

Randomized Control Trial of Functional Outcome between Instrumented Posterior Lumbar Interbody Fusion and Posterolateral Fusion in Degenerative and Isthmic Adult Spondylolisthesis.

Dr. Venkatasubramanian.R¹, Manoharan, M², Venkatram, V³, and Ramkumar, V³

¹Assistant Professor, Department of Orthopaedics, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Pondicherry.India

Abstract: Spondylolisthesis is a spinal condition that affects the lumbosacral vertebrae. This disease causes one of the lower vertebrae to slip forward onto the bone directly beneath it. It's a painful condition but treatable in most cases. Although spondylolisthesis can be asymptomatic, patients with degenerative and isthmic spondylolisthesis typically present with low back pain, neurologic symptoms, and/or radicular symptoms. The surgical treatment of spondylolisthesis is indicated for cases of neurogenic claudication, intractable radicular pain, severe low-back pain, presence of neurological symptoms, failure of conservative management, radiological instability, progressive worsening of the listheses, Meyerding grade III and IV listhesis, and spondylosis. The ideal surgical treatment remains controversial. We have compared the functional outcome following instrumented posterior lumbar interbody fusion and posterolateral fusion for adult spondylolisthesis in our study. The prospective study was conducted in the Department of Orthopaedics. A total of 30 patients who satisfied both the inclusion and exclusion criteria and gave informed consent were recruited for the study from January to December 2019. The patients were randomized into two groups. Of 30 patients, Group 1 (n=18) underwent Posterior lumbar interbody fusion and Group 2 (n=12) underwent Posterolateral fusion. Random number generators were used for allotting the patients to the specified group. Using Oswestry Disability Index, Japanese Orthopaedic Association Score and Visual Analog Score were used for pre-operative and post-operative functional scoring. The mean age among those who received PLIF was 53.67 years and among those who received PLF was 55.17 years. Spondylolisthesis at L4-L5 comprised 66.7% among those who received PLIF and 58.3 % among those who received PLF. Neurological deficit was present in 66.7% of the participants who had received PLIF and 100% of the participants who have received PLF. Concerning those who had received PLIF as treatment, 11 patients had excellent and 7 patients had better outcome in PLIF group, 7 patients had excellent and 5 patient had better outcome in PLF group.. The mean JOAS pre-intervention score was 6.66 and 6.40 for PLIF and PLF groups, respectively. In the 6th month mean JOAS score of the PLIF group was 11.16 and that of the PLF group was 10.16. The pre-intervention mean VAS score was 6.44 and 6.50 for PLIF and PLF groups, respectively. In both, the groups over the follow-up period mean VAS score had shown a decreasing trend. Our study did not show any significant difference in functional outcome between both groups, however there seems to better short term (3 months) and mid-term (6 months) pain relief in PLIF group when compared to PLF group. Long term follow-up studies along with radiological outcome may help in establishing superiority between both procedures.

Keywords: Posterolateral Instrumented Fusion, Posterolateral Fusion, Degenerative, Isthmic, Spondylolisthesis.

***Corresponding Author**

**Dr.Venkatasubramanian.R , Assistant Professor,
Department of Orthopaedics, Mahatma Gandhi
Medical College and Research Institute, Sri Balaji
Vidyapeeth, Pondicherry.India**

Received On 18 September 2022

Revised On 11 October 2022

Accepted On 14 October 2022

Published On 20 October 2022

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Dr.Venkatasubramanian.R, Manoharan,M, Venkatram,V, and Ramkumar,V , Randomized Control Trial of Functional Outcome between Instrumented Posterior Lumbar Interbody Fusion and Posterolateral Fusion in Degenerative and Isthmic Adult Spondylolisthesis..(2022).Int. J. Life Sci. Pharma Res.12(6), L41-49 <http://dx.doi.org/10.22376/ijpbs/lpr.2022.12.6.SP25.L41-49>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

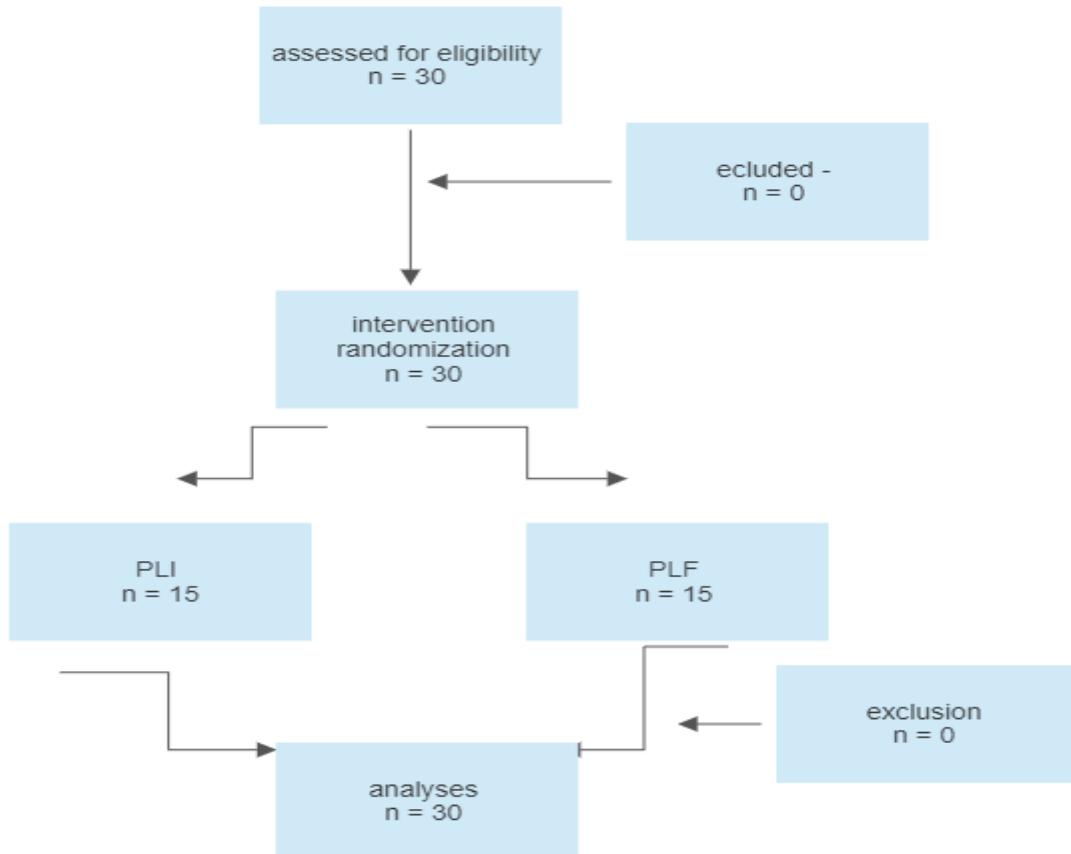
Killianin 1857 coined the term Spondylolisthesis¹. Spondylolisthesis is derived from the Greek word “spondylosis” (vertebra) and “olisthesis” (to slip and fall). Spondylolisthesis is defined as the forward slippage of a cephalad vertebra on a caudal vertebra. The term Spondylolysis is also derived from the Greek word “lysis” (loosening). Spondylolisthesis is present in 5% of the adult population with clinical evidence of low back pain². Spondylolisthesis is the anterior displacement of one vertebra in relation to the next near lower vertebra, which can produce low back pain. Congenital, degenerative, traumatic, pathologic, and postoperative spondylolisthesis are all possible. Although spondylolisthesis can be symptom free, patients with isthmic spondylolisthesis frequently experience low back pain, neurologic symptoms, and/or nerve entrapment symptoms. They primarily affect the L3-S1 vertebral region. The lumbosacral intersection is frequently affected by isthmic spondylolisthesis. Spondylolisthesis most frequently impacts the lower lumbar spine, but it can also affect the cervical spine and, in rare cases, the thoracic spine. Degenerative spondylolisthesis primarily affects adults and is more common in women than men, with an elevated risk in the obese. Isthmic spondylolisthesis is more common in adolescents and young adults, but clinical signs may go unnoticed until adulthood. Males have a higher preponderance of isthmic spondylolisthesis. These patients are treated initially by conservative measures, failing which surgical intervention is mandatory. The majority of the patients with varying degrees of slip and disability ultimately require surgical intervention³. The extent of symptoms determines how isthmic spondylolisthesis is treated. Patients with somatic symptoms and mild spondylolisthesis have all been initially treated with non-surgical methods such as nonsteroidal anti-inflammatory drugs, physical therapy, and modification of pain-inducing activities, and rest for 1-2 weeks. These nonsurgical treatments, when taken in conjunction with anti-lordotic transverse reinforcement, can stand to gain in more than 75% of adults with grade I-II spondylolisthesis. Numerous studies prove that reduction of severe high-grade Spondylolisthesis is essential⁴, whereas low-grade listhesis depending on the aetiology, can be managed by several methods like a posterior and posterolateral fusion *in situ* with or without instrumentation, posterior lumbar interbody fusion with or without instrumentation⁵. Surgeons believe reduction, posterior stabilization, and interbody fusion gives much better results. Pain control and quality of life are important outcome metrics for surgical intervention of spondylolisthesis from the patients' standpoint. Furthermore, the fusion rate and infection rate of the two strategies which may impact in such a way which procedure is suggested by the surgeon and staff. The majority of studies try comparing small groups and may lack the bio statistical ability to detect differences. In this study, we are trying to analyse the functional outcome following posterior lumbar interbody fusion in spondylolisthesis and compare it with the functional outcome following posterolateral fusion

I. MATERIALS AND METHODS

Study population

This study was conducted for one year and 6months from January 2019 - MAY 2020. Patients diagnosed with degenerative and isthmic adult spondylolisthesis. Patients diagnosed with degenerative and isthmic adult spondylolisthesis attending the Out-patient department or casualty services at our hospital and satisfying the inclusion and exclusion criteria will be the study subjects. The study was approved by the ethical committee (MGMCR/IHEC/2018/ortho/12). The study was done in accordance with declaration of Helsinki.

Inclusion and exclusion criteria


The patients presenting to the orthopedic department of the hospital willing for the study and with indication of either type of surgery – posterior lumbar interbody fusion or posterolateral fusion formed the inclusion criteria. The patients who were unwilling or with previous surgeries or with any other sensory motor deficits were excluded from the study.

Study design and randomization

The present study was an open-label randomized control trial. The patients was randomized into two groups. Of 30 patients. Group 1(18) underwent Posterior lumbar interbody fusion and Group 2(12) who underwent Posterolateral fusion. The random numbers were generated at the start of the study following which the patients have been recruited and numbered sequentially and allotted to their respective groups. From the patients diagnosed with adult spondylolisthesis and satisfying the inclusion and exclusion criteria, the following score have been obtained for pre-op and post -op functional outcome. 1)Oswestry Disability Index: The Oswestry Disability Index (also known as the Oswestry Low Back Pain Disability Questionnaire) is an extremely important tool that researchers and disability evaluators use to measure a patient's permanent functional disability. 2) Japanese Orthopaedic Association Score. 3)Visual Analog Score: The visual analogue scale (VAS) is commonly used as the outcome measure for such studies.

2. STATISTICAL ANALYSIS

The quantitative data was entered in Microsoft Excel (2016) and analysed using Statistical Package for Social Sciences (SPSS). The data were presented in the form of numbers and percentages for qualitative variables and mean SD for quantitative variables. The dependent variables include the functional outcomes as assessed by the Oswestry Disability Index, the Japanese Orthopaedic Association Score, and the Visual Analog Scores. The student t test was used for parametric data and a p value of less than 0.05 was considered significant.

3. RESULTS

The mean age among those who received PLIF was 53.67 ± 9.84 years and among those who received PLF was 55.17 ± 8.31 years. Female comprised 92.2% among those who received PLIF and 16.7% among those who received PLF. Degeneration L4-L5 comprised 66.7% among those who received PLIF and 58.3 % among those who received PLF. Neurological deficit was present in 66.7% of the participants who had received PLIF and 100% of the participants who have received PLF.

3.1 Clinical outcomes

Concerning those who had received PLIF as treatment, 11 patients had excellent and 7 patients had better outcome in PLIF group, 7 patients had excellent and 5 patient had better outcome in PLF group.. The mean JOAS pre-intervention score was 6.66 and 6.40 for PLIF and PLF groups, respectively.

In the 6th month mean JOAS score of the PLIF group was 11.16 and that of the PLF group was 10.16. The pre-intervention mean VAS score was 6.44 and 6.50 for PLIF and PLF groups, respectively. In both, the groups over the follow-up period mean VAS score had shown a decreasing trend. Our study did not show any significant difference in functional outcome between both groups, however there seems to be better short term (3 months) and mid-term (6 months) pain relief in PLIF group when compared to PLF group. Long term follow-up studies along with radiological outcome may help in establishing superiority between both procedures.

3.2 Radiological outcomes

The radiological outcomes like decreased slippage are difficult to quantify. The next problem is any radiological improvement without clinical outcomes is not going to be beneficial. A combined and synchronized analyses of radiological and clinical outcomes were not part of our study

Table1: DI Index comparison between PLIF and PLF

ODI	PLIF		PLF		P value	5	41.7
	N	%	N	%			
Pre ODI	41-60%	10	55.6	7	58.3	0.725	0.880
	61-80%	6	33.3	3	25.0		
3 months	0-20%	3	16.7	0	0	0.233	
	21-40%	9	50.0	9	75.0		
	41-60%	6	33.3	3	25.0		
6 months	0-20%	11	61.1	7	58.3	0.879	
	21-40%	7	38.9	5	41.7		

Table 11: Mean JOAS Score Among the Study Participants.

JOAS	groups	Mean	SD	N	P value
Pre-intervention	PLIF	6.66	1.18	18	0.708
	PLF	6.50	1.16	12	
1st month	PLIF	8.33	1.28	18	0.177
	PLF	7.66	1.30	12	
3rd month	PLIF	9.83	1.38	18	0.094
	PLF	9.00	1.12	12	
6th month	PLIF	11.16	1.38	18	0.033
	PLF	10.16	0.83	12	

Table 12: Mean Vas Score Among the Study Participants Over the Follow Up Period.

VAS	groups	mean	SD	N	T value	P value
Pre-intervention	PLIF	6.44	1.09	18	0.145	0.885
	PLF	6.50	0.91	12		
1st month	PLIF	5.44	1.14	18	1.580	0.125
	PLF	6.16	1.33	12		
3rd month	PLIF	3.88	1.07	18	2.112	0.044
	PLF	5.00	1.80	12		
6th month	PLIF	2.44	0.85	18	2.929	0.007
	PLF	3.66	1.43	12		

3.3 Pre-op and follow up xrays(PLIF)

48 year male

Degenerative spondylolisthesis L5 S1 Neurology- Intact
Procedure – PLIF

Fig 1 : Pre op Xray

AP VIEW LATERAL VIEW

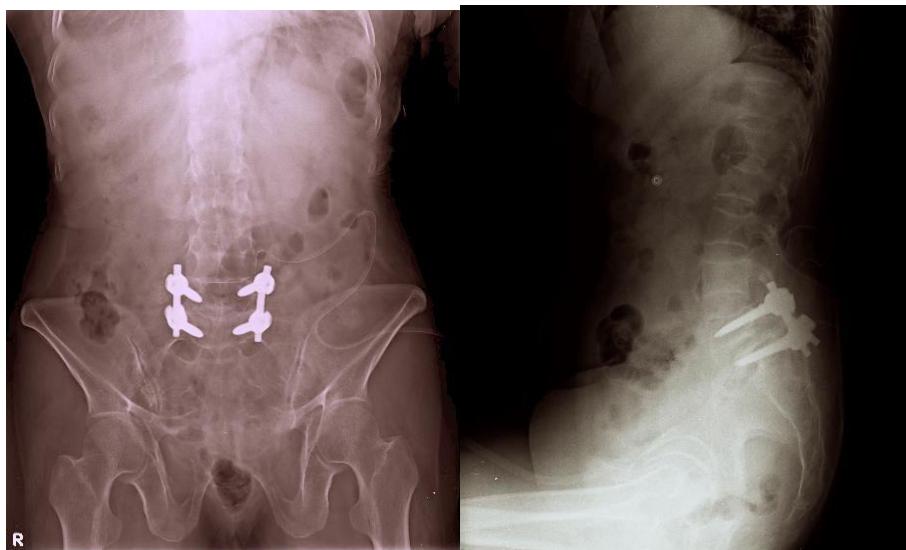
Fig 2 - 6th month post op X ray

Case capsule : 56-year female- Degenerative Spondylolisthesis L4 L5 Neurology- Sensation decreased over L5 S1 Procedure – PLF

Fig 3 showing Functional status after 6th month

Lateral view

AP view


Fig 4 - Pre-op X ray

AP VIEW

LATERAL VIEW

Fig 5 - Immediate Post op X ray

Fig 6 - 6th month post op X ray

4. DISCUSSION

Symptomatic spondylolisthesis is often associated with back pain due to spinal instability and presents with varying degrees of neurological deficits. Treatment of choice in such a scenario is surgical stabilization and fusion of the unstable spinal segment. Various approaches are described for the same. However, no single approach has been described as the gold standard. This forms the basis of our research question. A literature search revealed 6 similar studies which shall be detailed in relation to our study in following discussion. In our study the mean age of patients in PLIF group was 52 years and in PLF group was 56 years. The mean age is higher in comparison to the existing studies as shown in table (14). The higher mean age in our study could be attributed to the predominance of degenerative spondylolisthesis (n=27) over Isthmic spondylolisthesis (n=3). In the studies which included both types of spondylolisthesis only Dantas et al reported a higher percentage of patients with degenerative spondylolisthesis⁵¹. Sharkawi et al and Cheng et al had a greater number of patients with Isthmic spondylolisthesis^{52,53}. Female patients were much higher (n=23) in comparison with male patients (n=7) in our study. This is similar to the gender distribution in the studies done by Ekman et al, Musluman et al, Sharkawi et al and Dantas et al^{54,55,52,51}. However, Cheng et al and Madan et al had a slightly higher proportion of males in their studies^{53,56}. L4-L5 was the most common level involved in our study (63%) PLIF had 66.7% and PLF had 58.3%. This pattern of involvement is similar to Cheng et al (74%) and Madan et al (65.9%)^{53,56}. Only Ekman et al reported a greater percentage of L5 slip (80%)⁵⁴. 80% of our patients had some degree of neurological deficit prior to surgical intervention. Madan et al reported neurological deficit in 77% of their sample population⁵⁶. Other studies reported neurological deficits ranging from 40-60% of their study sample. None of the other studies in scientific literature quantified the extent of neurological improvement in the form of an appropriate

5. CONCLUSION

Short term follows up did not show any significant difference in functional outcome between both groups, however there seems to be better pain relief in PLIF group at the end of 6 month. Larger sample study and longer follow up needed to estimate superiority of one approach over another in terms of radiological outcomes. However, from our study we recommend PLIF over PLF for its clear superiority in providing better short term and medium-term pain relief.

6. LIMITATIONS

Small sample size, Lack of radiological evaluation outcome in all cases due to short follow-up period and COVID pandemic

9. REFERENCES

- I. Tebet MA. Current concepts on the sagittal balance and classification of spondylolysis and spondylolisthesis.

score. Ours was the only study which used a comprehensive scoring system in the form of Japanese Orthopedic Association Score (JOAS) to assess the neurological outcome post-operatively. Neurological recovery in our study was found to be marginally better in PLIF group. This was in contrast to the outcomes reported with respect to neurological recovery in similar studies where both PLIF and PLF had comparable results. VAS was used in our study to quantify the severity of pain pre-operatively and to assess improvement post operatively. Both PLIF and PLF groups showed improvement in postoperative VAS scoring but the extent of pain relief was significantly better in PLIF when compared to PLF. This difference was obvious even as early as 3rd month of follow up. Musluman et al also showed significant improvement in VAS scores in PLIF group⁵⁵. In fact, this improvement was specific to back pain in their study. VAS scoring for leg pain did not show any significant difference between both groups. We did not distinguish back pain and leg pain in our VAS scoring. However, Cheng et al showed no statistical difference in VAS scoring at their final follow up at 4 years⁵³. Oswestry disability were assessed preop, 1st month, 3rd month and 6th month. Eleven patients in PLIF group and seven patients in PLF had excellent outcome and seven patients in PLIF and Five patients in PLF group had better outcome. This difference between the two groups was not significant.. This is similar to studies done by Cheng et al, Ekman et al and Dantas et al, where no significant difference in both groups^{53,54,57}. Meta-analysis done by Yong-ping et al which included two RCT and two NRCT and one retrospective⁵⁸. Conclusion from the analysis similar to our results, Pain relief is significantly better with PLIF. Functional outcome is similar in both approaches. See figures 1 – 7) Fusion rates(not assessed in our study) better with PLIF. They recommended separate scales for pain relief and functional outcome assessment in PLIF and PLF patients so as to correctly gauge their advantage and disadvantage over each other.

interfering with the follow-up of older cases, Different surgeons operated, Pain in terms of back vs leg was not differentiated in follow up.

7. AUTHOR CONTRIBUTION STATEMENT

VeR data collection
VR – data collection
MM – supervision
VV – manuscript and communication

8. CONFLICT OF INTEREST

Conflict of interest declared none.

2. Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylosis and spondylolisthesis. *J Bone Joint Surg Am.* 1984 Jun;66(5):699–707.

3. Hoffmann C-H, Scholz M, Kandziora F. [Indications for Surgical Correction of Degenerative Spondylolisthesis]. *Z Orthopadie Unfallchirurgie.* 2016 Feb;154(1):85–97; quiz 98–9.

4. Kunze Kn, Lilly Dt, Khan Jm, Louie Pk, Ferguson J, Basques Ba, Et Al. High-Grade Spondylolisthesis in Adults: Current Concepts in Evaluation and Management. *Int J Spine Surg.* 2020 Jun 30;14(3):327–40.

5. Swan J, Hurwitz E, Malek F, van den Haak E, Cheng I, Alamin T, et al. Surgical treatment for unstable low-grade isthmic spondylolisthesis in adults: a prospective controlled study of posterior instrumented fusion compared with combined anterior- posterior fusion. *Spine J Off J North Am Spine Soc.* 2006 Dec;6(6):606–14.

6. Logroscino G, Mazza O, Aulisa G, Pitta L, Pola E, Aulisa L. Spondylolisthesis and spondylolisthesis in the pediatric. *Hensinger RN.* Spondylolisthesis and spondylolisthesis in children and adolescents. *J Bone Joint Surg Am.* 1989 Aug;71(7):1098–107.

12. Virta L, Rönnemaa T, Osterman K, Aalto T, Laakso M. Prevalence of isthmic lumbar spondylolisthesis in middle-aged subjects from eastern and western Finland. *J Clin Epidemiol.* 1992;

13. Spina N, Schoutens C, Martin Bl, Brodke DS, Lawrence B, Spiker WR. Defining Instability in Degenerative Spondylolisthesis: Surgeon Views. *Clin Spine Surg.* 2019 Dec;32(10):E434.

14. Moiel R, Ehni G. Cauda equina compression due to spondylolisthesis with intact neural arch. Report of two cases. *J Neurosurg.* 1968 Mar;28(3):262–5.

15. Wj B, Be F, A M, Ca S, Wd G, D B. The natural history of spondylolisthesis and spondylolisthesis: 45-year follow-up evaluation. Vol. 28, *Spine.* *Spine (Phila Pa 1976); 2003* [cited 2020 Dec 2].

16. Haraldsson S, Willner S. A comparative study of spondylolisthesis in operations on adolescents and adults. *Arch Orthop Trauma Surg Arch Orthopadische Unf-Chir.* 1983;101(2):101–5.

23. Natarajan RN, Garretson RB, Biyani A, Lim TH, Andersson GB, An HS. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study. *Spine.* 2003 Jun 1;28(11):1103–12.

24. Niggemann P, Kuchta J, Beyer H-K, Grosskurth D, Schulze T, Delank K-S. Spondylolisthesis and spondylolisthesis: prevalence of different forms of instability and clinical implications. *Spine.* 2011 Oct 15;36(22):E1463–1468.

25. Wiltse LL, Newman PH, Macnab I. Classification of spondylolisthesis and spondylolisthesis. *Clin Orthop.* 1976 Jun;(117):23–9.

26. Wiltse LL. Classification, Terminology and Measurements in Spondylolisthesis. *Iowa Orthop J.* 1981;1:52–7.

27. Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylolisthesis and spondylolisthesis. *J Bone Joint Surg Am.* 1984 and adolescent population. *Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg.* 2001 Nov;17(11):644–55.

7. Olafsson G, Jonsson E, Fritzell P, Hägg O, Borgström F. A health economic lifetime treatment pathway model for low back pain in Sweden. *J Med Econ.* 2017 Dec;20(12):1281–9.

8. Koreckij TD, Fischgrund JS. Degenerative Spondylolisthesis. *J Spinal Disord Tech.* 2015 Aug;28(7):236–41.

9. Ganju A. Isthmic spondylolisthesis. *Neurosurg Focus.* 2002 Jul 15;13(1):E1.

10. KUNZE KN, LILLY DT, KHAN JM, LOUIE PK, FERGUSON J, BASQUES BA, et al. High-Grade Spondylolisthesis in Adults: Current Concepts in Evaluation and Management. *Int J Spine Surg.* 2020 Jun 30;14(3):327–40.

11. Foreman P, Griessnauer CJ, Watanabe K, Conklin M, Shoja MM, Rozelle CJ, et al. L5 spondylolisthesis/spondylolisthesis: a comprehensive review with an anatomic focus. *Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg.* 2013 Feb;29(2):209–16.

17. Newman PH. Spondylolisthesis, its cause and effect. *Ann R Coll Surg Engl.* 1955 May;16(5):305–23.

18. O'Donnell M, Lavelle WF, Sun MH. Spondylolisthesis with spondylolisthesis in a 17- month-old: a case report. *J Spine Surg.* 2017 Dec;3(4):689.

19. S S, K O, H H, K T, D S, M P. Progression of spondylolisthesis in children and adolescents. A long-term follow-up of 272 patients Vol. 16, *Spine.* *Spine (Phila Pa 1976); 1991* [cited 2020 Dec 2].

20. Kitanaka S, Takatori R, Arai Y, Nagae M, Tonomura H, Mikami Y, et al. Facet Joint Osteoarthritis Affects Spinal Segmental Motion in Degenerative Spondylolisthesis. *Clin Spine Surg.* 2018;31(8):E386–90.

21. Zdeblick TA. A prospective, randomized study of lumbar fusion. Preliminary results. *Spine.* 1993 Jun 15;18(8):983–91.

22. Troup JD. Mechanical factors in spondylolisthesis and spondylolisthesis. *Clin Orthop.* 1976 Jun;(117):59–67. Jun;66(5):699–707.

29. Mikhael MM, Shapiro GS, Wang JC. High-Grade Adult Isthmic L5–S1 Spondylolisthesis: A Report of Intraoperative Slip Progression Treated with Surgical Reduction and Posterior Instrumented Fusion. *Glob Spine J.* 2012 Jun;2(2):119–24.

30. Hammerberg KW. New concepts on the pathogenesis and classification of spondylolisthesis. *Spine.* 2005 Mar 15;30(6 Suppl):S4–11.

31. Mac-Thiong J-M, Labelle H, Parent S, Hresko MT, Deviren V, Weidenbaum M. Reliability and development of a new classification of lumbosacral spondylolisthesis. *Scoliosis.* 2008 Dec 10;3:19.

32. Gong Q, Kong Q. [Biomechanical analysis and classification of lumbosacral spondylolisthesis]. *Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi Zhongguo Xiufu Chongjian Waike Zazhi Chin J Reparative Reconstr Surg.* 2013 Sep;27(9):1134–7.

33. Mizuno K, Mikami Y, Nagae M, Tonomura H, Ikeda T, Fujiwara H, et al. Instrumented Reduction and Monosegmental Fusion for Meyerding Grade IV Developmental Spondylolisthesis. *Medicine (Baltimore).* 2014 Feb 12 [cited 2020 Dec 3];93(29).

34. Li Y, Hresko M. Radiographic Analysis of Spondylolisthesis and Sagittal Spinopelvic Deformity. *J Am Acad Orthop Surg*. 2012 Apr 1;20:194–205.

35. McNeely ML, Torrance G, Magee DJ. A systematic review of physiotherapy for spondylolysis and spondylolisthesis. *Man Ther*. 2003 May;8(2):80–91.

36. Cavalier R, Herman MJ, Cheung EV, Pizzutillo PD. Spondylolysis and spondylolisthesis in children and adolescents: I. Diagnosis, natural history, and nonsurgical management. *J Am Acad Orthop Surg*. 2006 Jul;14(7):417–24.

37. Morimoto M, Sakai T, Goto T, Sugiura K, Manabe H, Tezuka F, et al. Is the Scotty Dog Sign Adequate for Diagnosis of Fractures in Pediatric Patients with Lumbar Spondylolysis? *Spine Surg Relat Res*. 2018 May 29;3(1):49–53.

38. Sun Y, Wang H, Yang D, Zhang N, Yang S, Zhang W, et al. Characterization of radiographic features of Garet M, Reiman MP, Mathers J, Sylvain J. Nonoperative treatment in lumbar spondylolysis and spondylolisthesis: a systematic review. *Sports Health*. 2013 May;5(3):225–32.

44. Wc P, Dd S, Tp S, Jc W, Md D. Trends in the surgical treatment of lumbar spine disease in the United States. Vol. 15, *The spine journal : official journal of the North American Spine Society*. *Spine J*; 2015 [cited 2020 Dec 2].

45. de Kunder SL, van Kuijk SMJ, Rijkers K, Caelers IJMH, van Hemert WLW, de Bie RA, et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. *Spine J Off J North Am Spine Soc*. 2017;17(11):1712–21.

46. Fleege C, Rickert M, Rauschmann M. [The PLIF and TLIF techniques. Indication, technique, advantages, and disadvantages]. *Orthopade*. 2015 Feb;44(2):114–23.

47. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI- TLIF, OLIF/ATP, LLIF and ALIF. *J Spine Surg*

52. El-Sharkawi MM, Refai OA, Ali HM, El-Sherif EK. Posterior lumbar interbody fusion versus posterolateral fusion with instrumentation in treatment of adult spondylolisthesis, *AAMJ*. 2005;3(2).

53. Cheng L, Nie L, Zhang L. Posterior lumbar interbody fusion versus posterolateral fusion in spondylolisthesis: a prospective controlled study in the Han nationality. *Int Orthop*. 2009 Aug;33(4):1043–7.

54. Ekman P, Möller H, Tullberg T, Neumann P, Hedlund R. Posterior lumbar interbody fusion versus posterolateral fusion in adult isthmic spondylolisthesis. *Spine*. 2007 Sep 15;32(20):2178–83.

55. Müslüman AM, Yılmaz A, Cansever T, Cavuşoğlu H, Colak I, Genç HA, et al. Posterior lumbar interbody fusion versus posterolateral fusion with instrumentation in the treatment of low-grade isthmic spondylolisthesis: midterm clinical outcomes. *J Neurosurg Spine*. 2011 Apr;14(4):488–96.

39. consecutive lumbar spondylolisthesis. *Medicine (Baltimore)*. 2016 Nov 18 [cited 2020 Dec 5];95(46).

40. D B, Ds B, Rb W, Jh M. Management of severe spondylolisthesis in children and adolescents. Vol. 61, *The Journal of bone and joint surgery. American volume*. *J Bone Joint Surg Am*; 1979 [cited 2020 Dec 2].

41. Kotani Y, Abumi K, Ito M, Sudo H, Abe Y, Minami A. Mid-term clinical results of minimally invasive decompression and posterolateral fusion with percutaneous pedicle screws versus conventional approach for degenerative spondylolisthesis with spinal stenosis. *Eur Spine J*. 2012 Jun;21(6):1171.

42. Hansen BB, Nordberg CL, Hansen P, Bliddal H, Griffith JF, Fournier G, et al. Weight- bearing MRI of the Lumbar Spine: Spinal Stenosis and Spondylolisthesis. *Semin Musculoskelet Radiol*. 2019 Dec;23(6):621–33.

43. Evans N, McCarthy M. Management of symptomatic degenerative low-grade lumbar spondylolisthesis. *EFORT Open Rev*. 2018 Dec;3(12):620–31.

48. Hong Kong. 2015 Dec;1(1):2–18.

49. Cole CD, McCall TD, Schmidt MH, Dailey AT. Comparison of low back fusion techniques: transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. *Curr Rev Musculoskelet Med*. 2009 Apr 29;2(2):118–26.

50. 50. Zhang Q, Yuan Z, Zhou M, Liu H, Xu Y, Ren Y. A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. *BMC Musculoskelet Disord*. 2014 Nov 5;15(1):367.

51. 51. Crawford NR, Çagli S, Sonntag VKH, Dickman CA. Biomechanics of Grade I degenerative lumbar spondylolisthesis. Part I: In vitro model. *J Neurosurg Spine*. 2001 Jan 1;94(1):45–50.

56. 56. Dantas FLR, Prandini MN, Ferreira MAT. Comparison between posterior lumbar fusion with pedicle screws and posterior lumbar interbody fusion with pedicle screws in adult spondylolisthesis. *Arq Neuropsiquiatr*. 2007 Sep;65(3B):764–70.

57. 57. Madan S, Boeree N. Outcome of Posterior Lumbar Interbody Fusion Versus Posterolateral Fusion for Spondylytic Spondylolisthesis. *Spine*. 2002 Jul 1;27:1536–42.

58. 58. Dunn B. Lumbar spondylolysis and spondylolisthesis. *J Am Acad PAs*. 2019 Dec;32(12):50–51.

Ye Y-P, Xu H, Chen D. Comparison between posterior lumbar interbody fusion and posterolateral fusion with transpedicular screw fixation for isthmic spondylolisthesis: a meta-analysis. *Arch Orthop Trauma Surg*. 2013;133(12):1649–55.