

Analysis of The Safety and Efficacy of Different Types of Anesthesiological Support During Aesthetic Interventions For The Breast Glands In Ukraine

Iurii Kuchyn^{1*}, Dmytro Sazhyn² and Gennadiy Patlazhan³

¹*Bogomolets National Medical University, Kyiv, Ukraine

² Faculty of Surgery, Anesthesiology and Intensive Care, Bogomolets National Medical University, Kyiv, Ukraine;

³ Patlazhan ? linic, Odesa, Ukraine;

Abstract: In the prevailing era, mammoplasty is prevalent among women. Undeniable benefits of the method are the preservation of most anatomical structures and skin, and also better psychological status of patients after intervention. Hence, the present study intends to examine the features of aesthetic and reduction surgical interventions on the mammary glands in Ukraine. Materials and methods. The study was conducted by analyzing the inpatient ambulatory cards of 320 patients. Anesthesia was provided by propofol (n=130), sevoflurane (n=140) and combined use of sevoflurane and nalbuphine (n=50). The results of the study. It was found that usage of combined inhalation analgesia of sevoflurane with opioids was characterized by 41.9% less recovery time. It was found that 8 hours after surgery, the individual assessment of pain was lower in the group of combined analgesia with opioids relative to intravenous anesthesia with propofol (87.5%, p<0.05) and inhalation anesthesia with sevoflurane (71, 3%, p<0.05). After 24 hours all patients reported about pain below 1.0 point, however, in groups where sevoflurane and nalbuphine were used, the level of pain self-esteem was 2.61 and 3 times lower than after intravenous propofol. It was found that within 1 hour after surgery, the average cognitive score on the Montreal scale decreased in the group of intravenous propofol by 5.0% (p<0.05) and by 1.7% under inhalation anesthesia with sevoflurane. Under combined anesthesia the cognitive score remained at 12.0 points. The frequency of postoperative nausea was the highest level in the group of inhalation anesthesia - 16.7%. The addition of nalbuphine to sevoflurane significantly reduced the risk of postoperative nausea ($\chi^2=7.250$; p=0.007). **Conclusions.** Combined anesthesia with opioids is a highly effective anesthetic choice for aesthetic and reconstructive interventions on the mammary glands.

Keywords: Aesthetic Interventions, Mammary Glands, Propofol, Sevoflurane, Combined Anesthesia.

*Corresponding Author

Iurii Kuchyn , Bogomolets National Medical University, Kyiv, Ukraine

Received On 04 August 2022

Revised On 09 September 2022

Accepted On 16 September 2022

Published On 20 September 2022

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Iurii Kuchyn, Dmytro Sazhyn and Gennadiy Patlazhan³ , Analysis of The Safety and Efficacy of Different Types of Anesthesiological Support During Aesthetic Interventions For The Breast Glands In Ukraine.(2022).Int. J. Life Sci. Pharma Res.12(6.SP23), L1-6
<http://dx.doi.org/10.22376/ijpbs/lpr.2022.12.6.SP23.L1-6>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

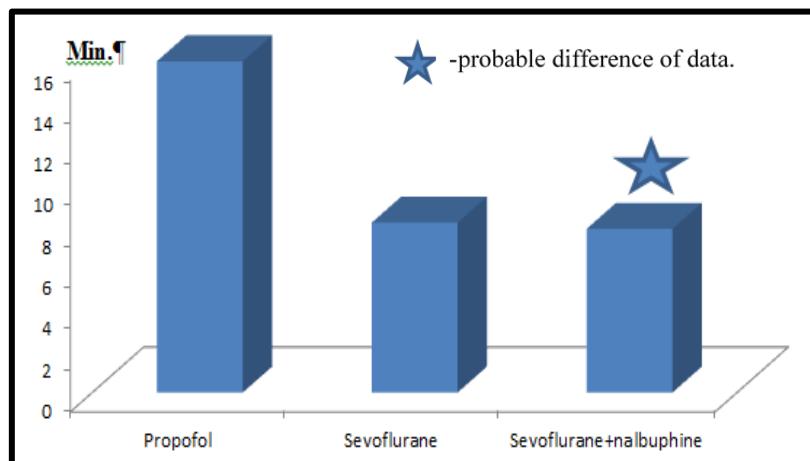
In Ukraine and around the world, mammoplasty is popular with women. Undoubted advantages of the method are the preservation of most anatomical structures and skin, as well as better psychological status of patients after intervention¹. The disadvantages of one-step intervention include the large extent of surgery², prolongation of the duration of anesthesia, which can cause the switch-on the stress adaptive mechanisms and more complications³. In addition, despite considerable advances in global anesthesiology in recent years, the effectiveness of perioperative analgesia during reconstructive and aesthetic breast surgery needs to be optimized. Urgent issues are to determine the path of safe analgesia for the development of side effects from various organ systems, in particular, possible cognitive consequences⁴ and harm in the quality of life, changes in central hemodynamics⁵. The method of anesthesia and the drugs used in the plastic surgery of the breast have a number of features compared with the anesthesia in the general surgery. In particular, in low-flow inhalation anesthesia with the use of sevoflurane during plastic surgery, there are some contradictions: on the one hand, some researchers emphasize its better protective effect in ischemic-reperfusion injury^{6,7} than in injectable propofol^{8,9}. The most important side effects of general anesthesia that patients experience after breast plastic surgery are postoperative pain, nausea and vomiting¹⁰. Untreated or insufficiently managed postoperative pain can have systemic consequences, negatively affecting the quality of life of patients. First of all, anesthesia protection provides maximum safety of the operated patient. It is also necessary to minimize the depressant effects of general anesthesia. Finally, it is very important to ensure the comfort of anesthesia care for a patient who acquires the status of a client in cosmetic surgery. In this case, the "client is always right", he is an active participant in the transformation of his own body and he assesses the outcome of interventions with her. Today there is a wide choice of anesthesia methods for aesthetic interventions on the breast. Local anesthesia and combined general anesthesia to the greatest extent realizes the selectivity of the action of different drugs on the nociceptive systems, and provides the ability to "fine-tune" the action of the component that needs to be strengthened or weakened at a given time. Inhaled anesthetics are the first choice for at least two reasons. The first is the ability to quickly achieve the required concentration in the body and, if necessary, as quickly as possible to reduce it, which reduces the induction and recovery periods. Secondly there is the ease and accuracy of control over this process (measurement of alveolar concentration of inhaled anesthetic). Thus, the purpose of this study was to study the features of aesthetic and reduction surgery on the mammary glands in the Odessa region of Ukraine, to learn the principles of anesthesia and the effectiveness of combined anesthesia.

2. MATERIALS AND METHODS

The study was conducted by analyzing inpatient cards of 320 patients admitted for reconstructive and aesthetic surgery on the mammary glands in clinics in Odessa during 2018-2020. Inclusion criteria: obtaining informed consent of patients to conduct the study; planned surgery; age from 21 to 65 years; the risk of anesthesia for ASA I-III; lack of cognitive impairment; absence of chronic diseases in the stage of exacerbation and decompensation; absence of hearing and vision disorders. The mean age of patients was 36.8 ± 10.8 years. Mean height (163.0 ± 6.9 cm) and weight (68.2 ± 10.4 , kg) were harmonious and were characterized by a normal body mass index (BMI) - 23.4 ± 3.8 kg / m². The most common comorbidities were varicose veins of the lower extremities (14.2%) and anemia (11.7%). In the majority of patients who applied for reconstructive interventions, the initial signs of fatty involution were observed (219 people, 68.3%), in 56 patients - complete fatty involution of the mammary glands (17.5%), in 45 people. Mammary glands were represented by glandular tissue (14.2%). For statistical analysis results, we used Statistica for Windows Version 10.0 (Stat Soft inc., USA). Parameters are presented in the form $M \pm m$, where M is the Mean, m is standard deviation. In the analysis of categorical group data, the criterion Pearson χ^2 with Yates correction was used^{5,8}. The assessment of the probability of the therapeutic effect was performed taking into account the absolute (AE) and relative (RE) efficacy, as well as the odds ratio (OR), with the calculation of confidence intervals and the reliability criterion for RR and OR^{3,7,11}. In the case of $p < 0.05$, differences were statistically significant. Besides, all participant consented to participate in this survey. The University Ethics Committee (UEC) of Bogomolets National Medical University confirmed that there are no ethical issues.

3. RESULTS

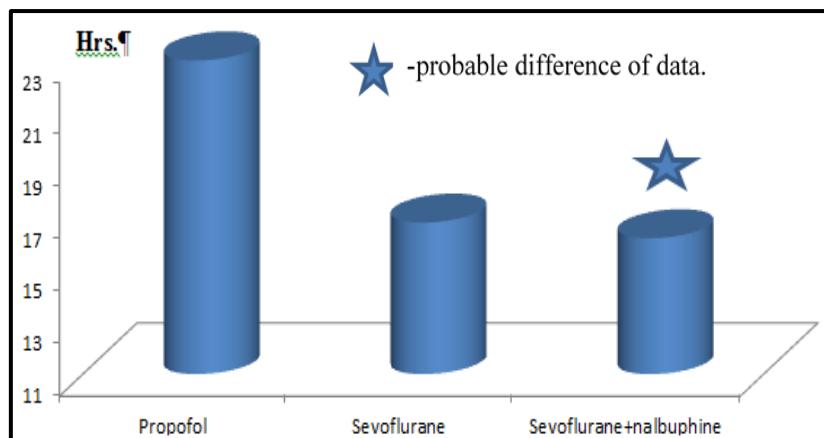
Surgical interventions observed in the retrospective study were represented by 58 reduction interventions (11.2%) and 462 primary breast augmentation (88.8%) both individually (n=428, 82.3%) and in combination with mastopexy. (n=26, 5.0%) and correction of inverted nipples (n=8, 1.5%), a total of 584 implants were done. The mean follow-up for all patients was 25.1 months (range 6–60 months). The coverage of follow-up after 5 years for all patients was 92%. Among 320 patients in 200 cases reconstructive interventions were performed on both breasts (62.0%), in 120 women - on one breast (38.0%). Thus, a total of 520 surgical interventions were analyzed. The average duration of reconstructive intervention with a unilateral flap was 387.12 ± 97.5 min or 6.45 ± 1.7 hours. Bilateral reconstructive interventions lasted 567.27 ± 110.2 min or 9.45 ± 1.9 h (Table 1).

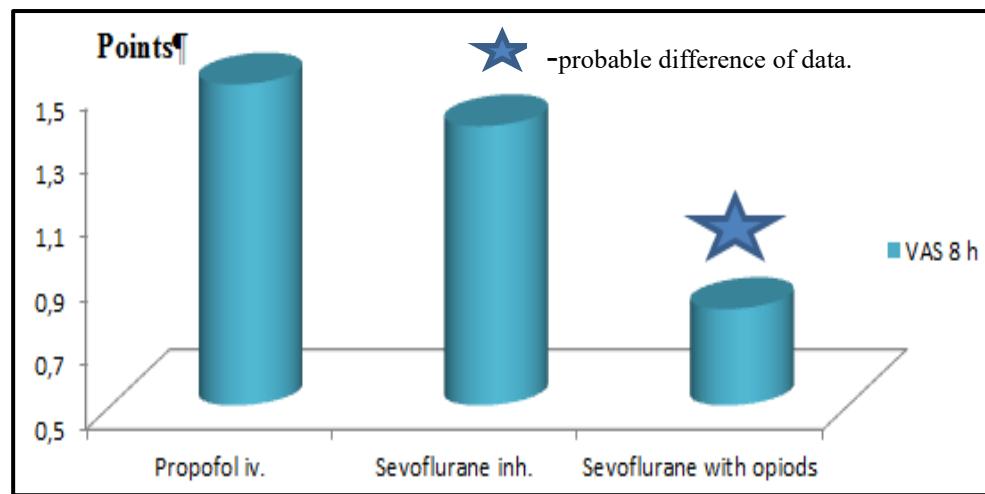

Table 1. Characteristics of reconstructive interventions in retrospective study

Parameters	Index
Age, years	36.7 ± 6.92
Duration of intervention at a 1-sided flap, min.	387.12 ± 97.5
Duration of intervention at a 2-sided flap, min.	567.27 ± 110.2
Duration of surgical revision at 1-sided intervention, min.	417.19 ± 84.5
Duration of surgical revision at 2-sided intervention, min.	605.27 ± 90.4

^{*} $p < 0.05$

No significant difference was found between cases with the need for an surgical revision and without it. Neither in the case of unilateral (387.12 ± 97.5 min vs. 417.19 ± 84.5 min, $p=0.257$), nor in bilateral interventions (567.27 ± 110.2 min vs. 605.27 ± 90.4 min), $p=0.219$) was not found a significantly larger number of revisions with a longer anesthesia time. Among 520 flaps in 30 cases (5.8%) there was a need for revision operation. As reasons for the revision, we noted 14 venous thrombi (46.7%), 10 arterial thrombi (33.3%), 6 hematomas (20.0%). The flaps used for breast reconstruction in 41.1% (214 flaps) were primary, 47.1% (245 flaps) were secondary and 11.8% (61 flaps) were tertiary. For obvious reasons, the duration of hospital stay was longer in the case of revision interventions (6.79 ± 2.79 days vs. 8.90 ± 2.11 days, $p<0.0001$). These patients required rehabilitation after additional anesthesia, surgery in general, and possible complications. The average time to resolve the question of revision was 20.73 hours ± 2.12 , the shortest was 15 minutes, and the longest was 5.74 days. Patients received smooth (n=527, 90.2%) and textured (n=57, 9.8%) silicone implants.

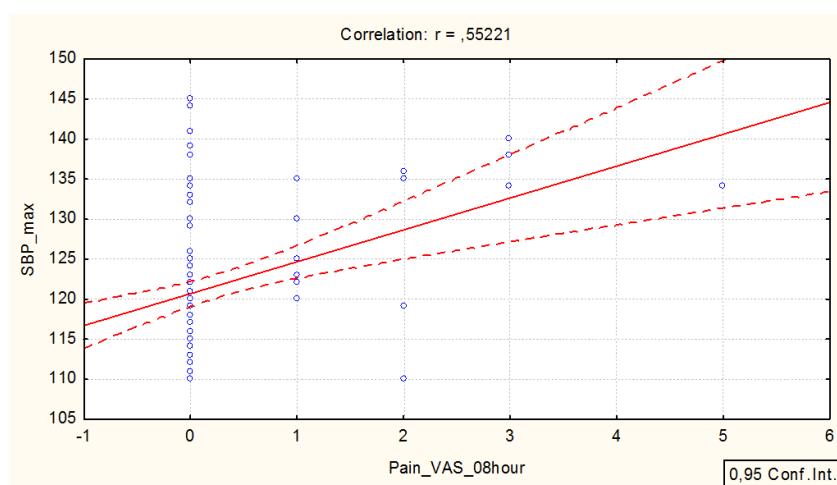

The average implant size was 253.98 ml (range 150–304 ml). The location of implants was subglandular (n=327, 56.0%), subfascial (n=110, 18.8%), subspectral (n=89, 15.2%), subaxillary (n=58, 9.9%). Patients were implanted through a transaxillary incision (n=325, 55.6%) and the rest through an inframammary fold (n=259, 44.4%). The following results were obtained by analyzing the methods of anesthesia in performing reconstructive interventions on the mammary glands. In general, when performing reduction and aesthetic interventions, combined methods of anesthesia were used - total intravenous anesthesia based on propofol (n=130, 40.6%), low-flow inhalation anesthesia with sevoflurane (n=140, 43.8%). Nalbuphine regimens (n=50, 15.6%) were used as combined analgesia. The time of awakening of patients after surgery and cessation of anesthetic in the group of sevoflurane with the addition of nalbuphine was an average of 7.8 ± 0.9 minutes ($p < 0.05$), regardless of the duration of manipulation and body weight. In the propofol group, the recovery time was, on average, 16.0 ± 2.4 minutes and depended on the duration of surgery, the time of surgery, body weight and total dose, Fig. 1.


Fig. 1: The duration of time to awakening (minutes) in the postoperative period compared with combined anesthesia with sevoflurane and opioids.

At the same time, no significant difference in the time of awakening in comparison with the isolated introduction of sevoflurane (8.1 ± 0.5) was found. Thus, the total awakening time under combined inhalation anesthesia was 2.05 times less than with intravenous propofol, Fig. 1. The first standing up in the group of intravenous anesthesia was noted after 23.0 ± 3.3

hours, with combined inhalation anesthesia - after 16.0 ± 2.4 hours. With isolated inhalation anesthesia the time was 16.8 ± 3.7 hours. That is, the use of combined inhalation analgesia of sevoflurane with opioids was characterized by 41.9% less recovery time, Fig. 2.

Fig 2: Recovery time (hours) of motoric activity in the postoperative period in comparison with combined anesthesia with sevoflurane and opioids.



It is possible that this pattern was the result of more adequate analgesia in the first day after surgery, Fig. 3.

Fig 3: Severity of pain (points) after 8 hours compared with combined anesthesia with sevoflurane and opioids.

In particular, 8 hours after surgery, the individual assessment of pain by VAS was lower in the group of combined analgesia with opioids (by scores) relative to intravenous anesthesia with propofol (87.5%, $p < 0.05$) and inhalation anesthesia with sevoflurane (71.3 %, $p < 0.05$), fig. 3. It should be added that

the severity of pain after 8 hours was directly correlated with other clinical indicators - systolic blood pressure ($r=0.55$, $p < 0.05$, Fig. 4), diastolic blood pressure ($r=0.40$, $p < 0.05$) and heart rate ($r=0.37$, $p < 0.05$).

Fig 4: Regression relationship between the level of self-assessment of pain 8 hours after the intervention and systolic blood pressure (BP).

As you can see, there is a direct correlation between the analog scale of self-assessment of pain and the level of postoperative blood pressure: $SBP = 120.69 + 3.9833 * PainVAS_8h$. That is, a higher level of individual pain assessment was characterized by an increase in systolic blood pressure in the early postoperative period. A similar pattern was obtained for diastolic blood pressure: $DBP = 70.688 + 1.6921 * PainVAS_8h$.

4. DISCUSSION

Most studies comparing the efficacy of propofol and sevoflurane for general anesthesia found no significant differences in the time of awakening and extubation of patients after general surgery^{11,12}. In our study, the time of awakening of patients after surgery and cessation of anesthetic in the group of sevoflurane with the addition of nalbuphine was an average of 7.8 ± 0.9 minutes ($p < 0.05$), regardless of the duration of manipulation and body weight. In the propofol group, the recovery time was, on average, 16.0 ± 2.4 minutes

and depended on the duration of surgery, the time of surgery, body weight and total dose. At the same time, some researchers note that when nalbuphine was added to the total intravenous anesthesia regimen, in contrast, the recovery rate after anesthesia was higher than with sevoflurane inhalation (8 and 12 minutes, respectively)^{5, 12-14}. According to our own study, the use of combined inhalation analgesia of sevoflurane with opioids was characterized by 41.9% less recovery time. According to a systematic review of the consequences of aesthetic operations on the mammary glands in 8361 patients, postoperative complications in the form of pain were 7.51% of women, impaired sensitivity - about 16% of patients^{7, 13,15,16}. In our study, within 8 hours after surgery, individual assessment of pain by VAS was lower in the group of combined analgesia with opioids (in point scores) relative to intravenous anesthesia with propofol (87.5%, $p < 0.05$) and inhalation anesthesia with sevoflurane (71.3 %, $p < 0.05$). The main mechanism of postoperative pain in reconstructive and aesthetic augmentative mammoplasty is the stretching of the major pectoris muscle under the action of the implant

transmitted by the pectoral nerves^{8,17-19}. In own study, it was found that the intensity of pain after 8 hours was directly correlated with other clinical indicators - systolic blood pressure ($r=0.55$, $p <0.05$), diastolic blood pressure ($r=0.40$, $p <0.05$) and heart rate ($r=0.37$, $p <0.05$). A great number of authors prefer multimodal anesthesia for mamal gland plastic surgery, which involves a combination of general anesthesia with opioids, NSAIDs, or local injections of anesthetics into the surgical wound to achieve the best analgesia in the perioperative period^{2,15,20}. We found that the individual assessment of pain in the group of combined anesthesia after 12 hours was 1.27 ± 0.06 points, which is 39.4% less than in isolated anesthesia with sevoflurane and 65.4% less than in intravenous anesthesia with propofol. Although opioid analgesics have been an integral part of the surgical analgesic regimen for many years, modern researchers emphasize the limited use of these drugs due to the large number of adverse reactions in the postoperative period. J. Frauenknecht found that intraoperative administration of opioids did not reduce the level of postoperative pain and length of hospital stay of patients after general surgery^{16,21,22}. Conversely, patients who did not receive narcotic analgesics in the perioperative period required less or no need for postoperative opioid administration, making recovery easier without tremor, nausea, or pain^{1,4,17,23}. It should also be noted that 24 hours after surgery, all patients reported about low pain severity, below 1.0 point, however, in the groups where sevoflurane was used by inhalation (0.23 ± 0.02 points) and combined with opioids (0.20 ± 0.02 points), and the level of pain self-esteem was 2.61 and 3 times lower than after intravenous propofol. An urgent problem of modern surgery and anesthesiology is the presence of potential risk of cognitive impairment after surgery and anesthesia, especially in elderly and debilitated patients, which can significantly impair their quality of life and increase mortality^{18,24}. In own work within 1 hour after surgery, the average cognitive score on the Montreal scale decreased to 11.4 ± 0.06 in the group of intravenous propofol (5.0%, $p <0.05$) and to 11.8 ± 0.02 under inhalation anesthesia with sevoflurane (1.7%). At the same time, under combined anesthesia with sevoflurane and opioids, the cognitive score on the Montreal scale remained constant - 12.0 points¹⁹⁻²³.

5. CONCLUSIONS

- The total awakening time under combined inhalation anesthesia was 2.05 times less than with intravenous propofol. The use of combined inhalation analgesia of

8. REFERENCES

- Sherwin A., Buggy D. J. Anaesthesia for breast surgery. *BJA Educ*, 2018; 18(11): 342-348. <https://doi.org/10.1016/j.bjae.2018.08.002>.
- Lundström S., Twycross R., Mihalyo M., Wilcock A. Propofol. *J. Pain Symptom Manag*, 2010. 40(3): 466-470. <https://doi.org/10.1016/j.jpainsymman.2010.07.001>
- Rowland J. H., Desmond K. A., Meyerowitz B. E. Role of breast reconstructive surgery in physical and emotional outcomes among breast cancer survivors. *J.Natio. Cancer Instute*, 2000; 92(17): 1422-1429. <https://doi.org/10.1093/jnci/92.17.1422>
- Zheng J-W., Meng B., Li X-Y., Lu B., Wu G-R., Chen J-P. NF-κB/P65 signaling pathway: a potential therapeutic target in postoperative cognitive dysfunction after

sevoflurane with opioids was characterized by 41.9% diminishing of recovery time.

- After 8 hours of intervention, the individual assessment of pain by VAS was lower in the group of combined analgesia with opioids (in point score) relative to intravenous anesthesia with propofol (87.5%, $p <0.05$) and inhalation anesthesia with sevoflurane (71.3%, $p <0.05$). The severity of pain after 8 hours was directly correlated with other clinical indicators - systolic blood pressure ($r=0.55$, $p <0.05$), diastolic blood pressure ($r=0.40$, $p <0.05$) and heart rate ($r=0.37$, $p <0.05$).
- After 12 hours, the individual assessment of pain in the group of combined anesthesia was 1.27 ± 0.06 points, which is 39.4% less than in isolated anesthesia with sevoflurane and 65.4% less than in intravenous anesthesia with propofol.
- Twenty-four hours after surgery, all patients reported about diminishing of pain severity - below 1.0, however, in the groups where sevoflurane was used by inhalation and in combination with opioids, the level of pain self-esteem was 2.61 and 3 times lower than after intravenous administration of propofol.
- Within 1 hour after surgery, the mean cognitive score on the Montreal scale decreased in the group of intravenous propofol by 5.0% ($p <0.05$) and by 1.7% under inhalation anesthesia with sevoflurane. Under combined anesthesia with sevoflurane and opioids, the cognitive score on the Montreal scale remained stable at 12.0 points.
- The frequency of postoperative nausea was the highest in the group of inhalation anesthesia - 16.7%. The increase in the absolute risk of postoperative nausea was 2.64 times with inhalation anesthesia with sevoflurane, compared with intravenous. The addition of nalbuphine to sevoflurane significantly reduced the risk of postoperative nausea - $\chi^2=7.250$ ($p=0.007$).

6. AUTHORS CONTRIBUTIONS

I.K., D.S., and G.P. carried out the experiment. I.K., and G.P. helped supervise the project. All authors discussed the results and contributed to the final manuscript.

7. CONFLICT OF INTEREST

Conflict of interest declared none.

sevoflurane anesthesia. *Eur Rev Med Pharmacol Sci*, 2017; 21(2): 394-407. <https://doi.org/10.17219/acem/134740>

- Qin G., Luo H., Yin X., Wang L., Zhang J., Cao Y., Zhang Z., Ye, Z., Wang E. Effects of Sevoflurane on Hemodynamics and Inducible Nitric Oxide Synthase/Soluble Guanylate Cyclase Signaling Pathway in a Rat Model of Pulmonary Arterial Hypertension. *Anesth Analg*, 2017; 125(1):184-189. <https://doi.org/10.1213/ANE.0000000000001937>.
- Claroni C., Torregiani G., Covotta M., Sofra M., Scotto Di Uccio A., Marcelli M., Naccarato A., Forastiere E. Protective effect of sevoflurane preconditioning on ischemia-reperfusion injury in patients undergoing reconstructive plastic surgery with microsurgical flap, a

randomized controlled trial. *BMC Anesthesiol*, 2016; 16(1): 66. <https://doi.org/10.1186/s12871-016-0230-1>.

7. Lim J., Oh C., Yoon T-G., Lee J.Y., Lee S-H., Yoo Y-B., Yang J-H., Kim S-H. The effect of propofol and sevoflurane on cancer cell, natural killer cell, and cytotoxic T lymphocyte function in patients undergoing breast cancer surgery: an in vitro analysis. *BMC Cancer*, 2018; 18(1): 159. <https://doi.org/10.1186/s12885-018-4064-8>.
8. Chen H-P., Hsu Y-H., Hua K-C., Lin C-C., Lo Y-F., Yu H-P. Comparison of sevoflurane versus propofol under auditory evoked potential monitoring in female patients undergoing breast surgery. *Biomed J*, 2013; 36(3) :125–131. <https://doi.org/10.4103/2319-4170.113228>
9. Erb T., von Ungern-Sternberg B., Moll J., Frei F. Impact of high concentrations of sevoflurane on laryngeal reflex responses. *Paediatr Anaesth*, 2017; 27(3): 282–289. <https://doi.org/10.1111/pan.13062>
10. Sharma S., Chang D. W., Koutz C. Incidence of hematoma associated with ketorolac after TRAM flap breast reconstruction. *Plast Reconstr Surg*, 2001; 107(2): 352–355. <https://doi.org/10.1097/00006534-200102000-00009>
11. Kocaturk O., Keles S. Recovery characteristics of total intravenous anesthesia with propofol versus sevoflurane anesthesia: a prospective randomized clinical trial. *J Pain Res*, 2018; 11: 1289–1295. <https://doi.org/10.2147/JPR.S164106>.
12. Çaparlar C. Ö., Özhan M. O., Süzer M. A. Fast-track anesthesia in patients undergoing outpatient laparoscopic cholecystectomy: comparison of sevoflurane with total intravenous anesthesia. *J. Clin. Anesth*, 2017; 37: 25–30. <https://doi.org/10.1016/j.jclinane.2016.10.036>
13. Heimes A. S., Stewen K., Hasenburg A. Psychosocial Aspects of Immediate versus Delayed Breast Reconstruction. *Breast Care (Basel)*, 2017; 12(6): 374–377. <https://doi.org/10.1159/000485234>
14. Filip C. I., Jecan C. R., Raducu L. Immediate Versus Delayed Breast Reconstruction for Postmastectomy Patients. Controversies and Solutions. *Chirurgia (Bucur)*, 2017; 112(4): 378–86. <https://doi.org/10.21614/chirurgia.112.4.378>
15. Hart A. M., Broecker J. S., Kao L., Losken A. Opioid use following outpatient breast surgery: are physicians part of the problem? *Plast. Reconstr. Surg*, 2018; 142(3): 611–620. <https://doi.org/10.1097/PRS.0000000000004636>
16. Frauenknecht J., Kirkham K. R., Jacot-Guillarmod A., Albrecht E. Analgesic impact of intra-operative opioids vs. opioid-free anaesthesia: a systematic review and meta-analysis. *Anaesthesia*, 2019; 74(5): 651–662. <https://doi.org/10.1111/anae.14582>
17. Mulier J. P. Is opioid-free general anesthesia for breast and gynecological surgery a viable option? *Curr Opin Anaesthesiol*, 2019; 32(3): 257–262. <https://doi.org/10.1097/ACO.0000000000000716>
18. Sun H., Zhang G., Ai B., Zhang H., Kong X., Le W-T. A systematic review: comparative analysis of the effects of propofol and sevoflurane on postoperative cognitive function in elderly patients with lung cancer. *BMC Cancer*, 2019; 19(1): 1248. <https://doi.org/10.1186/s12885-019-6426-2>
19. Parida S., Badhe A.S. Comparison of cognitive, ambulatory, and psychomotor recovery profiles after day care anesthesia with propofol and sevoflurane. *J Anesth*, 2014; 28(6): 833–838. <https://doi.org/10.1007/s00540-014-1827-5>
20. Haseneder R., Starker L., Berkemann J., Kellermann K., Jungwirth B., Blobner M., Eder M., Kochs E., Rammes G. Sevoflurane anesthesia improves cognitive performance in mice, but does not influence in vitro long-term potentiation in hippocampus CA1 stratum radiatum. *PLoS One*, 2013; 8(5): e64732. <https://doi.org/10.1371/journal.pone.0064732>
21. Xu T., Bo L., Wang J., Zhao Z., Xu Z., Deng X. Risk factors for early postoperative cognitive dysfunction after non-coronary bypass surgery in Chinese population. *J Cardiothorac Surg*, 2013; 8: 204. <https://doi.org/10.1186/1749-8090-8-204>
22. Geng Y-J., Wu Q-H., Zhang R-Q. Effect of propofol, sevoflurane, and isoflurane on postoperative cognitive dysfunction following laparoscopic cholecystectomy in elderly patients: A randomized controlled trial. *J Clin Anesth*, 2017; 38: 165–171. <https://doi.org/10.1016/j.jclinane.2017.02.007>
23. Tian H-T., Duan X-H., Yang Y-F., Wang Y., Bai Q-L., Zhang X. Effects of propofol or sevoflurane anesthesia on the perioperative inflammatory response, pulmonary function and cognitive function in patients receiving lung cancer resection. *Eur Rev Med Pharmacol Sci*, 2017; 21(23): 5515–5522. https://doi.org/10.26355/eurrev_201712_13943
24. Chen I., Kang Y-N., Wang H-J., Chiu, W-K., & Chen, C. The Efficacy of Local Anesthesia for Postoperative Pain Control in Breast Augmentation Surgery: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. *Aesthetic Plastic Surgery*, 2022; 1-10. <https://doi.org/10.1007/s00266-022-02815-9>