

The Effects of Bariatric Surgery on Diabetic Retinopathy Course: A Review and Meta-Analysis.

 Hyder Mirghani, ¹Waad Ali Alkaabneh, ²Atheer Mansour Alatawi, ²Dhuha Abdullah ALQasir, ²Omniah Salem Altemani, ³Rabab Talal Aljayani.

¹Professor of Internal Medicine and Endocrine, Medical Department, Faculty of Medicine, University of Tabuk, KSA

²Medical Intern, Faculty of Medicine, University of Tabuk, Saudi Arabia

³Medical Resident at Dammam medical complex, Dammam, KSA.

Abstract: There is an increasing indication of bariatric surgery for metabolic diseases irrespective of body weight. Diabetic retinopathy is a serious disease; it is the leading cause of registered visual loss globally. Previous literature reported the deterioration of life-threatening diabetic retinopathy after bariatric surgery. Few studies assessed the same. Our aim of the study is to assess this meta-analysis for the effects of bariatric surgery on diabetic retinopathy remission. In addition, we assessed the effects of bariatric surgery on diabetic retinopathy deterioration. We systematically searched PubMed, Cochrane Library, and the first 100 articles in Google Scholar. The search engine was limited to articles published in English from the first published article up to June 2022. The following keywords were used, bariatric surgery, metabolic surgery, diabetic retinopathy, retinopathy remission, and retinopathy deterioration. The retrieved data were entered in a datasheet detailing the author's name, year and country of publication, the methodology, and the number of patients who deteriorated was stable or improved after bariatric surgery. The most recent RevMan (version 4.4.) was used for data analysis. From our study, we found that, out of the 386 studies screened, only 26 full texts were eligible and eleven studies fulfilled the inclusion and exclusion criteria. A lower deterioration rate was observed than stability, odd ratio, 0.05, 95% CI, 0.04-0.07, P-value, <0.001. Significant heterogeneity was observed, $I^2=54\%$, P-value, 0.02, and Chi-square=21.76. in addition, a lower regression was found compared to stable retinopathy, odd ratio, 0.06, 95% CI, 0.03-0.13, P-value, <0.001. Significant heterogeneity was observed, $I^2=73\%$, P-value, 0.0002, and Chi-square=29.67. Thus, Diabetic retinopathy remains stable among patients who underwent bariatric surgery. Few remissions were observed in the short term, while few patients deteriorated. Further randomized controlled studies comparing the effect of bariatric surgery and usual diabetic care are needed.

Keywords: Bariatric surgery, diabetic retinopathy, deterioration, regression

*Corresponding Author

Hyder Mirghani , Professor of Internal Medicine and Endocrine, Medical Department, Faculty of Medicine, University of Tabuk, KSA

Received On 19 December, 2022

Revised On 6 January, 2023

Accepted On 10 January, 2023

Published On 1 March, 2023

Funding

This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Hyder Mirghani, Waad Ali Alkaabneh, Atheer Mansour Alatawi, Dhuha Abdullah ALQasir, Omniah Salem Altemani, Rabab Talal Aljayani. , The Effects of Bariatric Surgery on Diabetic Retinopathy Course: A Review and Meta-Analysis..(2023).Int. J. Life Sci. Pharma Res. 13(2), L50-L55 <http://dx.doi.org/10.22376/ijlpr.2023.13.2.L50-L55>

I. INTRODUCTION

Diabetic retinopathy (DR) is the leading cause of registered blindness in the working age group¹. Diabetic retinopathy is on the rise and mirroring the increasing prevalence of diabetes and obesity², DR is common and might be the first presentation of type 2 diabetes³. The disease is sight-threatening, needs meticulous follow-up, and has better glycemic control⁴. The American Diabetes Association included weight management as a priority⁵. Thus, an increasing uptake of bariatric surgery is expected with a great impact on diabetic retinopathy. DR is associated with poor glycemic control, long duration of diabetes, hypertension, smoking, and other metabolic syndrome parameters⁶. Data regarding the effects of bariatric surgery on health-related outcomes lack. Bariatric surgery is associated with a reduction or resolution of most of the above-mentioned risks.k factors⁷. However, previous studies documented the initial deterioration of diabetic retinopathy following bariatric surgery and attributed it to the rapid glycemic control, osmotic changes, and the synergistic effects of insulin effect on endothelial growth⁸. A recent study conducted in China found that bariatric surgery improved most obesity-related comorbidities including diabetic retinopathy⁹. Merlotti and colleagues¹⁰ concluded the benefits of bariatric surgery on DR prevention and suggested further studies regarding the progression or regression of retinopathy. On the other hand, a previous study¹¹ showed a deterioration following bariatric surgery. While Dascalu et al.¹² showed that, the majority of diabetic retinopathy remained stable. The deterioration observed after diabetic retinopathy might be due to micronutrient deficiency, stopping lipid-lowering medications including fenofibrate or angiotensin-converting enzyme inhibitors¹³⁻¹⁷. The long-term impact of bariatric surgery on the progression of diabetic retinopathy was discussed controversially^{18, 19}. This meta-analysis aimed to assess the effects of bariatric surgery on diabetic retinopathy.

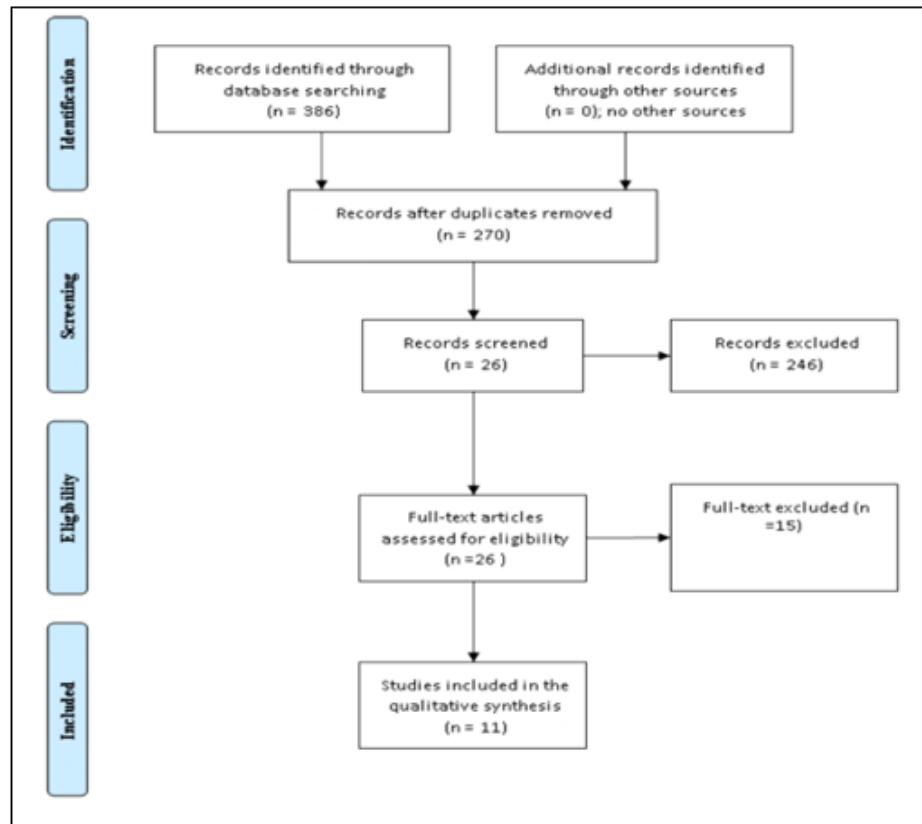
2. MATERIALS AND METHODS

2.1. Eligibility criteria according to PICOS

Studies were eligible if they were prospective or retrospective studies, case-control, or clinical trials published in English and

report the effects of bariatric surgery on diabetic retinopathy (stable, progression, or regression). Case studies, case series, animal studies, and experimental studies were excluded. The studies were expected to report the long-term effects of bariatric surgery as the initial deterioration is expected due to rapid glycemic control.

2.2. Outcome measures


The outcome measures were deterioration or improvement in diabetic retinopathy after bariatric surgery.

2.3. Literature search and data extraction

A systematic literature search was conducted in PubMed MEDLINE, Cochrane Library, and Google Scholar from the date of its first inception up to June 2022. Two reviewers searched the databases for relevant articles. The terms diabetic retinopathy, Bariatric surgery, gastric bypass, sleeve gastrectomy, and Roux-en-Y gastric bypass were used. The titles, abstracts, and references of the included studies were screened. Any discrepancy was solved by a consensus. Permission was taken from the institution and from the Saudi Digital Library to access the data and for publishing the study. There were 386 studies and 270 stands after the removal of duplication, from them, 26 full texts were screened and only 11 studies were included in the final meta-analysis. The Saudi Digital Library was used for data search; the data were free for the researchers affiliated with the University. A data sheet was used to extract the author's name year and country of publication, the study type, and the number of stable, deterioration, and improvements in diabetic retinopathy. Figure 1 and Table I.

2.4. Statistical analysis

The most recent version of the RevMan system was used. We pooled 20 cohorts from the included eleven studies (eleven showed progression and nine showed improvement). The dichotomous data were entered manually and the random effect was applied due to the significant heterogeneity. A P-value of <0.05 was considered significant.

Fig 1: Bariatric surgery effects on diabetic retinopathy (The PRISMA Chart)

Table 1: The pattern of diabetic retinopathy after bariatric surgery

Author	Year	Country	Study type	Increased	Stable	Decreased
Amin et al. ²⁰	2016	UK	Case-control	5/41	113/152	5/41
Brynskov et al. ²¹	2016	Denmark	Prospective	3/24	49/56	4/24
Chen et al. ⁷	2017	UK	Retrospective	13/68	48/68	7/68
Kim et al. ²²	2015	Korea	Retrospective	7/8	10/12	1/8
Miras et al. ²³	2012	UK	Prospective	1/28	61/67	5/28
Miras et al. ²⁴	2015	UK	Prospective	6/56	44/56	6/56
Morén et al. ²⁵	2018	Sweden	Retrospective	19/117	98/117	Not studied
Murphy et al. ²⁶	2015	New Zealand	Retrospective	12/100	232/318	35/100
Richardson et al. ²⁷	2018	UK	Retrospective	14/64	50/64	Not studied
Thomas et al. ²⁸	2014	UK	Retrospective	3/12	26/38	5/12
Varadhan et al. ²⁹	2012	UK	Retrospective	2/7	16/22	2/7

3. RESULTS

Out of the 386 studies screened, only 26 full texts were eligible and eleven studies fulfilled the inclusion and exclusion criteria. Ten of the studies were retrospective and one prospective cohort (ten were published in Europe and one from Asia). We pooled 20 cohorts from 11 studies^{3, 20-29}. In the current analysis, the 11 included studies showed a lower

deterioration rate than stability, odd ratio, 0.05, 95% CI, 0.04-0.07, P-value, <0.001. Significant heterogeneity was observed, $I^2=54\%$, P-value, 0.02, and Chi-square=21.76. Figure 2. Regarding DR improvement, all the nine included studies showed a significant regression compared to stable retinopathy, odd ratio, 0.06, 95% CI, 0.03-0.13, P-value, <0.001. Significant heterogeneity was observed, $I^2=73\%$, P-value, 0.0002, and Chi-square=29.67. Figure 3.

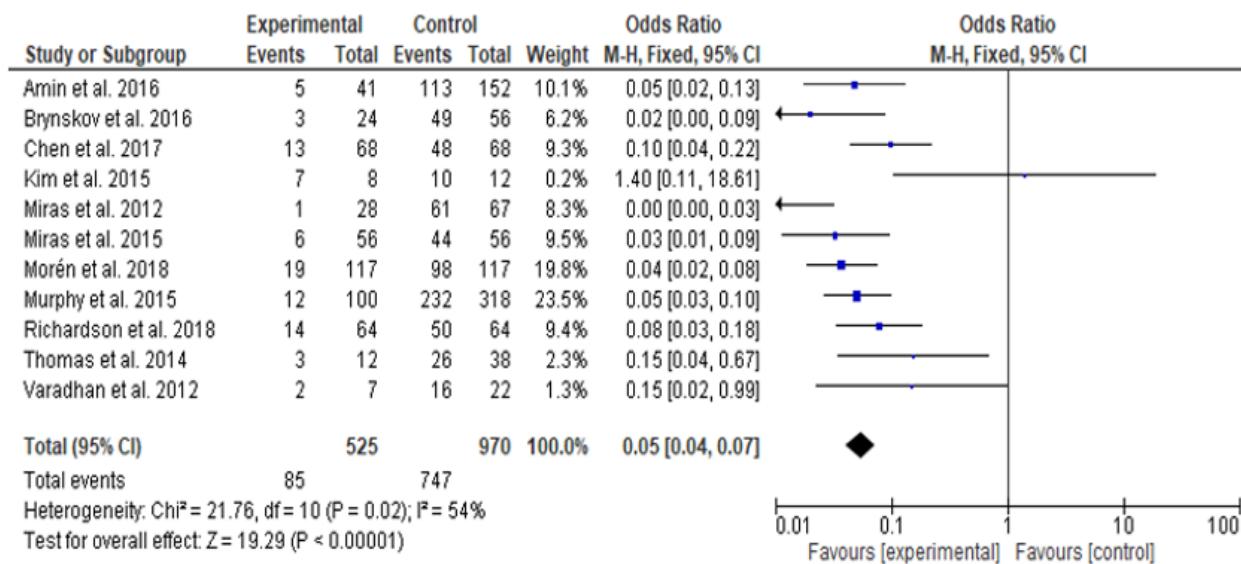


Fig 2: Bariatric surgery and deterioration of existing diabetic retinopathy.

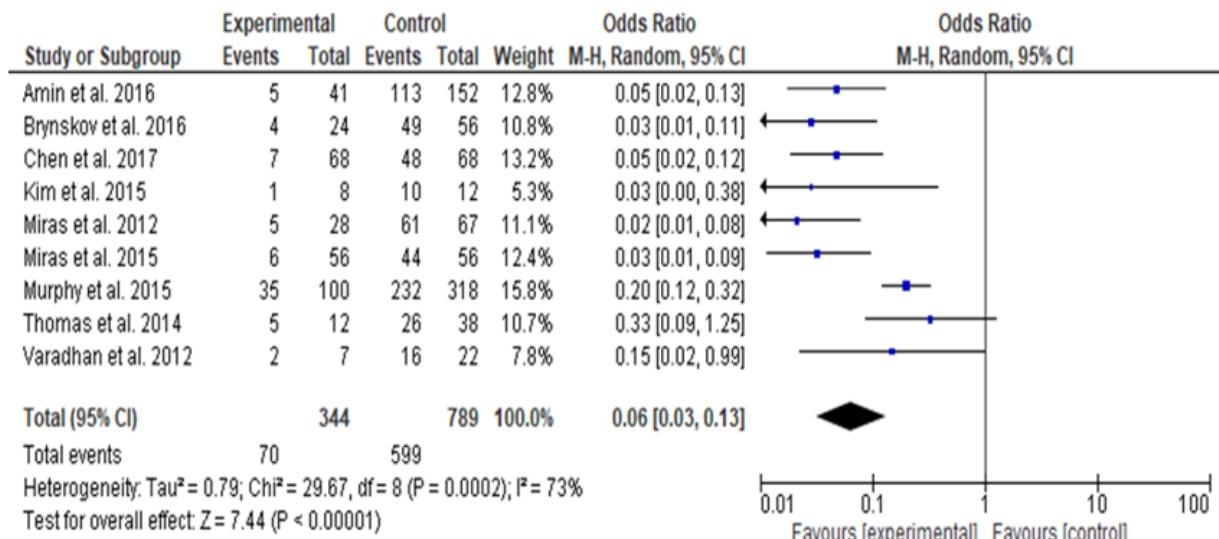


Fig 3: Bariatric surgery and diabetic retinopathy prevention.

4. DISCUSSION

The current study showed the long-term beneficial effects of bariatric surgery on diabetic retinopathy. However, the improvement of established diabetic retinopathy was not significant. A previous meta-analysis¹¹ assessed seven studies, compare diabetic retinopathy scores and found no difference between the two arms (bariatric surgery and medical therapy). Yu et al.¹⁹ in their meta-analysis found a lower rate of diabetic retinopathy among patients who underwent bariatric surgery, although the initial progression of diabetic retinopathy was observed, a long-term progression was not observed. A systematic review and meta-analysis that included only four studies showed the worsening of diabetic retinopathy, especially among patients with pre-existing diseases²⁹. The progression of diabetic retinopathy depends on the time and the state of retinopathy before surgery; it is usually observed in the initial six months and attributed to osmotic changes, and synergistic effects of insulin and other growth factors. Those with poor glycemic control and rapid reduction in the glycated hemoglobin, and pre-existing severe diabetic retinopathy⁸.

4.1. Early worsening of diabetic retinopathy (EWDR)

EDWR is usually observed before the long-term benefits of improvement in glycemic control (the initial 3-6 months). It can be observed among patients after bariatric surgery, and intensive treatment (both type 1 &2 patients with diabetes, and after pancreatic transplantation)³⁰.

4.2. Importance and nature of EWDR

Although the EWDR is usually transient. However, irreversible retinal damage may occur in those with severe pre-existing DR. The changes are usually intraretinal microvascular abnormalities and cotton wool spots³⁰.

4.3. Risk factors of EWDR

The risk factors are poor glycemic control, long duration of diabetes mellitus, hypertension, severe diabetic retinopathy,

and the magnitude and rapidity of blood glucose reduction. Slow reduction of glycemic control, laser therapy for severe retinopathy, and meticulous follow-up are needed^{7,30}.

5. CONCLUSION

Our study shows some evidence of the long-term beneficial effects of bariatric surgery on diabetic retinopathy. However, the improvement of established diabetic retinopathy was not significant. Diabetic retinopathy remains stable among patients who underwent bariatric surgery. Few remissions were observed in the short term, while few patients deteriorated. Our results indicated the benefits of bariatric surgery on diabetic retinopathy. Further randomized controlled studies comparing the effect of bariatric surgery and usual diabetic care are needed.

9. REFERENCES

- Yin L, Zhang D, Ren Q, Su X, Sun Z. Prevalence and risk factors of diabetic retinopathy in diabetic patients: A community-based cross-sectional study. *Med (Baltim)*. 2020 Feb;99(9):e19236. doi: 10.1097/MD.0000000000019236, PMID 32118727.
- Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. *Front Immunol*. 2020 Nov 6;11:583687. doi: 10.3389/fimmu.2020.583687, PMID 33240272.
- Thomas RL, Distiller L, Luzio SD, Chowdhury SR, Melville VJ, Kramer B, et al. Ethnic differences in the prevalence of diabetic retinopathy in persons with diabetes when first presenting at a diabetes clinic in South Africa. *Diabetes Care*. 2013 Feb;36(2):336-41. doi: 10.2337/dc12-0683, PMID 23033236.
- Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). *Diabetologia*. 2022 Dec;65(12):1925-66. doi: 10.1007/s00125-022-05787-2, PMID 36151309.
- Amoako WM, Ghanchi F, Bailey C, Banerjee S, Banerjee S, Downey L, et al. Diabetic retinopathy and diabetic macular edema pathways and management: UK Consensus Working Group. *Eye (Lond)*. 2020 Jun;34(Suppl 1):Suppl 1:1-51. doi: 10.1038/s41433-020-0961-6, PMID 32504038.
- Stanford FC, Alfaris N, Gomez G, Ricks ET, Shukla AP, Corey KE, et al. The utility of weight loss medications after bariatric surgery for weight regain or inadequate weight loss: A multi-center study. *Surg Obes Relat Dis*. 2017 Mar;13(3):491-500. doi: 10.1016/j.sobrd.2016.10.018, PMID 27986587.
- Chen Y, Laybourne JP, Sandinha MT, de Alwis NMW, Avery P, Steel DH, et al. Does bariatric surgery prevent the progression of diabetic retinopathy? *Eye (Lond)*. 2017 Aug;31(8):1131-9. doi: 10.1038/eye.2017.119, PMID 28731054.
- Bain SC, Klufas MA, Ho A, Matthews DR. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review. *Diabetes Obes Metab*. 2019 Mar;21(3):454-66. doi: 10.1111/dom.13538, PMID 30226298.
- Liao J, Yin Y, Zhong J, Chen Y, Chen Y, Wen Y, et al. Bariatric surgery and health outcomes: an umbrella analysis. *Front Endocrinol (Lausanne)*. 2022 Oct 28;13:1016613. doi: 10.3389/fendo.2022.1016613, PMID 36387921.
- Merlotti C, Ceriani V, Morabito A, Pontiroli AE. Bariatric surgery and diabetic retinopathy: a systematic review and meta-analysis of controlled clinical studies. *Obes Rev*. 2017 Mar;18(3):309-16. doi: 10.1111/obr.12490, PMID 28085992.
- Cheung D, Switzer NJ, Ehmann D, Rudnisky C, Shi X, Karmali S. The impact of bariatric surgery on diabetic retinopathy: A systematic review and meta-analysis. *Obes Surg*. 2015 Sep;25(9):1604-9. doi: 10.1007/s11695-014-1539-9, PMID 25515499.
- Dascalu AM, Stoian AP, Cherecheanu AP, Serban D, Costea DO, Tudosie MS, et al. Outcomes of diabetic retinopathy post-bariatric surgery in patients with type 2 diabetes mellitus. *J Clin Med*. 2021 Aug 22;10(16):3736. doi: 10.3390/jcm10163736, PMID 34442032.
- Singer JR, Bakall B, Gordon GM, Reddy RK. Treatment of vitamin A deficiency retinopathy with sublingual vitamin A palmitate. *Doc Ophthalmol*. 2016;132(2):137-45. doi: 10.1007/s10633-016-9533-2, PMID 26980447.
- Saenz-de-Viteri M, Sádaba LM. Optical coherence tomography assessment before and after vitamin supplementation in a patient with vitamin A deficiency: A case report and literature review. *Med (Baltim)*. 2016;95(6):e2680. doi: 10.1097/MD.0000000000002680, PMID 26871796.
- Rapoport Y, Lavin PJ. Nutritional optic neuropathy caused by copper deficiency after bariatric surgery. *J Neuroophthalmol*. 2016;36(2):178-81. doi: 10.1097/WNO.0000000000000333, PMID 26828841.
- Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Capristo E, et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-center, randomized controlled trial. *Lancet*. 2021;397(10271):293-304. doi: 10.1016/S0140-6736(20)32649-0, PMID 33485454.
- Sawicka-Pierko A, Obuchowska I, Hady RH, Mariak Z, Dadan J. Nutritional optic neuropathy following bariatric surgery. *Wideochir Inne Tech*

6. ACKNOWLEDGEMENT

We thank the Saudi Digital Library for accessing the included data.

7. AUTHORS STATEMENT

H.M. and W.A. conceived of the presented idea. D.A. and A. A. Searched the literature. H. M. analyzed the data and drafted the results. R.A. O.A. and R. J drafted the introduction and methods. All authors discussed the results and contributed to the final manuscript.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

Maloinwazyjne. 2014;9(4):662-6.
doi: 10.5114/wiitm.2014.47262, PMID 25562012.

18. Sever O, Horozoglu F. Bariatric surgery might aggravate proliferative diabetic retinopathy. *Acta Ophthalmol.* 2020 Jan 7. doi: 10.1111/ao.14342 [Epub ahead of print]. PMID 31912621.

19. Yu CW, Park LJ, Pinto A, Ma ON, Lee Y, Gupta R, et al. The impact of bariatric surgery on diabetic retinopathy: A systematic review and meta-analysis. *Am J Ophthalmol.* 2021 May;225:117-27. doi: 10.1016/j.ajo.2020.12.033, PMID 33428884.

20. Amin AM, Wharton H, Clarke M, Syed A, Dodson P, Tehrani AA. The impact of bariatric surgery on retinopathy in patients with type 2 diabetes: a retrospective cohort study. *Surg Obes Relat Dis.* 2016 Mar-Apr;12(3):606-12. doi: 10.1016/j.soard.2015.08.508, PMID 26707932.

21. Brynskov T, Laugesen CS, Svenningsen AL, Floyd AK, Sørensen TL. Monitoring of Diabetic Retinopathy in relation to Bariatric Surgery: a Prospective Observational Study. *Obes Surg.* 2016 Jun;26(6):1279-86. doi: 10.1007/s11695-015-1936-8, PMID 26476835.

22. Kim YJ, du Seo du R, Kim MJ, Lee SJ, Hur KY, Choi KS. CLINICAL COURSE OF DIABETIC RETINOPATHY IN Korean TYPE 2 DIABETES after BARIATRIC SURGERY: A pilot study. *Retina.* 2015 May;35(5):935-43. doi: 10.1097/IAE.0000000000000412, PMID 25574784.

23. Miras AD, Chuah LL, Lascaratos G, Faruq S, Mohite AA, Shah PR, et al. Bariatric surgery does not exacerbate and may be beneficial for the microvascular complications of type 2 diabetes. *Diabetes Care.* 2012 Dec;35(12):e81. doi: 10.2337/dc11-2353, PMID 23173142.

24. Miras AD, Chuah LL, Khalil N, Nicotra A, Vusirikala A, Baqai N, et al. Type 2 diabetes mellitus and microvascular complications 1 year after Roux-en-Y gastric bypass: a case-control study. *Diabetologia.* 2015 Jul;58(7):1443-7. doi: 10.1007/s00125-015-3595-7, PMID 25893730.

25. Morén Å, Sundbom M, Ottosson J, Granstam E. Gastric bypass surgery does not increase the risk for sight-threatening diabetic retinopathy. *Acta Ophthalmol.* 2018 May;96(3):279-82. doi: 10.1111/ao.13555, PMID 28857463.

26. Murphy R, Jiang Y, Booth M, Babor R, MacCormick A, Hammond H, et al. Progression of diabetic retinopathy after bariatric surgery. *Diabet Med.* 2015 Sep;32(9):1212-20. doi: 10.1111/dme.12727, PMID 25689226.

27. Richardson P, Hulpus A, Idris I. Short-term impact of bariatric surgery on best-corrected distance visual acuity and diabetic retinopathy progression. *Obes Surg.* 2018 Nov;28(11):3711-3. doi: 10.1007/s11695-018-3445-z, PMID 30173284.

28. Thomas RL, Prior SL, Barry JD, Luzio SD, Eyre N, Caplin S, et al. Does bariatric surgery adversely impact diabetic retinopathy in persons with morbid obesity and type 2 diabetes? A pilot study. *J Diabetes Complications.* 2014 Mar-Apr;28(2):191-5. doi: 10.1016/j.jdiacomp.2013.10.006, PMID 24332764.

29. Varadhan L, Humphreys T, Walker AB, Cheruvu CV, Varughese GI. Bariatric surgery and diabetic retinopathy: a pilot analysis. *Obes Surg.* 2012 Mar;22(3):515-6. doi: 10.1007/s11695-012-0600-9, PMID 22246396.

30. Feldman-Billard S, Larger É, Massin P, Standards for screening and surveillance of ocular complications in people with diabetes SFD study group. Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. *Diabetes Metab.* 2018 Feb;44(1):4-14. doi: 10.1016/j.diabet.2017.10.014, PMID 29217386.