/rGO/AuNPs/phage electrochemical biosensor”, 
nonetheless it is quick, precise, sensitive, and reasonably 
priced, making it a potential tool for clinical applications of Y. 
pseudotuberculosis detection129. 
 
8.4 Surface Plasmon Resonance Biosensors 

 
It has been demonstrated that methods based on “phase 
imaging” or methods based on “surface plasmon resonance 
imaging (SPRi)” are possibilities for rapid (less than two hours) 
phage susceptibility testing in the broth phase. Covalently 
immobilized arrays of the “phage 44AHJD, “phage P68”, and 
“phage gh-1” were used to create biosensing layers, which 
were then subjected to liquid cultures of either Pseudomonas 
putida or methicillin-resistant Staphylococcus aureus (MRSA)131. 
The targeted, addressable immobilization of phages on the 
sensor surface is required to apply surface plasmon resonance 
for phage susceptibility testing, and this task is far from 
simple132,133. Under prior findings of earlier studies, the 
purification and immobilization process utilized in this work 
consistently produces homogenous, high-purity and high-
density phage monolayers from suspensions of the "phage gh-
1" and "phage44AHJD"131. In another study, using the full-
length Det7 phage tail protein (Det7T), a surface plasmon 
resonance biosensor can quickly and accurately identify 
“Salmonella enterica serovar Typhimurium” (S. Typhimurium)134. 
Surface plasmon resonance-based biosensors have long been 
acknowledged as the most effective method for evaluating how 
a solution species interacts with a surface-immobilized 
species135. In addition to concentrating on the many 
formulations of phages that are now accessible, the study will 
directly address inhaled phages as the most recent type of 
treatment. 
 
9. INHALED PHAGE THERAPY USHERS IN A 

NEW ERA OF THERAPEUTICS 

 
Studies involving the use of bacteriophages to treat a variety 
of pulmonary pathogens, including E. coli, Klebsiella sp., 

Streptococci sp., Staphylococci sp., and Pseudomonas sp., have 
been the subject of various research conducted since 1936. 
Many of these investigations have demonstrated an 
effectiveness of 80 to 100 per cent. However, some have failed 
due to a lack of understanding regarding the selectivity, quality 
management, and longevity of phages136-138. Although 
numerous incidences of respiratory infections have been 
reported in recent years, the first two-arm, open-label trial 
conducted involves four critically ill coronavirus 2019 
(COVID-19) patients, assesses the efficacy of an inhaled phage-
based therapeutic intervention to stop the pathogenesis of a 
secondary infection caused due to Acinetobacter baumanii139. In 
addition, the safety of a phage cocktail involving three phages 
(AB-SA01) as adjunctive therapy for the management of severe 
Staphylococcus aureus infection is being evaluated in another 
study140. Moreover, the relationship between phages and the 
immune system can aid in the prevention of infections141. 
Majorly, phages have been utilized in place of antibiotics. The 
benefits of direct pulmonary administration include increased 
lung phage density and quick contact with the target 
pathogen142,143. The same group used the "Mycobacteriophage 
D29" to examine the titer reduction and phage delivery rates 
of three inhalation devices (Vibrating Mesh Nebulizer, Soft 
Mist Inhaler, and Jet Nebulizer), which demonstrated this 
method appropriate for administration is suitable for 
delivering phage to lung tissue144.  
 
9.1 Nebulization 

 
Nebulization moves a particular nozzle into a liquid to create 
a thin mist of active component solution145. A substance to be 
administered by nebulization must first be dissolved in a 
medium that is usually water-based. Then, following the 
application of ultrasonic waves or a gas jet for dispersion, the 
drug particles are encapsulated in the aerosol droplets, which 
are subsequently inhaled146. There are several varieties of 
nebulizers, such as Vibrating mesh nebulizers, Jet nebulizers, 
etc. A significant advantage of Nebulizers is their ability to 
deliver filtered phage lysate without further processing, in 
contrast to metered-dose inhalers or dry powder inhalers, or 
nebulizers can more easily be connected to animal exposure 
devices and can continuously deliver enormous amounts of 
aerosol, even to people who are unable to coordinate the 
breathing manoeuvre required for inhalers147. Furthermore, 
according to animal studies, the vibrating mesh nebulizer is the 
best option for delivering anti-TB "phage D29" because of its 
high active phage delivery rate and barely any titer reduction 
of aerosolization144. Subsequently, in another study, two 
phage-ciprofloxacin combinations were aerosolized using air-
jet and vibrating mesh nebulizers. The synergistic antibacterial 
activity was maintained after nebulization, and the two 
combinations contained 1/4 and 1/2 of the minimum inhibitory 
concentration (MIC) of ciprofloxacin against "P. aeruginosa 2 
FADD1-PA001 (A)” and “P. aeruginosa JIP865", respectively. 
The study observed that the combination of the drug 
ciprofloxacin and the nebulized "phage PEV20" exhibits 
promising antimicrobial and aerosol characteristics for 
potentially treating infections associated with the respiratory 
tract caused by the pathogenesis of drug-resistant P. 
aeruginosa79.  
 
9.2 Soft Mist Inhalation 

 
Soft Mist Inhalers, also known as Respimat inhalers, have been 
developed in recent years; when inhaled, they softly spray a 
little mist of medicine145. Researchers compared the titer 
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reduction and delivery rate of anti-tuberculosis "phage 
D29" while using a soft mist nebulizer versus those using a jet 
nebulizer or vibrating mesh nebulizer. The findings 
demonstrated that the vibrating mesh nebulizer performed 
better than the jet nebulizer and that the soft mist inhaler 
might be beneficial for self-administered phage therapy 
because of its mobility and ability to deliver "phage D29" at 
high titers rapidly and conveniently144. Since the various 
methods of using inhaled phages have already been discussed, 
it is of the utmost importance to comprehend the multiple 
innovations available for the inhaled use of diverse 
bacteriophages to minimize the decrease in phage titer and 
maximize the delivery of stable phages while minimizing the 
inevitable titer drop that inevitably occurs. The following 
section describes the many novelties. 
 
10. INNOVATIONS IN INHALED PHAGE 

THERAPY FORMULATION AND DELIVERY 

 
Different improvements have been made in the administration 
and formulation of inhaled phage treatment. The following are 
examples of recent developments:  
 
10.1 High-Frequency and Surface Acoustic Wave 

Nebulization Improves Pulmonary Delivery 

 
A nebulizer can effectively treat bacterial lung infections, but 
the aerosolization process can be very taxing on proteins and 
bacteriophages, leading to severe structural and functional 
degradation147. Myoviridae bacteriophage “phage K” and 
“lysostaphin”, a lytic enzyme that targets Staphylococcus 
aureus, were used in an experiment to demonstrate that they 
may be nebulized utilizing a revolutionary low-cost and 
portable hybrid surface and bulk acoustic wave platform 
(HYDRA)147. Since nebulizers don't require specialized patient 
coordination training, they may be utilized with many patients. 
The experiment shows that the HYDRA device, which uses 
relatively lower powers and higher frequencies than its bulk 
ultrasonic counterparts147, successfully nebulizes a phage (a 
mycovirus "phage K") and lytic enzyme (a "lysostaphin") 
specific to S. aureus within a specific aerosol size range 
between 1 and 5m for optimal deep lung delivery, with little 
loss in structural and functional viability. Surface acoustic 
waves (SAW) are another method, and they work at much 
higher frequencies (>10 MHz) than ultrasonic nebulizers 
(usually kHz to 1 MHz)148-151. Additionally, SAWs are more 
efficient than their bulk analogues, needing just one to two 
magnitudes less power for nebulization152. However, the most 
significant limitation of nebulizers, particularly SAW 
nebulizers, is that it takes a long time to provide an effective 
dosage to more distant parts of the body145. 
 
10.2 Electrospray: Inhalation of Controlled, Targeted 

Doses of Drugs 

 
The most common way of administering medications by 
inhalation is nebulization, although this technique is not 
without its downsides. Nebulization creates ultrafine pollutant 
particles from dry solutes plus biological fragments inside the 
nebulizer fluid. These contaminants reduce process efficiency 
by masking the size distribution of virus particles roughly the 
same size153,154. In addition, it is not desirable for the nebulized 
solution to become increasingly concentrated as a result of 
some of it flowing back to the nebulizer reservoir and a 
portion evaporating over time155. Low spray-to-target ratios 

(>20%) are familiar not only with nebulizers but also with 
inhalation of dry powdered formulations, or inhaling 
pressurized metered doses of phages, due to the fact that most 
of the drug particles become deposited in the upper airway. 
Particles of varying sizes are also generated. Less of the 
provided dose (or phage titers) reaches the desired location 
for action due to the bigger particle's tendency to lodge in 
upper airways rather than lungs156,157. "Electrospray (ES)" or 
"Electrohydrodynamic atomization (EHDA)" produces a spray 
uniform in particle size. It's a form of atomization in which 
electrohydrodynamic forces break liquid into very fine 
droplets158,159. Unfortunately, the aerosol size distribution 
produced by electrospray is somewhat narrow. The resultant 
aerosolized product is free of aggregates and specific other 
contaminants resulting from the drying process of the solute 
molecules160. For instance, in a study, airborne “MS2 
bacteriophage” particles 30 nm in size were characterized 
using charge-reduced electrospray. Using a “cone-jet 
electrospray” apparatus, phage suspension was sprayed. In 
contrast to nebulized particulates, electro-sprayed MS2 
particles showed consistent size distribution, excellent 
stability, as well as homogeneity. The researchers discovered 
that electrospray might produce uniform-sized, non-
agglomerated particulates161. 
 
10.3 Encapsulating Phages in Liposomes Facilitating 

Enhanced Pulmonary Delivery 

 
Liposomes are nano-vesicles made self-assemble into lipid 
microspheres. They are ideally suited for administering phages 
because of their compatibility with a wide range of phage 
compositions. Therefore, the enclosed phages remain 
protected from the action of enzymes, bodily fluids, or 
neutralizing antibodies162. Since Liposomes exhibit the 
appearance of biomembranes, they can undergo structural 
changes that allow them to get through the defences of the 
living tissues and access deeper places. As free phages cannot 
infiltrate eukaryotic cells, liposome encapsulation may allow 
them entry into the cell to tackle intracellular infections163. 
Recent research has documented the efficacy of using 
liposome encapsulation technologies to deliver phages and 
different medicines against a wide variety of lung infections. 
For instance, in a study effective encapsulation of the Klebsiella 
pneumonia-specific "phage KPO1K2" in cationic liposomes was 
reported, with the encapsulation yielding 92 percentage of 
efficacy and substantial structural as well as functional stability 
for a period of nine weeks at temperatures ranging from 4°C 
to room temperature. Absolute eradication of specific 
pathogens from the lungs occurred within 72 hours following 
treatment with the liposomal preparations, protecting all 
assessed mice against pneumonia-induced mortality even when 
treatments have been deferred by a period of 3 days after 
initiation of infections by K. pneumoniae164. However, 
aerosolized phage administration via liposomes may provide 
its own unique set of difficulties. To begin, considerable losses 
and limited encapsulation effectiveness may result from 
exposing phages to heat while hydration and solid mechanical 
stress while ejection96,165. Secondly, maintaining the integrity of 
liposomal vesicles throughout nebulization is extremely 
difficult. It is possible that the encapsulated bacteriophage will 
be lost if the liposome vesicles are nebulized into tiny aerosol 
particles due to the shearing stress involved159. 
 
10.4 Advanced Inhalation Control with a Centralized 

Processing Unit and User-Friendly Software 
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“Individualized Controlled Inhalation Technology (ICIT)” can 
be defined as a novel approach that promotes increased drug 
targeting, decreased lung dosage variability, and being one-of-
a-kind integrated software-based regulation, end up making it 
one of the most enticing innovative techniques for enhancing 
respiratory aerosol accumulation166. "AKITA®" is the most 
cutting-edge aerosol delivery technique based on ICIT since it 
regulates the patient's whole breathing motion, allowing for 
more targeted medication administration. It works well with 
ultrasonic mesh nebulizers. At the same time, the updated 
version exhibits complete compatibility with the "vibrating 
mesh nebulizers", delivering up to 98% of the loaded dosage 
as aerosol particulates with a "Median Mass aerodynamic 
diameter" of less than 4m167,168. With the ability to constantly 
monitor parameters and notice undesirable effects, these 
cutting-edge devices also give clinicians a more significant say 
over the therapy and when to make adjustments162,169. In 
patients with diseases such as “chronic obstructive pulmonary 
disease”170 or “cystic fibrosis”, for instance, the presence of 
the endotoxin lipopolysaccharide in medication formulations 
has been linked to the initiation of inflammation of airways and 
deleterious consequences171,172. However, this may be 
effectively handled by employing ICIT systems equipped with 
cutting-edge features, including continuous scanning of data 
concerning nebulized medicine dose, therapy time, and any 
unwanted effects. This is especially helpful for the preparation 
of phage-based formulations because endotoxin might 
potentially contaminate the formulation due to flaws in high 
titer phage manufacturing and filtration if present at all172. 
Phage treatment and other ICIT-based nebulizer research are 
still in the early stages of development. Therefore, additional 
targeted studies are needed to improve phage administration, 
particularly regarding the volume of dosages, the time between 
dosages, and the rate of aerosolization. This will help in 
achieving elevated success levels concerning the outcomes of 
phage therapy145.  
 
11. REGULATIVE MEASURES APPLICABLE FOR 

PHAGE-BASED THERAPEUTIC 

INTERVENTIONS 

 
With renewed interest in phage treatment, it's more crucial 
than ever to have strict laws governing phage-based goods. 
Because of its peculiar pharmacokinetics and evolutionary 
concerns, phage treatment is sometimes classified as a kind of 
evolutionary or customized medicine, making it difficult for 
regulators to apply existing pharmaceutical law to the field153. 
Nevertheless, countries such as Georgia173 or Russia174 have 
supported this alternative intervention. This has led countries 
from the west to form new regulations for properly 
implementing bacteriophages as a potential therapeutic 
intervention175. For instance, the initial steps toward regulating 
phage treatment are being conducted in Belgium, with the 
establishment of two pillars: the availability of recognized 
laboratory facilities with phage stock and the compilation of 
complete information on the bacteriophage to be used in the 
phage-based product to assure its quality176. Contrarily, in 
France, a specialist committee offered recommendations for 
using phage-based products in an order with the "Temporary 
Authorization for Use". Due to the lack of suitable 
alternatives, this rare method permits the unapproved use of 
a pharmaceutical medication176. The “Food and Drug 
Administration (FDA)” regulated by the United States, 
authorized the emergency use of phage therapy for patients 
afflicted by the global pandemic of COVID-19 due to the 
absence of adequate clinical studies177. This is because of the 

increased attention paid to bacteriophages to treat the 
problem of drug resistance among several bacterial pathogens, 
which emerged in hospital wards during the pandemic178. A 
significant barrier exists for using bacteriophage in animals 
since they do not readily comply with current European Union 
rules concerning food additives and food manufacturing aids178. 
Therefore, phage-based treatment is hindered by a lack of 
clear restrictions, which does nothing to pique the attention 
of the powers in drafting such rules—because of this, doing 
more studies and clinical testing is the need of the hour175. 
 
12. LIMITATIONS AND FUTURE ASPECTS 

 
Bacteriophages have been used therapeutically to treat various 
infections since the early 1920s. However, varied results from 
phage studies reported during the 1930s raised significant 
concerns regarding the safety and effectiveness of this medical 
procedure176,177. The lack of regulation and the inappropriate 
synthesis, characterization, and refinement of phage 
preparations prompted these inquiries. Despite its inherent 
limitations, phage treatment has proven a successful 
alternative to antibiotics in the fight against multidrug 
resistance. In 85% of the instances, a single bacteriophage or 
phage cocktail was given as part of the medical treatment. One 
of the critical factors in this achievement is the employment of 
specific bacteriophages for each species of bacteria. Even 
though all studies reported performing in vitro assays of 
bacteriophage activity before the therapy, the infection 
persisted in 15% of cases after the therapy ended178. Phages 
have a variety of traits that are distinct from those of 
antibiotics and obstruct the development of phages as 
pharmaceuticals and therapeutic uses. They are typically picky 
about the bacteria they infect, to start with. At most, they will 
only infect a few strains of that species179, but at worst, they 
will concentrate on a substantial section of that species. One 
of the main issues with phages is their slow availability, which 
is understandable given how difficult it is to develop 
therapeutic phages. The encapsulation method is rarely a 
solution because few phages are unstable. However, phages 
can be incorporated inside a material to maintain its integrity 
for extended periods, which also holds the potential for 
targeted delivery179. Lyophilization is a practical method for 
long-term phage preservation even if not all phages can be 
done so. Each phage requires extensive research and empirical 
testing, and over the past 70 years, several cutting-edge 
strategies have been produced. Phage resistance is both 
undesired and inevitable, given the wide range of mechanisms 
discovered in bacteria. Researchers may follow the 
development of bacterial resistance to phage180 in a way 
comparable to that of antibiotic resistance using standard 
laboratory culture techniques181. Resistance development has 
been shown in animal models with phage treatment and 
infections51. Fortunately, the majority of these research 
findings show that phage resistance decreases the 
pathogenicity of bacteria99,182. Through a specific health 
approach, phage treatment may be used to combat multidrug 
resistance. Phage use as a natural tool can save lives, enhance 
health, and lessen the number of drugs in the environment 
over the long term and for future generations183. Phages should 
be used instead of or in addition to antimicrobial medications 
whenever possible and when necessary. The sustainable One-
Health strategy will begin with animal husbandry since this is 
where the environment and the human microbiome converge, 
even though it may be studied piecemeal. Antibiotics used to 
treat phages may work well together in a clinical context. 
Antibiotics used to treat phages may work well together in a 
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clinical context184. However, the underlying mechanical 
principles of these synergies could be more straightforward 
and speculative. Few inferences have been made thus far, 
partly because some phages may have unique effects when 
taken with medications with similar mechanisms of action, 
such as inhibiting cell wall synthesis. Further study is required 
to examine these divergent findings. Future studies should 
concentrate on how the immune system interacts with phage 
treatment and if this has a positive or negative impact184,185. 
Despite being in its infancy, research on the connections 
between phage treatment and innate and adaptive immunity is 
essential. Phage treatment is becoming increasingly viable for 
use as an antibacterial agent to combat illness as more 
thorough studies are released by leading Western scientists 
and corporations186,187. The public and the medical community 
may become more interested in phage treatment, particularly 
in countries like the US, where the regulatory framework is 
less conducive to its implementation in the near future188,189. 
Shortly, a wide range of illnesses will be treated with the help 
of phage treatment, a well-researched and well-established 
therapy that has effectively addressed multidrug resistance190-

193. 
 
13. CONCLUSION 

 
This review demonstrates the success of phage therapy against 
multidrug-resistant bacteria and the numerous formulations 
used in conjunction with phages to treat it. The multiple phage 
combinations show that phage therapy could be used 
successfully in conjunction with nanoparticles, phage cocktails, 
and antibiotics against various pathogens. In phage therapy, 
diverse phages are typical about infecting specific bacteria, and 
a majority of the phages can decrease the pathogenicity of the 
bacteria and have shown remarkable outcomes. Commercial 

phage products have proved useful in the fight against 
antibiotic resistance in livestock and in improving the health of 
everyone in the world. Bacteriophages are naturally occurring 
antibacterial substances with antimicrobial properties that help 
fight pathogens and are a good substitute for antibiotics. In the 
current years, phage therapy has had a lot of advantages, and 
it is seen that phage cocktails and antibiotic-phage formulations 
have been a part of medical treatment, along with hydrogels 
and phage together showing their antimicrobial properties and 
phages in combination with nanoparticles reducing bacterial 
diseases. Through recent research, the successful and 
emerging results of phage therapy have been observed. 
Shortly, phage therapy with various combinations and more 
emerging effects will be established to fight multidrug 
resistance. 
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