

Fungal Infections in Neonatal Intensive Care, An Overview

Nazim Faisal Hamid ¹, Mustafa M Altoonisi ², Abdulmohsen Barakat Albalawi ³, Abdulrahman Abdullah Aloufi ⁴

¹Pediatric Consultant, Head of Pediatric Department, DIO of the Hospital, Maternity and Children Hospital, Tabuk K.S.A.

²Head of Pediatric ICU department, King Salman Armed Force Hospital.

³senior Pediatric Clinical Dietician, Director Of Medical Nutrition Department, King Salman Military Hospital

⁴Pediatric registrar, Qassim Armed Forces Hospital

Abstract: Invasive fungal infections in immature newborns have become more common in the previous two decades, especially when they are admitted to a Neonatal Intensive Care Unit (NICU). Thus, it is projected that the mortality rate of children under the age of five is estimated to be about 6 million children a year, with even about 40% of these mortalities during the newborn period. Considering the increased prevalence of death rates related to invasive fungal infections, proper preventative medication is still critical in their treatment. The proper utilization antifungals medicines are critical in the primary prevention and management of invasive fungal infection in newborns; however, there are no specific guidelines to determine the proper medication selection. The most appropriate cure of fungal infection in this population necessitates extensive research into the pharmacokinetic, tolerability, and effectiveness of antifungal medicines. This paper aims to overview epidemiology, diagnosis and management of neonatal fungal infections. Children's invasive fungal infections appear to have become more common during the previous few decades. Children with primary and secondary immunodeficiencies are at danger, as well as newborns. The most often isolated microbes are *Candida* and *Aspergillus* species. Improved outcomes depend on prompt diagnosis and administration of the proper antifungal medication. Traditional methods take a lot of time, and obtaining relevant sample material in a paediatric setting may require intrusive procedures. The improvements in detection and quick species identification are summarised in this paper. In light of the antifungal spectrum of the available drugs and the distinct pharmacokinetic features in various age groups, the current antifungal therapy options for newborns and kids are next examined.

Keywords: Neonates; ICU; Fungal Infection; NICU; Fungus

***Corresponding Author**

Nazim Faisal Hamid , Pediatric Consultant, Head of Pediatric Department, DIO of the Hospital, Maternity and Children Hospital, Tabuk K.S.A.

Received On 01 September 2022

Revised On 04 October 2022

Accepted On 11 October 2022

Published On 23 October 2022

Citation Nazim Faisal Hamid , Mustafa M Altoonisi , Abdulmohsen Barakat Albalawi , Abdulrahman Abdullah Aloufi , Fungal Infections in Neonatal Intensive Care, An Overview.(2022).Int. J. Life Sci. Pharma Res.12(6), L17-28
<http://dx.doi.org/10.22376/ijpbs/lpr.2022.12.6.SP24.L17-28>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Because of the rising number of patients with high-risk conditions, extensive utilization surgical procedures and equipment, broad-spectrum antibiotics, invasive fungal infection (IFI) became a significant problem in Neonatal Intensive Care Units (NICUs). The most important risk group has been identified as newborns with very low birth weight (VLBW), extremely low birth weight (ELBW), and neonates with surgical disorders^{1,2}. Invasive fungal infections in immature newborns have become more common in the previous two decades, especially when they are admitted to a Neonatal Intensive Care Unit (NICU). Thus, it is projected that the mortality rate of children under the age of five is estimated to be about 6 million children a year, with even about 40% of these mortalities during the newborn period [1, 2]. These findings are attributed to a variety of factors, with newborns being particularly vulnerable to fungal infections, primarily caused by yeasts of the genus *Candida*.³⁻⁶ Although *Candida* species (spp.) infection in the neonatal intensive care unit (NICU) is less common than Gram +ve or Gram -ve bacteria, it has more significant morbidity and fatality rates. 4-8% of neonates with a birth weight of less than 1kg will have candidemia, which has a 30% mortality rate. Even those who survive the infection mostly show long-term neurological disorders such as cerebral palsy, loss of vision, deafness, and cognitive difficulties.^{7,8} *Candida* organisms can spread vertically from mother flora or horizontally from health-care professionals' hands or infected materials. Invasive candida is the 2nd most known causative organism that causes death due to infectious diseases in preterm newborns, this high prevalence is still reported despite early and efficient management. Invasive fungal infection costs the health-care system a lot of money since it has long-term consequences and lengthens hospital stays.⁹ Despite *Candida albicans* is more common, *Candida* non-albicans species are also responsible for a variety of clinical signs and symptoms in newborns, particularly those in Neonatal intensive care units. *Candida parapsilosis* complex, *Candida glabrata*, and *Candida krusei* are the most common *Candida* non-albicans species reported. Rare species like *Pichia fabianii* and *Kodamaea ohmeri*, on the other hand, may be found.¹⁰⁻¹³ In the newborn, fungus septicemia can be fatal, especially in premature low birth weight babies. Due to the absence of innate and adaptive immunity, they are susceptible to widespread fungal sepsis. In one trial, fungal septicemia was shown to be a fatal condition in the neonate, particularly in the VLBW preterm infant, who is particularly susceptible to disseminated fungal sepsis. +ve fungal cultures from bloodstream, CSF, or urine are considered invasive fungal infection. IFI is usually acquired in a hospital. It occurs for about ten percent of all VLBW babies'. The prevalence peaks between 2 and 6 weeks of age, and the average age of presentation in the United Kingdom is 14 days.¹⁴⁻¹⁶ *Candida* infection is significantly linked to decreased number of neutrophils, surgery, and the presence of intravenous lines, and previous colonization by the organism is thought to be a unique risk factor. There are more risk factors that have been found such as previous usage of steroids, previous consumption of cephalosporin, staying at hospital for more than a week, exposure to H2 blockers and circulatory shock¹⁷ Invasive fungal infection could be classified into Congenital candidiasis which is a rare condition caused by infection through the birth canal as a result of the use of intrauterine implant and cervical sutures, and Acquired Systemic Infection, which is a delayed systematic fungal infectious disease, it is more common in babies with risk

factors and in those who have a ventriculo-peritoneal shunt.^{18,19} Considering the increased prevalence of death rates related to invasive fungal infections, proper preventative medication is still critical in their treatment. The two most commonly utilized antifungals for treating IFIs in newborns are amphotericin B and fluconazole. Fluconazole has become more widely utilized as for prophylaxis to avoid IFI in preterm newborns with high- risk conditions over the last decade. The influence of antifungal prophylaxis on the incidence of IFI in newborns, on the other hand, is unknown. Other therapeutic factors that may influence the outcome of IFIs, such as gestational age, weight at birth, previous operations, and antibiotic usage, have not been investigated thoroughly.²⁰⁻²²

I.1 Pathogenesis

The non-mature lymphocytes and antibodies increases the susceptibility of Low - birth weight newborns to fungal colonization of the skin and mucosa, while a lack of innate host defense systems promotes them to pathogen extension and overload. Antifungal defense involves neutrophils and destroying *Candida*, which necessitates antibodies, cytokines, and complement activation, which are all less in premature newborns compared to mature infants and adults. Phagocytes are essential for the regulation of fungal colonization and infection because they swallow and destroy *Candida* without the need for complement activation; however, in premature infants, their adhesion, phagocytic action, and killing are inhibited, compromising their capacity to overcome infection caused by fungus. Through direct reduction of fungal growth and augmentation of cell-mediated fungicidal action, cytokines assist the innate immunity against fungal infection.²³⁻²⁶ Furthermore, because the skin layers in premature infants are very weak and consist of three layers, the barrier defense mechanism is compromised, and the undeveloped lymphocytes, defective neutrophil quantity and performance, and poor antibody generation subject them to invasive fungal infection. End organ damage, which can affect the kidneys, brain, lungs, eyes, liver, spleen, bones, and joints, is more frequent and of more intense in systemic fungal infections.²⁷

I.2 Epidemiology and Incidence

Newborns are a special and extremely sensitive group of patients. The health and life quality of babies, especially those born prematurely or with developmental problems has increased due to medical advancements. Immature immune system and compromised skin membranes both contribute to neonates' increased sensitivity to infections. Neonatal infection is the most common cause of mortality and morbidity in neonates in recent decade. Invasive infections are estimated to cause more than 1.4 million newborn deaths per year around the world. Invasive fungal infections have become more common over the world, and they are a substantial pathogenic consequence in ICU patient. These invasive fungal infections are especially dangerous for premature neonates in NICUs, and the prevalence of fungal septicemia appears to be on the rise. *Candida* and *Malassezia* species are the most common pathogens involved in fungal infections in the NICU.²⁸⁻³² In the general population, the prevalence of septicemia caused by *Candida* species ranges from 1.7 to 10 cases per 100,000 people. In hospitalized patients, an estimated 33-55 percent of all candidemia episodes occur, with deaths ranging from 5 to 71 percent.¹⁶ Invasive candidiasis is a frequent source of septicemia in the neonatal intensive care unit.

Candida infections in babies are linked to a high rate of death and morbidity, as well as neurological problems. Invasive candidiasis is seen in 2.6 to 13.2% of VLBW newborns (1.5–1 kg) and 6.6 to 26.0 percent of extremely low birth weight infants (1 kg) in the NICU. The most commonly reported species are *Candida albicans*; nevertheless, illnesses caused by other species have become more common. Because of the improved survival and intense treatment of deteriorated premature newborns in the NICU in the 1990s, the general frequency of candidemia increased. During that time, the percentage of candidemia reduced due to *Candida albicans*, but rose due to *Candida parapsilosis*. Invasive *C. parapsilosis* infections induce some acute deadly effects in premature neonates than systemic *C. albicans* infections; however, *C. parapsilosis* fungemia leads to increasing the morbidity and mortality of seriously unwell infants that require NICU care.³³⁻³⁶ *C. parapsilosis* is much less pathogenic than *C. albicans*, according to laboratory investigations. However, the ability to attach to artificial materials and create biofilms, as well as the potential to develop fast in high sugar levels, are features that aid infection in the hospital setting. This characteristic may play a role in its capacity to attach to catheters and induce systemic illnesses in preterm babies receiving complete parenteral feeding, blood pressure measuring equipment, or other invasive equipment. The incidence of outbreaks caused by *C. parapsilosis* septicemia could be due to this method of spread. Infections in the neonatal intensive care unit have also been linked to *Candida* species such as *C. haemulonii*, *C. pelliculosa*, and *C. tropicalis*. Clonal infections were produced by *C. pelliculosa* and *C. haemulonii* in the NICU¹¹. The intake of total intravenous feeding and antibacterial medicines was linked to an epidemic of *C. tropicalis* fungemia in a NICU. *Malassezia* species have been linked to a variety of cutaneous and general disorders in compromised people, including folliculitis, catheter-related fungemia, and sepsis. Nevertheless, in extremely unwell underweight newborns, this yeast can cause invasive infections. *Malassezia furfur* and *Malassezia pachydermatis* are the most common causes of *Malassezia* fungemia. *M. furfur* has now been linked to nosocomial epidemics in the neonatal intensive care unit, particularly in neonates and babies receiving iv lipid solution. *M. pachydermatis* has also been linked to septicemia in premature babies with low birth weight, as well as the long-term use of catheters and parenteral lipid formulations.^{37,38}

1.3 Mycological Diagnostics procedure

On time and proper treatment, invasive fungal infections can be successfully managed [39,40]. Since acquired resistance in fungi is less common than it is for bacterial infections, species identification is a useful technique for assisting in treatment decision-making. Traditional methods take a lot of time, and obtaining relevant sample material in a paediatric setting may require intrusive procedures. The introduction of fluorescent brighteners like calcofluor white or blankophor has increased the sensitivity, specificity, and speed of microscopy over time⁴¹⁻⁴³. The possibility of making an earlier diagnosis has been shown to decrease the use of broad-spectrum antifungals through early identification of *C. albicans* cases⁴⁴⁻⁴⁷. This is due to the recent development of fluorescent peptide nucleotide analogue probes specific for a number of the *Candida* spp. Early species identification will minimise the use of echinocandins for *C. parapsilosis* infections in children and lessen the requirement for broad-spectrum antifungals⁴⁸⁻⁵¹.

1.4 Rapid species identification

Today's commercially available latex agglutination kits enable rapid species identification of *Candida albicans*, *Candida dubliniensis*, and *Candida krusei* (Table 1)⁵²⁻⁵⁴. The high levels of preformed intracellular trehalase enzyme present in *C. glabrata* make it easy to identify⁵²⁻⁵⁷. Finally, fluorescence microscopy and peptide nucleotide analogue probes can be employed^{44,46,47}.

1.5 Antigen detection for yeasts and moulds

Numerous *Aspergillus galactomannan* (GM) research have included paediatric patients with underlying haematological diseases; however, few of these studies expressly offer data by age group or include exclusively kids⁵⁸⁻⁶². Nevertheless, according to these studies, the test's sensitivity appears to be in the same range as that of the adult population and is determined by the frequency of sample, the cut-off value, and the accuracy of the patients' clinical *Aspergillus* classification. In two-thirds of the patients, positive results are available prior to a positive computed tomography scan or culture⁶². False-positive test findings may be more common in the neonatal population, in part because of *Bifidobacterium* spp. colonisation of the gut⁶³⁻⁶⁵. Given that these fungi also include GM in their cell walls, a positive GM test in endemic locations may also point to *Penicillium marneffei* or *Histoplasma capsulatum*^{66,67}. It's interesting to note that recent research has shown that GM detection in tissue biopsies and bronchoalveolar lavage fluids may boost sensitivity⁶⁸⁻⁷⁰.

1.6 D-arabinitol/L- arabinitol ratio

By evaluating the ratio of D-arabinitol (DA) to L-arabinitol (LA) in urine or serum, or the ratio of DA to creatinine in serum, the *Candida*-specific metabolite D-arabinitol (DA) has been utilised as a surrogate marker of invasive candidiasis. In prospective trials of children and adults with cancer and neutropenia^{71,72} as well as preterm infants⁷³, DA analyses have shown to be more sensitive than blood cultures, but less sensitive in non-neutropenic postoperative patients⁷⁴. Neither *C. krusei* nor, at least in vitro, *C. glabrata* generate DA. However, as was already mentioned, children are less likely to encounter these animals.

1.7 *Candida* species

Both more benign local mucocutaneous infections and invasive, potentially fatal systemic infections of any organ can be brought on by *Candida* species. 70% to 90% of all IFIs are caused by *Candida* spp. in newborns are next in frequency of isolation in neonatal candidiasis after *Candida albicans*^{75,78}. According to reports, *Candida* infection is quite risky in newborns, infections, recipients, and children with impaired immune systems. Regarding solid organ or bone marrow transplants in children units for intensive care^{79,80}. Moreover, a research on neonatal candidiasis that the risk variables connected to the On the third day of life, a baby was born with candidiasis⁸¹. Skin and gastrointestinal tract colonisation are both crucial reservoirs where *Candida* infections can grow. Multiple sites' fungal infestation was seen throughout time. 62% of babies born at extremely low birth weight (ELBW: less than 1000 g) Within the first six weeks of life, newborns were colonised, and colonisation correlated negatively with gestational age⁷⁹.

1.8 Historical Perspective of Invasive Neonatal Candidiasis

Reports of invasive newborn candidiasis were uncommon before the 1980s. In newborn children needing critical care, isolates of *Candida* species from typically sterile body regions were frequently viewed as likely contaminants and antifungal medication was postponed until cultures from multiple samples or sites were positive.^{82,83} Subacute, "smouldering" presentations linked to *Candida*'s comparatively sluggish reproduction time or obstructive phenomena brought on by occult "fungus balls" occasionally misled clinicians who were tuned in to far more prevalent bacterial infections. It is not surprising, looking back, that many newborns around that time were only diagnosed with invasive candidiasis shortly before death or during postmortem examination. Amphotericin B desoxycholate and flucytosine were often the only drugs taken into consideration when systemic antifungal therapy was judged to be necessary. Both drugs had a well-known potential for life-threatening toxicity in adult and older paediatric populations. Although ketoconazole and miconazole were available for adult therapy, there was little infant experience and the drugs were rarely used in that environment. There were significantly fewer newborns under 1000 g at birth, fewer premature babies who lived long enough to develop nosocomial infections, and less exposure to the indwelling vascular catheters and pharmacologic agents that have since been implicated as risk factors for nosocomial infections in these neonatal hosts.

1.9 Frequency

The predominant pathogens in neonatal intensive care unit (NICU) neonates for infections arising at 3 days postnatally are now known to be *Candida* species. They rank among the top 3 nosocomial infection causes in the majority of NICUs. Infants with very low birth weights (VLBW; 1500 g at birth) have an incidence that varies from 2.2% to 12.9%, while those with birth weights of 1000 g have an incidence that varies from 5.5% to 16.5%.^[84-91] In 1996, the NICHD Neonatal Network reported that *Candida* was the source of 9% of all first episodes of late-onset bloodstream infection among VLBW newborns in the 12 participating centres^[85] and in 2002, it was the cause of 12% of all such episodes.^[91] It is common for *Candida* species to produce invasive illness outside of the circulation; counting these instances would increase the overall number of children affected by these organisms in these groups. There aren't many carefully planned prospective clinical trials to evaluate therapeutic and preventive measures, despite the prevalence of *Candida* species as infections in the NICU. The majority of the evidence comes from case reports and series from a single site, case-control studies, or extrapolation from results in populations other than infants.

1.10 Implicated Species

Although *Candida albicans* continues to be the most prevalent and well-researched fungal infection in the majority of NICUs, several units now have significant experience with other *Candida* species such as *tropicalis*, *parapsilosis*, *luisitaniae*, *glabrata*, *krusei*, and *guilliermondii*. Although all of these species are capable of producing life-threatening disease, the intensity of the illness and responsiveness to antifungal medications have been reported to vary among them.^{92,93} Not all yeast or hyphal organisms that are initially recovered from

culture are *Candida*, it should be noted. Other fungus, including *Trichosporon*, *Pichia*, *Malassezia*, and *Aspergillus*, have been known to cause significant illness in NICU infants on occasion and may call for alternate or supplemental therapy approaches. Large tangled clusters of pseudohyphae and yeast known as "fungus balls," which can appear in the genitourinary tract, the central nervous system, and other places, have been specifically linked to *C. albicans* and *tropicalis*. The same sticky molecules that are expected to make it easier for these 2 species to adhere to epithelial and endothelial surfaces are also assumed to be in charge of binding between *Candida* cells and the ensuing production of "fungus balls."⁹⁴ Such atypical manifestations of neonatal invasive candidiasis as urethral blockage, severe renal failure, and hydrocephalus have been linked to these mycelial masses.⁹⁵⁻⁹⁷ Hemodynamic and embolic effects have been caused by similar formations attached to vascular endothelium and endocardium, but these are rarely isolated presentations.

1.11 Diagnostic Challenges

Even with greater suspicion and awareness of uncommon presentations, invasive candidiasis is still difficult to diagnose in a timely manner. Although both continue to be negative with alarming frequency in situations where invasive disease is subsequently proven by surgical or postmortem specimens or by definitive improvement in response to empiric antifungal treatment, standard bacteriologic culture techniques typically yield recovery rates of *Candida* species that are equal to traditional fungal culture (which primarily reduce potential bacterial overgrowth rather than preferentially enhance fungal growth). The time to identification may be shortened due to the low concentration and poor reproduction rate of the organisms. Gram stain and direct microscopy may enable detection before culture results are positive. Performing a biopsy on worrisome lesions may also help with a quick diagnosis and the start of the right treatment.^[98] Abnormal imaging findings of the central nervous system, urinary tract.

1.12 Therapeutic Limitations

Increasing awareness of neonatal invasive candidiasis has likely led to more aggressive diagnostic testing and earlier implementation of antifungal medication, which should be acknowledged. The apparent decline in reported occurrences of endophthalmitis and central nervous system involvement since the 1980s (see Baley et al., this issue), as well as the drop in cases diagnosed only postmortem, may be a reflection of these changes in practise. Antifungal therapy continues to have important limitations even after being implemented. Positive cultures that last for many days are common. The incidence rises as the period of persistent *Candida* recovery lengthens, even if persistent *Candida* recovery does not always portend localised suppurative consequences.⁹⁹ Involvement of anatomical sites that antifungal medicines are unable to easily access and micro-environmental modifications related to abscesses may limit the efficacy of such agents. Multiple circumstances (including preterm infants with low body weight staying in intensive care units for extended periods of time, being subjected to invasive procedures, receiving one or more antibiotic regimens, receiving parenteral nutrition, etc.) are thought to increase the risk of opportunistic infections. The latter's neonatal candidiasis is thought to be mostly caused by *Candida albicans*. The three *Candida* species that cause the most problems are *C. albicans*, *C. parapsilosis*, and *C. tropicalis*. The therapeutic options for treating candidiasis have

expanded with the development of new antimycotic drugs. Amphotericin B deoxycolate, lipid-associated amphotericin B compounds, fluconazole and itraconazole, and caspofungin are antimycotic medications used to treat newborn candidiasis.

1.13 Aspergillus species

Invasive Aspergillus fumigatus is the most frequent Aspergillus flavus is the second, after aspergillosis. A fungal infection is far less frequent in babies than invasive candidiasis and is typically a cutaneous primary illness^{100,101}, the kind of Aspergillus that causes illness in newborns resemble those found in the paediatric or adult populations. One of the primary dangers for the emergence of Prematurity is the presence of invasive aspergillosis in the newborn period. Groll et al. examined already released data in their review.¹⁰² 44 newborns with invasive aspergillosis were preterm, or 43.2% of them. Another obvious risk factor is a birth weight of less than 1500 grammes. considering that it frequently involves both mechanical and nutritional ventilation when newborn skin is still developing. If a culture of one or more typically sterile sites is positive, considerable consideration of invasive candidiasis should also be given to the heart or retinas. When culture is inconclusive or inaccurate, polymerase chain reaction technology using 18s rRNA and other genes holds out more potential for diagnosis. According to preliminary data, Candida infection has a high sensitivity and negative predictive value.

1.14 Zygomycosis

Individual case reports have identified newborns as a population at risk for zygomycosis¹⁰³. Zygomycosis has a significant death rate of up to 61% and begins as a skin infection before progressing to a necrotizing soft tissue infection¹⁰⁴. According to a research, most zygomycosis-infected newborns (77%) were born prematurely¹⁰⁵. The most prevalent types of zygomycosis in newborns were observed to be gastrointestinal (54%) and cutaneous (36%) in this research of 59 neonates with the condition. Six (10%) of the cases had infections of the lungs, the rhinocerebral system, as well as other places. 38 (64%) of the 59 patients with zygomycosis who were reported to have died, and 85% of the instances of disseminated illness that were known to have died. Particularly high mortality rates (78%) were noted in newborns who acquired gastrointestinal disorders¹⁰⁵.

1.15 Risk factors for invasive fungal infection in the neonatal period

low birth weight or gestational age invasive equipment and techniques (such as mechanical ventilation and central venous catheters) broad-spectrum antibiotic therapy, especially cephalosporins use of corticosteroids during therapy long-term usage of intravenous feeding enteral feeding that is delayed Necrotizing enterocolitis and other gastrointestinal pathologies, such as congenital abnormalities Blockers of the histamine type 2 receptor^{106,107}.

1.16 Diagnosis and clinical picture

Systemic candidiasis in newborns presents with a clinical presentation that is nearly identical to bacterial sepsis. Complications with the pulmonary function, difficulty in breathing, neutropenia, and localized indications of candida infection at one or all of the following areas are frequent clinical symptoms: In very low birth weight newborns,

Candida endocarditis is the second most prevalent kind of heart diseases. Cardiac palpitations, skin infections, osteoarthritis, problems with the liver, and splenomegaly are all possible clinical symptoms. Intraventricular fungal growth on the right side of the heart might cause heart failure or possibly pulmonary embolism.¹⁰⁸ Candida is also the common cause of UTI; more than half of these babies have candidemia and are at risk for renal candidiasis, which can lead to the formation of renal clumps or abscesses, as well as renal block. Renal failure could be the earliest sign of invasive candidiasis. Bone and joint disease also could be affected; it is seen as Warmth and edema of the limbs, as well as radiological indications of arthritis.¹⁰⁹ Eczema, skin rashes, and other areas of the skin and mucous membranes are affected. Central nervous system might shows Meningitis occurs in up to 64percentage of fatal cases, and those who manage to survive have a significant risk of serious complications such as psychomotor and mental disabilities, and portal vein constriction. Eyes are also affected because Candida endophthalmitis affects up to 50percent of people, a fundoscopic examination is critical for early detection of invasive illness.¹¹⁰ Laboratory testing is hard to guarantee the diagnosis, and a high percentage of suspects are needed. All specimens from catheters, blood, and urine must be checked for hyphae or budding yeast. Although the sensitivity of blood cultures in detecting bacteria, it has only a limited sensitivity of 50 to 80 percent in diagnosing candidemia.¹¹¹

- Thrombocytopenia is usually always present, but it is not a clinical characteristic.
- Increased body temperature is a common symptom of invasive fungal infection, and Candida can develop slowly in culture, which might lead to a postponement in identification.
- Once an invasive candida infection has been identified or proven, direct ocular examination, abdomen ultrasonography, ECHO, and neuroimaging must be done to look for symptoms of transmission.

Early detection and prompt implementation of efficient treatment are essential for optimal management of IFIs. To confirm the suspected diagnosis, a high index of suspicion and additional laboratory and clinical testing, including as a retinal exam, echocardiography, and renal ultrasonography, may be required. Even though there have been improvements in the identification of fungus infections, the majority of the techniques are only marginally useful during the neonatal stage. Isolating the causal agent from a pertinent clinical specimen is the best diagnostic procedure for the management of a suspected fungal infection. The diagnosis of IFIs also benefits from the use of contemporary imaging techniques and the detection of DNA and components of fungal cell walls in blood and other bodily fluids¹¹².

1.17 Choosing an antifungal agent

There are no specific standards describing the options for the best therapy for treating newborn or paediatric fungi. Guidelines^{113,114} for treating some invasive fungal diseases in adults make comments on how to manage these infections in children. These adult recommendations, the epidemiology of paediatric invasive fungal diseases, and the most recent paediatric pharmacokinetic data can all be used to make recommendations for the best course of action for treating newborn and paediatric candidiasis, aspergillosis, and zygomycosis.

1.18 Treatment of candidiasis

The majority of antifungal medications have quite broad anti-*C. albicans* and anti-more-often-isolated non-albicans species action. Nevertheless, there are differences in sensitivity data between species. For *C. krusei* and *C. glabrata*, the MICs of fluconazole are greater than those of the other azoles, though to a lesser extent. For *Candida guilliermondii*, *Candida famata*, and *C. parapsilosis*, the MICs of the echinocandin class of medications are higher. Finally, flucytosine resistance in *C. krusei* is intrinsic. *Candida* isolates have been reported to have acquired resistance, which is typically linked to a protracted antifungal regimen. Since *Candida lusitaniae* has been found to be amphotericin B resistant, it is recommended that different medication classes be utilised to treat this species. The target gene's mutation, the target enzyme's overexpression, and the production of efflux pumps have all been linked to acquired azole resistance. On the other hand, changes in the gene encoding the target enzyme glucan synthase have been linked to echinocandin resistance in *Candida* spp. Resistance invariably seems to apply to all three drugs. Thankfully, *Candida* spp. sensitivity testing is now more widely accessible, and the test results should help determine the best antifungal agent¹¹⁵.

1.19 Treatment of aspergillosis and zygomycosis

Regardless of the patient's age, surgical excision should be taken into consideration as a supplement to immediate systemic antifungal medication. The largest paediatric aspergillosis study has demonstrated that surgical resection is linked to survival¹¹⁶. Recent recommendations for adults state that voriconazole should be used to treat invasive aspergillosis, including conditions that affect the central nervous system¹¹⁷. The main support for this comes from an adult randomised controlled study that found voriconazole to be more effective than amphotericin B deoxycholate in treating invasive aspergillosis¹¹⁸. An echinocandin, posaconazole, or an amphotericin B formulation are second-line alternatives for adults. A recent adult trial comparing liposomal amphotericin B at 3 mg/kg/day to 10 mg/kg/day found no change in effectiveness. However, the side effect profile with the greater dose was worse¹¹⁹.

1.20 Antifungal prophylaxis

Even less is known about the advantages of prophylaxis for kids who have primary immune deficits, solid organ or bone marrow transplants, or haematological malignancies. Prophylaxis would aim to lessen invasive illness from both *Candida* spp. and moulds in this population. No major randomised controlled trials examining fungi prevention in any of these circumstances have been conducted. Therefore, it is not currently advised to provide antifungal prophylactics on a regular basis. One exception is the usual prophylactic use of itraconazole in children with chronic granulomatous illness. Itraconazole is not totally protective in all children with chronic granulomatous illness, and there are few evidence to support this approach¹²⁰. To inform adequate prophylactic recommendations for these at-risk paediatric populations, randomised trials are required.

1.21 Combination therapy

Combination antifungal therapy has been suggested as a result of the availability of antifungal drugs with several modes of

action. Studies testing different antifungal drug combinations have been carried out in vitro, in vivo, and in humans. There is currently no solid data supporting the use of any particular combination in antifungal therapy. For *Candida* infections affecting the central nervous system, however, amphotericin B and flucytosine are advised¹⁰³.

1.22 Therapeutic drug monitoring

Monitoring is recommended in general in two situations: (i) inadequate drug exposure due to pharmacokinetic variability may result in treatment failure, or (ii) drug exposures that are higher than expected may cause toxicity¹²¹. Krishna, et al.¹²² investigated how posaconazole levels correlated with outcomes in paediatric patients and found that medication levels varied mostly due to uneven absorption. Children's metabolism of voriconazole exhibits linear kinetics¹²³, while different drug levels are seen due to genetic variations in the rate of metabolism and coexisting medications¹²⁴. Itraconazole's bioavailability is influenced by formulation (liquid vs. capsules), method of administration (oral vs. parenteral), and inter-individual variation¹²⁵. Chemical techniques or bioassays can be used to measure levels. For all three azoles, trough levels above 0.5 mg/L are advised for prophylaxis. Voriconazole levels for treatment are 1-6 mg/L, itraconazole levels are >1 mg/L, and posaconazole levels are 0.5-1.5 mg/L¹²¹.

1.23 Management

The proper utilization of antifungals medicines are critical in the primary prevention and management of invasive fungal infection in newborns; however, there are no specific guidelines to determine the proper medication selection. Because of lack of comparative reports of antifungal drugs in neonates, the available treatment choices for treating fungemia in newborns and children are supported by clinical studies in adulthood. The most appropriate cure of fungal infection in this population necessitates extensive research into the pharmacokinetic, tolerability, and effectiveness of antifungal medicines.¹²²⁻¹²⁵ Management of *Malassezia* sp. fungemia includes the elimination of any catheter once the blood tests show positive results, parenteral feeding should also be stopped for certain time, in combination with I.V antifungal therapy, similar to neonatal infections caused by *Candida* species. Polyene, azoles, analogues of pyrimidines, and echinocandins are the 4 most widely utilized medicines in the neonatal intensive care unit for the management of IFI. Amphotericin B only or in association with fluconazole, liposomal dosage form of amphotericin B, or fluconazole was the medications of preference in this population of patients for decades. However, the development of modern generation of azoles and echinocandins, such as micafungin, has expanded the treatment choices.¹²⁵ Conventional therapies for IFI include amphotericin B deoxycholate and lipid formulations, which are efficacious against the most of clinically significant *Candida* species and have been used to treat *Malassezia*^{124, 134}. Amphotericin B deoxycholate is quite well accepted by newborns, which show few of the side effects that elder children and people experience.¹²⁵ Liposomal amphotericin B, on the other hand, has been demonstrated to show remarkable safety and efficiency in neonates with renal dysfunction. Nystatin suspension which is classified as Polyene is taken by oral route to newborns with weight less than 750 g and gestational age equal or less than 27 weeks, until central venous catheters are removed; this has been shown to reduce

gastrointestinal tract colonization and the incidence of invasive candidiasis¹²⁶. Fluconazole is the most commonly used azole in Neonatal intensive care units for the management of oropharyngeal and systemic candidiasis; however it shows no effectiveness in the treatment of the *Aspergillus* genus, which is an uncommon infection among newborns. This antifungal drug is frequently prescribed as preventative therapy in NICUs where fungal infections are endemic. Usage of fluconazole as a prophylactic agent reduces the frequency of colonization and development to systemic infection in the newborn; nonetheless, several investigations have found that prophylactic or preliminary antifungal therapy with antifungal medications is linked to modifications in *Candida* ecological characters and antifungal agent sensitivity^{124,127-129}. Voriconazole, posaconazole, and ravuconazole are novel azoles that have restricted use in the neonatal stage and are infrequently used to treat newborn infections. Voriconazole is a second-generation triazole with strong antifungal efficacy against *Candida* and *Aspergillus* spp. However, there is little information on its safety and efficacy in the management of infections in newborns. Posaconazole and ravuconazole are the latest triazole drugs with additional antifungal activity against zygomycetes; nevertheless, there are few studies including these antifungal medications in newborns, and the management of infections using ravuconazole is not yet approved by the FDA (FDA)^{130,131}. *Candida* sp. infections are frequently treated with echinocandins. Their effect in the treatment of infections in neonate is unclear, but growing study indicates their safety and efficiency particularly for the management of invasive *Candida* spp. infections. Deciding to use echinocandins for management of infections means that some points needs to be considered: firstly, data about the effectiveness of these medications in treating infections of the CNS are limited, also *C. parapsilosis* is commonly found in Neonatal intensive care units, and this species is linked to a greater minimal inhibitory concentration (MIC) front of echinocandins. Micafungin is the most favored of the three members of the echinocandins, and its usage is approved for all the age populations from adults to neonates, making it the drug of choice for the neonatal population. The FDA has cleared the use of caspofungin in adults and children more than three months. There have been no clinical studies that confirm the use of anidulafungin in newborns and children.^{128,129} IFI are still deadly illnesses that cause death or major long-term disability in newborns; nevertheless, care of these fungal infections has greatly improved, with azole drugs playing a key role. Because effective preventative treatments have just recently been available, choosing and using appropriate antifungal medicines requires careful consideration of newborn features, etiology, and pharmacokinetic of the drug.¹²⁵ Early detection and prompt implementation of efficient treatment are essential for optimal management of IFIs. There are no specific guidelines describing the options for the best therapy in the treatment of neonatal or paediatric fungal disease, so a high index of suspicion and the utilisation of additional laboratory and clinical tests are generally used. There are recommendations for several IFIs in adults that make mention of how to manage these infections in kids. It is possible to prescribe the best course of treatment for treating neonatal and paediatric candidiasis, aspergillosis, zygomycosis, and other fungi based on these adult guidelines, the epidemiology of IFIs in children, and existing paediatric pharmacokinetic data.

1.24 Management

There are no specific recommendations for the best therapy for treating a neonatal or paediatric fungal disease. There are recommendations for several IFIs in adults that make mention of how to manage these infections in kids. In order to treat neonatal and paediatric candidiasis, aspergillosis, zygomycosis, and other fungi, recommendations can be made based on these adult guidelines, the epidemiology of IFIs in children, and existing paediatric pharmacokinetic data. The polyene antifungal medication amphotericin B (AmB) deoxycholate has a very wide range of activity. AmB has long been regarded as the most effective antifungal treatment for the majority of systemic fungal infections^{130,131}. However, due to worries regarding its toxicity, lipid-based formulations that have been demonstrated to be less nephrotoxic while preserving a broad antifungal spectrum have been created¹³². we will show examples of several antifungals and associated dosing information :

- (1) Polyene antibiotics : consists of Amphotericin B deoxycholate works by Binds to ergosterol + oxidative damage to fungal cells ,Liposomal amphotericin B works by Binds to ergosterol + oxidative damage to fungal cells . it's Formulation is I.V . Newborn dose of Amphotericin B deoxycholate is 1 mg/kg/day . new born dose of Liposomal amphotericin B is 3 -- 5 mg/kg/day .¹³³⁻¹³⁵
- (2) Pyrimidines : consists of Flucytosine works by Inhibition of DNA synthesis . it's formulation is p.o. new born dose is 50 -- 150 mg/kg/day divided into 4 doses¹³³⁻¹³⁵
- (3) Azoles : consists of Fluconazole and Voriconazole work by Inhibition of ergosterol synthesis . it's formulation is i.v. , p.o. . new born dose is 12 mg/kg/day.¹³⁴

1.25 Target therapy

Giving empirical antifungal therapy as soon as IFI is diagnosed is recommended by treatment algorithms for newborns in order to prevent sepsis progression and profound organ involvement. Invasive candidiasis: Infected ELBW children receiving antifungal medication 3 days prior to the first positive culture have shown decreased mortality and morbidity¹³⁶. AmB deoxycholate, AmB lipid formulations, and fluconazole are the main therapeutic alternatives for this age range due to the lack of dose and safety evidence. However, for each medicine alone, the cure rate ranges from 60 to 90%^{137,138}. There is no discernible difference in treatment success or death rates between AmB deoxycholate and fluconazole when their efficacy is compared¹³⁹. Treatment of aspergillosis and zygomycosis : It is frequently a cutaneous infection at the site of skin damage from an intravenous catheter or adhesive tape when infants are infected with *Aspergillus* or a zygomycete^{140,141}. These skin issues There is a potential of infection spread, therefore the beginning of early treatment is essential. Despite the fact that reports of recent cases of newborn aspergillosis that were successfully treated AmB is the agent of echinocandin and newer azole selection for treating these newborn mould infections¹⁴². Likewise, among more recent antifungal substances that work against filamentous fungus (such as echinocandins, voriconazole, and posaconazole), posaconazole appears to be more active against zygomycetes¹⁴³ however, posaconazole's pharmacokinetics and clinical effectiveness are not recognised in newborns. The choice to employ these medications is therefore driven by the worry that the infant's deteriorating health might be the result of the severe cutaneous aspergillosis spreading, which is not clinically responding to therapy with merely AmB. Similar to adults, children may benefit from surgical therapy as a complementary

therapy for the management of localised Aspergillus infection¹⁴⁴. Infants, especially premature infants, might not be able to tolerate surgery to remove significant skin lesions.

1.26 Scientific Responsibility Statement

The authors declare that they are responsible for the article's scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

1.27 Animal and Human Rights Statement

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

2. CONCLUSION

Fungal infection in neonatal intensive care unit is a serious condition with high mortality and morbidity rates, risk factors are many such as using steroids and having surgery, but the

main factor is the low birth weight mainly less than 1 kg, candida species are the main cause of neonatal infection, mainly *C. albicans* which is the most reported one and the main cause for candidemia. Clinical presentation differs depending on the affected system, while the main systems that show symptoms of infection are urinary system, skin and bones and joints. The diagnosis of the infections relies mainly on detecting hyphae or budding yeast. Once infection is confirmed management should be started immediately, non-pharmacological management includes the removal of any catheter implanted, while the drug of choice for newborns is Micafungin due to its high safety and effectiveness. Data on the efficiency and safety of many antifungal drugs in neonates are still not clear which needs further studies and investigations.

3. AUTHOR CONTRIBUTION STATEMENT

All the authors read and approved the final version of the manuscript.

4. CONFLICT OF INTEREST

Conflict of interest declared none.

5. REFERENCES

1. Kaufman DA. Challenging issues in neonatal candidiasis. *Curr Med Res Opin.* 2010;26(7):1769-1778.
2. Bersani I, Piersigilli F, Goffredo BM, et al. Antifungal Drugs for Invasive Candida Infections (ICI) in Neonates: Future Perspectives. *Front Pediatr.* 2019;7:375. Published 2019 Sep 20.
3. Montagna MT, Lovero G, De Giglio O, et al. Invasive fungal infections in neonatal intensive care units of Southern Italy: a multicentre regional active surveillance (AURORA project). *J Prev Med Hyg.* 2010;51(3):125-130.
4. Smith ER, Bergelson I, Constantian S, Valsangkar B, Chan GJ. Barriers and enablers of health system adoption of kangaroo mother care: a systematic review of caregiver perspectives. *BMC Pediatr.* 2017;17(1):35. Published 2017 Jan 25.
5. Chitnis AS, Magill SS, Edwards JR, Chiller TM, Fridkin SK, Lessa FC. Trends in Candida central line-associated bloodstream infections among NICUs, 1999-2009. *Pediatrics.* 2012;130(1):46-52.
6. KAUFMAN, D. A. "Getting to zero": preventing invasive Candida infections and eliminating infection-related mortality and morbidity in extremely preterm infants. *Early Human Development.* 2012, 88: S45-S49.
7. Caggiano G, Lovero G, De Giglio O, et al. Candidemia in the Neonatal Intensive Care Unit: A Retrospective, Observational Survey and Analysis of Literature Data. *Biomed Res Int.* 2017;2017:7901763.
8. Kelly MS, Benjamin DK Jr, Smith PB. The epidemiology and diagnosis of invasive candidiasis among premature infants. *Clin Perinatol.* 2015;42(1):105-ix.
9. Testoni D, Smith PB, Benjamin DK Jr. The use of antifungal therapy in neonatal intensive care. *Clin Perinatol.* 2012;39(1):83-98.
10. Wu Y, Wang J, Li W, et al. *Pichia fabianii* blood infection in a premature infant in China: case report. *BMC Res Notes.* 2013;6:77. Published 2013 Mar 4
11. Goel S, Mittal S, Chaudhary U. Role of Non Albicans Candida Spp. and Biofilm in Neonatal ICU. *Infect Disord Drug Targets.* 2016;16(3):192-198.
12. Zhou M, Li Y, Kudinha T, Xu Y, Liu Z. *Kodamaea ohmeri* as an Emerging Human Pathogen: A Review and Update. *Front Microbiol.* 2021;12:736582. Published 2021 Sep 10.
13. De Rose DU, Santisi A, Ronchetti MP, et al. Invasive Candida Infections in Neonates after Major Surgery: Current Evidence and New Directions. *Pathogens.* 2021;10(3):319. Published 2021 Mar 9.
14. Driessen M, Ellis JB, Cooper PA, et al. Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicemia: a prospective randomized trial. *Pediatr Infect Dis J.* 1996;15(12):1107-1112.
15. Stoll BJ, Hansen N, Fanaroff AA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. *Pediatrics.* 2002;110(2 Pt 1):285-291.
16. Clerihew L, Lamagni TL, Brocklehurst P, McGuire W. Invasive fungal infection in very low birthweight infants: national prospective surveillance study. *Arch Dis Child Fetal Neonatal Ed.* 2006;91(3):F188-F192.
17. Chapman RL. Candida infections in the neonate. *Curr Opin Pediatr.* 2003;15(1):97-102.
18. Huang YC, Li CC, Lin TY, et al. Association of fungal colonization and invasive disease in very low birth weight infants. *Pediatr Infect Dis J.* 1998;17(9):819-822.
19. Baley JE, Kliegman RM, Boxerbaum B, Fanaroff AA. Fungal colonization in the very low birth weight infant. *Pediatrics.* 1986;78(2):225-232.
20. Tripathi N, Watt K, Benjamin DK Jr. Treatment and prophylaxis of invasive candidiasis. *Semin Perinatol.* 2012;36(6):416-423.
21. Long SS, Stevenson DK. Reducing Candida infections during neonatal intensive care: management choices, infection control, and fluconazole prophylaxis. *J Pediatr.* 2005;147(2):135-141.

22. Karlowicz MG, Hashimoto LN, Kelly RE Jr, Buescher ES. Should central venous catheters be removed as soon as candidemia is detected in neonates?. *Pediatrics*. 2000;106(5):E63.

23. Diamond RD, Krzesicki R, Jao W. Damage to pseudohyphal forms of *Candida albicans* by neutrophils in the absence of serum in vitro. *J Clin Invest*. 1978;61(2):349-359.

24. Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. *Clin Microbiol Rev*. 2004;17(3):638-680.

25. Schultz C, Temming P, Bucsky P, Göpel W, Strunk T, Härtel C. Immature anti-inflammatory response in neonates. *Clin Exp Immunol*. 2004;135(1):130-136.

26. Benjamin DK Jr, Ross K, McKinney RE Jr, Benjamin DK, Auten R, Fisher RG. When to suspect fungal infection in neonates: A clinical comparison of *Candida albicans* and *Candida parapsilosis* fungemia with coagulase-negative staphylococcal bacteremia. *Pediatrics*. 2000;106(4):712-718.

27. Chapman RL. Candida infections in the neonate. *Curr Opin Pediatr*. 2003;15(1):97-102.

28. Benjamin DK Jr, Stoll BJ, Gantz MG, et al. Neonatal candidiasis: epidemiology, risk factors, and clinical judgment. *Pediatrics*. 2010;126(4):e865-e873.

29. Shane AL, Stoll BJ. Neonatal sepsis: progress towards improved outcomes. *J Infect*. 2014;68 Suppl 1:S24-S32.

30. Bougnoux ME, Kac G, Aegeerter P, d'Enfert C, Fagon JY; CandiRea Study Group. Candidemia and candiduria in critically ill patients admitted to intensive care units in France: incidence, molecular diversity, management and outcome. *Intensive Care Med*. 2008;34(2):292-299.

31. Brady MT. Health care-associated infections in the neonatal intensive care unit. *Am J Infect Control*. 2005;33(5):268-275.

32. Devlin RK. Invasive fungal infections caused by *Candida* and *Malassezia* species in the neonatal intensive care unit. *Adv Neonatal Care*. 2006;6(2):68-79.

33. Aliaga S, Clark RH, Laughon M, et al. Changes in the incidence of candidiasis in neonatal intensive care units. *Pediatrics*. 2014;133(2):236-242.

34. Huang YC, Lin TY, Lien RI, et al. Candidaemia in special care nurseries: comparison of albicans and parapsilosis infection. *J Infect*. 2000;40(2):171-175.

35. Lupetti A, Tavanti A, Davini P, et al. Horizontal transmission of *Candida parapsilosis* candidemia in a neonatal intensive care unit. *J Clin Microbiol*. 2002;40(7):2363-2369.

36. Fridkin SK, Kaufman D, Edwards JR, Shetty S, Horan T. Changing incidence of *Candida* bloodstream infections among NICU patients in the United States: 1995-2004. *Pediatrics*. 2006;117(5):1680-1687.

37. Finkelstein R, Reinhertz G, Hashman N, Merzbach D. Outbreak of *Candida tropicalis* fungemia in a neonatal intensive care unit. *Infect Control Hosp Epidemiol*. 1993;14(10):587-590.

38. Chryssanthou E, Broberger U, Petrini B. *Malassezia pachydermatis* fungemia in a neonatal intensive care unit. *Acta Paediatr*. 2001;90(3):323-327.

39. Garey KW, Rege M, Pai MP, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. *Clin Infect Dis*. 2006; 43: 25-31

40. Morrell M, Fraser VI, Kollef MH. Delaying the empiric treatment of *Candida* bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality.

41. Lass-Florl C, Resch G, Nachbaur D, et al. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients.

42. Ruchel R, Margraf S. Rapid microscopical diagnosis of deep-seated mycoses following maceration of fresh specimens and staining with optical brighteners. *Mycoses*. 1993; 36: 239-242

43. Ruchel R, Schaffrinski M. Versatile fluorescent staining of fungi in clinical specimens by using the optical brightener Blankophor. *J Clin Microbiol*. 1999; 37: 2694-2696 *Clin Infect Dis*. 2007; 45: e101-e104 *Antimicrob Agents Chemother*. 2005; 49: 3640-3645

44. Forrest GN, Mankes K, Jabra-Rizk MA, et al. Peptide nucleic acid fluorescence in situ hybridization-based identification of *Candida albicans* and its impact on mortality and antifungal therapy costs. *J Clin Microbiol*. 2006; 44: 3381-3383

45. Rigby S, Procop GW, Haase G, et al. Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of *Candida albicans* directly from blood culture bottles. *J Clin Microbiol*. 2002; 40: 2182-2186

46. Shepard IR, Addison RM, Alexander BD, et al. Multicenter evaluation of the *Candida albicans/Candida glabrata* peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of *C. albicans* and *C. glabrata* directly from blood culture bottles. *J Clin Microbiol*. 2008; 46: 50-55

47. Trnovsky J, Merz WV, Della-Latta P, Wu F, Arendrup MC, Stender H. Rapid and accurate identification of *Candida albicans* isolates by use of PNA FISHFlow. *J Clin Microbiol*. 2008; 46: 1537-1540

48. Almirante B, Rodriguez D, Park BJ, et al. Epidemiology and predictors of mortality in cases of *Candida* bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2002 to 2003. *J Clin Microbiol*. 2005; 43: 1829-1835

49. Chen S, Slavin M, Nguyen Q, et al. Active surveillance for candidemia, Australia. *Emerg Infect Dis*. 2006; 12: 1508-1516

50. Hajjeh RA, Sofair AN, Harrison LH, et al. Incidence of bloodstream infections due to *Candida* species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. *J Clin Microbiol*. 2004; 42: 1519-1527

51. Sandven P, Bevanger L, Digranes A, Haukland HH, Mannsaker T, Gaustad P. Candidemia in Norway (1991 to 2003): results from a nationwide study. *J Clin Microbiol*. 2006; 44: 1977-1981

52. Chryssanthou E, Fernandez V, Petrini B. Performance of commercial latex agglutination tests for the differentiation of *Candida dubliniensis* and *Candida albicans* in routine diagnostics. *Apmis*. 2007; 115: 1281-1284

53. Freydiere AM, Buchaille L, Guinet R, Gille Y. Evaluation of latex reagents for rapid identification of *Candida albicans* and *C. krusei* colonies. *J Clin Microbiol*. 1997; 35: 877-880

54. Marot-Leblond A, Beucher B, David S, Nail-Billaud S, Robert R. Development and evaluation of a rapid latex agglutination test using a monoclonal antibody to identify *Candida dubliniensis* colonies. *J Clin Microbiol*. 2006; 44: 138-142

55. Freydiere AM,Perry ID,Faure O et al.Routine use of a commercial test, GLABRATA RTT, for rapid identification of *Candida glabrata* in six laboratories.*J Clin Microbiol.* 2004; 42: 4870-4872

56. Freydiere AM ,Robert R ,Ploton C ,Marot-Leblond A ,Monerau F ,Vandenesch F Rapid identification of *Candida glabrata* with a new commercial test, GLABRATA RTT.*J Clin Microbiol.* 2003; 41: 3861-3863

57. Willinger B ,Wein S ,Hirschl AM ,Rotter ML ,Manafi M Comparison of a new commercial test, GLABRATA RTT, with a dipstick test for rapid identification of *Candida glabrata*.*J Clin Microbiol.* 2005; 43: 499-501

58. Hovi L ,Saxen H ,Saarinen-Pihkala UM ,Vettenranta K ,Meri T ,Richardson M Prevention and monitoring of invasive fungal infections in pediatric patients with cancer and hematologic disorders.*Pediatr Blood Cancer.* 2007; 48: 28-34

59. Miceli MH ,Graziutti ML ,Woods G et al. Strong correlation between serum aspergillus galactomannan index and outcome of aspergillosis in patients with hematological cancer: clinical and research implications.*Clin Infect Dis.* 2008; 46: 1412-1422

60. Rohrlich P,Sarfati I,Mariani P et al. Prospective sandwich enzyme-linked immunosorbent assay for serum galactomannan: early predictive value and clinical use in invasive aspergillosis.*Pediatr Infect Dis J.* 1996; 15: 232-237

61. Steinbach WJ,Addison RM,McLaughlin L et al.Prospective *Aspergillus galactomannan* antigen testing in pediatric hematopoietic stem cell transplant recipients.*Pediatr Infect Dis J.* 2007; 26: 558-564

62. Sulahian A,Boutboul F,Ribaud P,Leblanc T,Lacroix C,Derouin F Value of antigen detection using an enzyme immunoassay in the diagnosis and prediction of invasive aspergillosis in two adult and pediatric hematology units during a 4-year prospective study.*Cancer.* 2001; 91: 311-318

63. Herbrecht R,Letscher-Bru V,Oprea C et al.*Aspergillus galactomannan* detection in the diagnosis of invasive aspergillosis in cancer patients.*J Clin Oncol.* 2002; 20: 1898-1906

64. Mennink-Kersten MA,Klont RR,Warris A,Op denCamp HI,Verweij PE Bifidobacterium lipoteichoic acid and false ELISA reactivity in *Aspergillus* antigen detection.*Lancet.* 2004; 363: 325-327

65. Mennink-Kersten MA,Ruegebrink D,Klont RR et al.Bifidobacterial lipoglycan as a new cause for false-positive platelia *Aspergillus* enzyme-linked immunosorbent assay reactivity.*J Clin Microbiol.* 2005; 43: 3925-3931

66. Mens H,Hoijlyng N,Arendrup MC Disseminated *Penicillium marneffei* sepsis in a HIV-positive Thai woman in Denmark.*Scand J Infect Dis.* 2004; 36: 507-509

67. Wheat LJ,Hackett E,Durkin M et al.Histoplasmosis-associated cross-reactivity in the BioRad Platelia *Aspergillus* enzyme immunoassay.*Clin Vaccine Immunol.* 2007; 14: 638-640

68. Clancy CJ,Laber RA,Leather HL et al.Bronchoalveolar lavage galactomannan in diagnosis of invasive pulmonary aspergillosis among solid-organ transplant recipients.*J Clin Microbiol.* 2007; 45: 1759-1765

69. Husain S,Clancy CJ,Nguyen MH et al.Performance characteristics of the platelia *Aspergillus* enzyme immunoassay for detection of *Aspergillus* galactomannan antigen in bronchoalveolar lavage fluid.*Clin Vaccine Immunol.* 2008; 15: 1760-1763

70. Christensson B,Wiebe T,Pehrson C,Larsson L Diagnosis of invasive candidiasis in neutropenic children with cancer by determination of D-arabinitol/L-arabinitol ratios in urine.*J Clin Microbiol.* 1997; 35: 636-640

71. Walsh TJ,Merz WG,Lee JW et al.Diagnosis and therapeutic monitoring of invasive candidiasis by rapid enzymatic detection of serum D-arabinitol.*Am J Med.* 1995; 99: 164-172

72. Sigmundsdottir G,Christensson B,Bjorklund LJ,Hakansson K,Pehrson C,Larsson L Urine D-arabinitol/L-arabinitol ratio in diagnosis of invasive candidiasis in newborn infants.*J Clin Microbiol.* 2000; 38: 3039-3042

73. Lehtonen L,Rantala A,Oksman P,Eerola E,Lehtonen OP Determination of serum arabinitol levels by mass spectrometry in patients with postoperative candidiasis.*Eur J Clin Microbiol Infect Dis.* 1993; 12: 330-335

74. Lamagni TL, Evans BG, Shigematsu M,et al. Emerging trends in the epidemiology of invasive mycoses in England and Wales (1990 -- 9).*Epidemiol Infect 2001;126:397-414*

75. Bendel CM. Candidiasis. In:Remington JS, Klein JO, Wilson CB,Baker CJ, editors. *Infectious diseases of the fetus and newborn infant.* 6th edition. Elsevier Saunders; Philadelphia:2006. p. 1107-28

76. Pappas PG, Rex JH, Lee J, et al.A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients.*Clin Infect Dis* 2003;37:634-43

77. Benjamin DK Jr, Stoll BJ. Infection in late preterm infants. *Clin Perinatol* 2006;33:871-82

78. Wisplinghoff H, Bischoff T,Tallent SM, et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. *Clin Infect Dis* 2004;39:309-17

79. Dornbusch HI, Manzoni P, Roilides E,et al. Invasive fungal infections in children. *Pediatr Infect Dis J* 2009;28:734-7

80. Lopez Sastre JB, Coto Cotallo GD,Fernandez CB. Neonatal invasive candidiasis: a prospective multicenter study of 118 cases. *Am J Perinatol* 2003;20:153-63

81. Baley JE, Kliegman RM, Fanaroff AA: Disseminated fungal infections in very low- birth-weight infants: Clinical manifestations and epidemiology. *Pediatrics* 73:144-152,1984

82. Faix RG: Systemic *Candida* infections in infants in intensive care nurseries: High incidence of central nervous system involvement. *J Pediatr* 105:616-622, 1984

83. Johnson DE, Thompson TR, Green TP, et al: Systemic candidiasis in very low-birth-weight infants (1500 grams). *Pediatrics* 73:138-143, 1984

84. Stoll BJ, Gordon T, Korones SB, et al: Late-onset sepsis in very low birth weight neonates: A report from the National Institute of Child Health and Human Development Neonatal Research Network. *J Pediatr* 29:63-71,1996

85. Fanaroff AA, Korones SB, Wright LL, et al: Incidence, presenting features, risk factors and significance of late onset septicemia in very low birth weight infants. The National Institute of Child Health and Human

Development Neonatal Research Network. *Pediatr Infect Dis J* 17:593-598, 1998

86. Kossoff EH, Buescher ES, Karlowicz MG: Candidemia in a neonatal intensive care unit: Trends during fifteen years and clinical features of 111 cases. *Pediatr Infect Dis J* 17:504-508, 1998

87. Mittal M, Dhanireddy R, Higgins RD: Candida sepsis and association with retinopathy of prematurity. *Pediatrics* 101:654-657, 1998

88. Saiman L, Ludington E, Pfaller M, et al: Risk factors for candidemia in neonatal intensive care unit patients. *Pediatr Infect Dis J* 19:319-324, 2000

89. Makhoul IR, Kassis I, Smolkin T, et al: Review of 49 infants with acquired fungal sepsis: further characterization. *Pediatrics* 107:61-66, 2001

90. Stoll BJ, Hansen N, Fanaroff AA, et al: Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. *Pediatrics* 110:285-291, 2002

91. Faix RG: Invasive neonatal candidiasis: Comparison of albicans and parapsilosis infection. *Pediatr Infect Dis J* 11:88-93, 1992

92. Pfaller MA, Diekema DJ, Jones RN, et al: Trends in antifungal susceptibility of candida spp. isolated from pediatric and adult patients with bloodstream infections: Sentry antimicrobial surveillance program, 1997 to 2000. *J Clin Microbiol* 40:852-856, 2002

93. Hostetter MK: New insights into candidal infections. *Adv Pediatr* 43:209-230, 1996

94. Ruderman IW: A clue (tip-off) to urinary infection with Candida. *Pediatr Infect Dis J* 9:586-588, 1990

95. Yadin O, Gradus Ben-Ezer D, Golan A, et al: Survival of a premature neonate with obstructive anuria due to Candida: The role of early sonographic diagnosis and antimycotic treatment. *Eur J Pediatr* 147:653-655, 1988

96. Winters WD, Shaw DW, Weinberger E: Candida fungusballs presenting as intraventricular masses in cranial sonography. *J Clin Ultrasound* 23:266-270, 1995

97. Rowen JL, Atkins JT, Levy ML, et al: Invasive fungal dermatitis in the or 1000-gram neonate. *Pediatrics* 95:682-687, 1995

98. Chapman RL, Faix RG: Persistently positive cultures and outcome in invasive neonatal candidiasis. *Pediatr Infect Dis J* 19:822-827, 2000

99. Steinbach WI: Pediatric aspergillosis: disease and treatment differences in children. *Pediatr Infect Dis J* 2005;24:358-64

100. Steinbach WI: Invasive aspergillosis in pediatric patients. *Curr Med Res Opin* 2010;26:1779-87

101. Groll AH, Jaeger G, Allendorf A, et al: Invasive pulmonary aspergillosis in a critically ill neonate: case report and review of invasive aspergillosis during the first 3 months of life. *Clin Infect Dis* 1998;27:437-52

102. Robertson AF, Joshi VV, Ellison DA, et al: Zygomycosis in neonates. *Pediatr Infect Dis J* 1997;16:812-15

103. Kaufman D: Fungal infection in the very low birthweight infant. *Curr Opin Infect Dis* 2004;17:253-9

104. Roilides E, Zaoutis TE, Katragkou A, et al: Zygomycosis in neonates: an uncommon but life-threatening infection. *Am J Perinatol* 2009;26:565-73

105. Manzoni P, Farina D, Leonessa M, et al: Risk factors for progression to invasive fungal infection in preterm neonates with fungal colonization. *Pediatrics* 2006;118:2359-64

106. Saiman L, Ludington E, Pfaller M, et al: Risk factors for candidemia in neonatal intensive care unit patients: the National Epidemiology of Mycosis Survey Study Group. *Pediatr Infect Dis J* 2000;19:319-24

107. Kossoff EH, Buescher ES, Karlowicz MG: Candidemia in a neonatal intensive care unit: trends during fifteen years and clinical features of 111 cases. *Pediatr Infect Dis J* 1998;17(6):504-508.

108. Beck-Sague CM, Azimi P, Fonseca SN, et al: Bloodstream infections in neonatal intensive care unit patients: results of a multicenter study. *Pediatr Infect Dis J* 1994;13(12):1110-1116.

109. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA et al: Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. *Pediatrics* 2002;110(2):285-291.

110. Pizzo PA, Robichaud KJ, Gill FA, Witebsky FG: Empiric antibiotic and antifungal therapy for cancer patients with prolonged fever and granulocytopenia. *Am J Med* 1982;72(1):101-111.

111. Mennink-Kersten MA, Verweij PE: Non-culture-based diagnostics for opportunistic fungi. *Infect Dis Clin North Am* 2006;20:711-27

112. Pappas PG, Kauffman CA, Andes D, et al: Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. *Clin Infect Dis* 2009; 48: 503-535

113. Walsh TJ, Anaissie EI, Denning DW, et al: Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. *Clin Infect Dis* 2008; 46: 327-360

114. Fisher BT, Zaoutis TE: Treatment of invasive candidiasis in immunocompromised pediatric patients. *Paediatr Drugs* 2008; 10: 281-298

115. Burgos A, Zaoutis TE, Dvorak CC, et al: Pediatric invasive aspergillosis: a multicenter retrospective analysis of 139 contemporary cases. *Pediatrics* 2008; 121: e1286-e1294

116. Walsh TJ, Anaissie EI, Denning DW, et al: Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. *Clin Infect Dis* 2008; 46: 327-360

117. Herbrecht R, Denning DW, Patterson TF, et al: Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. *N Engl J Med* 2002; 347: 408-415

118. Cornely OA, Maertens J, Bresnik M, et al: Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBi-Load trial). *Clin Infect Dis* 2007; 44: 1289-1297

119. Kobayashi S, Murayama S, Takanashi S, et al: Clinical features and prognoses of 23 patients with chronic granulomatous disease followed for 21 years by a single hospital in Japan. *Eur J Pediatr* 2008; 167: 1389-1394

120. Andes D, Pascual A, Marchetti O: Antifungal therapeutic drug monitoring: established and emerging indications. *Antimicrob Agents Chemother* 2009; 53: 24-34

121. Krishna G, Sansone-Parsons A, Martinho M, Kantesaria B, Pedicone L: Posaconazole plasma concentrations in juvenile patients with invasive fungal infection. *Antimicrob Agents Chemother* 2007; 51: 812-818

122. Karlsson MO, Lutsar I, Milligan PA: A population pharmacokinetic analysis of Voriconazole plasma

concentration data from pediatric studies. *Antimicrob Agents Chemother.* 2009; 53: 935-944

123. Walsh TJ, Karlsson MO, Driscoll T, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. *Antimicrob Agents Chemother.* 2004; 48: 2166-2172

124. Hennig S, Wainwright CE, Bell SC, Miller H, Friberg LE, Charles BG. Population pharmacokinetics of itraconazole and its active metabolite hydroxyitraconazole in paediatric cystic fibrosis and bone marrow transplant patients. *Clin Pharmacokinet.* 2006; 45: 1099-1114

125. Pemán J, Cantón E, Linares-Sicilia MJ, et al. Epidemiology and antifungal susceptibility of bloodstream fungal isolates in pediatric patients: a Spanish multicenter prospective survey. *J Clin Microbiol.* 2011;49(12):4158-4163.

126. Blyth CC, Chen SC, Slavin MA, et al. Not just little adults: candidemia epidemiology, molecular characterization, and antifungal susceptibility in neonatal and pediatric patients. *Pediatrics.* 2009;123(5):1360-1368.

127. Ericson J, Manzoni P, Benjamin DK Jr. Old and new: appropriate dosing for neonatal antifungal drugs in the nursery. *Early Hum Dev.* 2013;89 Suppl 1(0 1):S25-S27.

128. Hassan, Mahmuda & Yasmeen, B H & Begum, Nasreen. (2015). Fungal sepsis and Indications of antifungal prophylaxis and treatment in neonatal intensive care units : A review. *Northern International Medical College Journal.* 6. 6. 10.3329/nimcj.v6i1.23150.

129. Pana ZD, Kougia V, Roilides E. Therapeutic strategies for invasive fungal infections in neonatal and pediatric patients: an update. *Expert Opin Pharmacother.* 2015;16(5):693-710.

130. Lestner JM, Versporten A, Doerholt K, et al. Systemic antifungal prescribing in neonates and children: outcomes from the Antibiotic Resistance and Prescribing in European Children (ARPEC) Study. *Antimicrob Agents Chemother.* 2015;59(2):782-789.

131. Hope WW, Castagnola E, Groll AH, et al. ESCMID* guideline for the diagnosis and management of *Candida* diseases 2012: prevention and management of invasive infections in neonates and children caused by *Candida* spp. *Clin Microbiol Infect.* 2012;18 Suppl 7:38-52.

132. Leroux S, Jacqz-Aigrain E, Elie V, et al. Pharmacokinetics and safety of fluconazole and micafungin in neonates with systemic candidiasis: a randomized, open-label clinical trial. *Br J Clin Pharmacol.* 2018;84(9):1989-1999.

133. Thompson GR III, Cadena J, Patterson TF. Overview of antifungal agents. *Clin Chest Med.* 2009;30:203-15

Manzoni P, Mostert M, Castagnola E. Update on the management of *Candida* infections in preterm neonates. *Arch Dis Child Fetal Neonatal Ed.* 2015;100(5):F454-F459. doi:10.1136/archdischild-2012-303350

134. Chapman RL. Prevention and treatment of *Candida* infections in neonates. *Semin Perinatol.* 2007;31:39-46

135. Almirante B, Rodriguez D. Antifungal agents in neonates: issues and recommendations. *Paediatr Drugs* 2007;9:311-21

136. Pappas PG, Kauffman CA, Andes D, et al. Infectious Diseases Society of America. Clinical practice guidelines for the management of candidiasis:2009 update by the Infectious Diseases Society of America. *Clin Infect Dis* 2009;48:503-35

137. Smith PB, Steinbach WI, Benjamin DK Jr. Neonatal candidiasis. *Infect Dis Clin North Am* 2005;19:603-15

138. Steinbach WI. Antifungal agents in children. *Pediatr Clin North Am* 2005;52:895-915

139. Friedman S, Richardson SE, Jacobs SE, et al. Systemic candida infection in extremely low birth weight infants: short term morbidity and long-term neurodevelopmental outcome. *Pediatr Infect Dis J* 2000;19:499-504

140. Pappas PG, Rex JH, Sobel JD, et al. Guidelines for treatment of candidiasis. *Clin Infect Dis* 2004;38:161-89

141. Linder N, Klinger G, Shalit I, et al. Treatment of candidaemia in premature infants: comparison of three amphotericin B preparations. *J Antimicrob Chemother* 2003;52:663-7

142. Driessen M, Ellis JB, Cooper PA, et al. Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicemia: a prospective randomized trial. *Pediatr Infect Dis J* 1996;15:1107-12

143. Steinbach WI. Pediatric aspergillosis:disease and treatment differences in children. *Pediatr Infect Dis J* 2005;24:358-64

144. Roilides E, Zaoutis TE, Katragkou A, et al. Zygomycosis in neonates:an uncommon but life-threatening infection. *Am J Perinatol* 2009;26:565-73

145. Smolinski KN, Shah SS, Honig PI, et al. Neonatal cutaneous fungal infections. *Curr Opin Pediatr* 2005;17:486-93

146. Kwon DS, Mylonakis E. Posaconazole: a new broadspectrum antifungal agent. *Expert Opin Pharmacother* 2007;8:1167-78

147. Groll AH, Jaeger G, Allendorf A, et al. Invasive pulmonary aspergillosis in a critically ill neonate: case report and review of invasive aspergillosis during the first three months of life. *Clin Infect Dis* 1998;27:437-52

148. Shane AL, Stoll BJ. Recent developments and current issues in the epidemiology, diagnosis, and management of bacterial and fungal neonatal sepsis. *Am J Perinatol.* 2013;30(2):131-141.

149. Watt K, Manzoni P, Cohen-Wolkowicz M, et al. Triazole use in the nursery: fluconazole, voriconazole, posaconazole, and ravuconazole. *Curr Drug Metab.* 2013;14(2):193-202.