

Green Synthesis of Silver Nanoparticles and its Antimicrobial, Antioxidant Activity of *Drynaria Quercifolia*

Rajagopal Kanagalatha* and Geetha Chinnusamy

*Assistant Professor, Department of Chemistry, Government Arts College, Salem, Tamil Nadu, India.

MPhil Scholar, Department of Chemistry, Government Arts College, Salem, Tamil Nadu, India.

Abstract: Eco Friendly or green synthesis of metal nanoparticles has become an important branch of nanotechnology and due to their large applications, there is a growing commercial demand for nanoparticles. The plant named 'Oak leaf fern' belongs to the Polypodiaceae family and is native to India, Southeast Asia, etc. The main objective of the study is to synthesize silver nanoparticles from *Drynaria quercifolia* and to check its antioxidant and antibacterial activity from synthesized nanoparticles. The phytochemical analysis was carried out for different extract such as methanol extract, ethyl acetate extract and petroleum ether extract. While comparing the three extracts, methanol extract showed the presence of alkaloids, flavonoids, Terpenoids, Saponin and carbohydrates. The Reducing power assay was conducted for methanol extract. The percentage inhibition of free radicals is found to be $632.06\mu\text{g}/\text{ml}$. In this study, the synthesis of silver nanoparticles using methanol leaf extract of *D. quercifolia* in an eco-friendly and cost effective way is reported. The use of *D. quercifolia* leaf extract as a reduction agent from 1 mM silver nitrate has been examined for the synthesis of silver nanoparticles (SNPs) (AgNO_3). The synthesized nanoparticles were characterized by UV-Vis (422 nm), FTIR, SEM, and XRD studies. Within 24 hours of the incubation time, silver nanoparticles were synthesized and generated SNPs had an absorption peak of roughly 400 nm in the UV-visible spectrum. The synthesized AgNPs shows good antibacterial activity against Gram negative bacteria as well as Gram-positive. This technique is quick, easy, without any hazardous chemicals such as reducing or stabilizing agents and economical to synthesize SNPs.

Keywords: *D. quercifolia*, Green synthesis, Silver nanoparticles, UV-Vis, FTIR, SEM, XRD, Antioxidant activity.

*Corresponding Author

Rajagopal Kanagalatha, Assistant Professor, Department of Chemistry, Government Arts College, Salem, Tamil Nadu, India.

Received On 13 October, 2021

Revised On 18 February, 2022

Accepted On 22 February, 2022

Published On 7 March, 2022

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Rajagopal Kanagalatha, Geetha Chinnusamy, Green Synthesis of Silver Nanoparticles and its Antimicrobial, Antioxidant Activity of *Drynaria quercifolia*.(2022).Int. J. Life Sci. Pharma Res.12(2), P37-44 <http://dx.doi.org/10.22376/ijpbs/lpr.2022.12.2.P37-44>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Nanotechnology is the perception and control of matter at dimensions ranging from about 1 to 100 nanometres, where unusual phenomena allow for new applications. Nanotechnology includes nanoscale research, engineering, and technology, including the imaging, calculation, simulation, and manipulation of matter at this length scale. The nanotechnology industry has proven to be one of the most active research areas¹. Nanoparticle synthesis is exponentially increasing due to its wide range of applications in the fields of optoelectronics, biosensors, bio-nanotechnology, biomedicine and so on². The 'natural' environmentally friendly processes in chemistry and chemical technology are becoming increasingly popular and are much needed as a result of environmental concerns linked worldwide problems³. Silver is one of the most commercialized nano-materials with an annual production of five hundred tons of silver nanoparticles⁴, and is expected to grow in the coming years. Including its profound function in the field of high sensitivity biomolecular detection, catalysis, biosensors and medicine; significant inhibitory and bactericidal effects, anti-fungal, anti-inflammatory and anti-angiogenic activities have also been recognized⁵. Medicinal plants have been used for thousands of years in traditional treatments for numerous human diseases, and continue to be an important therapeutic aid to alleviate human diseases⁶. According to the World Health Organization⁷, "a medicinal plant" is any plant that contains substances in one or more of its organs that can be used for therapeutic purposes and are precursors for useful drug synthesis⁸. Screening for antimicrobial activity, plant products has shown that the higher plants represent a potential source of novel antibiotic prototypes⁹. The occurrence of multiple resistances in human pathogenic microorganisms has been growing in recent years, largely due to the indiscriminate use of synthetic antimicrobial drugs widely used in the treatment of infectious diseases. This has prompted scientists to search for new antimicrobials from diverse sources such as medicinal plants¹⁰. *D. quercifolia* J. Smith is a genus of fern in the family Polypodiaceae, commonly known as the Oak leaf fern. It is a big, densely scaly, woody rhizome herb. Leaves in adult plants are two types: 1) sessile, cordate-oblong, permanent bract leaves with a pinky lobed margin clasping the rhizome to serve as human collectors, and 2) oblong, pinnate-like, regular leaves with a rigid, brownish, winged petiole, about a foot long. Bract leaves are up to 9 inches long and up to 6 inches wide, persistent, sticking like brittle, dark, hard structures with a prominent midrib and main lateral veins to the rhizome. Normal lamina leaves 2-3 feet long and about one foot wide pinnatisect each segment being linear with a wide base, tapering apex, and whole margin. Venation is rhetorical. Young plant leaves (up to 2 or 3 years of age) are all sessile, simple lanceolate, with attenuated base and reticulated vein. The Aim of the study is to synthesize Silver Nanoparticles from *D. quercifolia*, and to find its biological activity such as Antimicrobial and Antioxidant activity of synthesized nanoparticles.

2. MATERIAL AND METHODS

2.1 Collection And Extract Preparation

The fresh samples of *D. quercifolia* (AORF00139) obtained from Yercaud hills were authenticated and submitted in Alpha Omega Research Foundation, Salem -636008, Tamil

Nadu. The sample materials were washed under running tap water, dried in air and then homogenized to fine powder and placed in refrigerated bottles with airtight effect. Extract of the raw sample was prepared using the Soxhlet apparatus. Around 20 gm of powdered sample content was uniformly packed into a thimble and extracted successively with 250ml of petroleum ether, ethyl acetate and methanol respectively. Extraction were carried out for 24 hours, until the solvent from the siphon tube became colourless. The extract was then taken in a beaker and placed on a hot plate, heated at 30-40°C until all the solvent had been evaporated. Dried extract was kept at 4°C in the refrigerator for future use⁴¹.

2.2 Phytochemical Screening

For all the *D. quercifolia* extracts, preliminary phytochemical analysis was performed according to the standard methods defined by Brain and Turner¹¹ and Evans¹².

2.2.1 Detection Of Alkaloids

Extracts of *D. quercifolia* were dissolved and washed individually in dilute hydrochloric acid. The filtrates were used to test for alkaloid presence. Filtrates have been treated with reagent Mayer. Formation of a precipitated yellow cream indicates the presence of alkaloids.

2.2.2 Detection Of Flavonoids

Sulphuric acid test: Few drops of H₂SO₄ were treated with extracts. Orange colour formation indicates the presence of the flavonoids.

2.2.3 Detection Of Steroids

0.5 g of the extracts were combined with 2ml of acetic anhydride, each with 2ml of H₂SO₄. In some samples the colour change from violet to blue or green suggests the presence of steroids.

2.3 Detection Of Terpenoids

2.3.1 Salkowski's test

0.2 g of the whole plant sample extract was carefully applied and mixed with 2ml of chloroform and concentrated H₂SO₄ (3ml).

2.4 Detection Of Anthraquinones

2.4.1 Borntrager's test

Approximately 0.2 g of the extract was boiled for few minutes in a water bath with 10 percent HCl. It was filtered, and allowed to cool. The filtrate was replaced with equal volume of chloroform. A few drops of 10 per cent NH₃ have been added and heated to the mixture. Pink colour formation indicates the presence of the anthraquinones.

2.4.2 Detection Of Phenols

Ferric chloride test: Extracts were treated with a few drops of a solution of ferric chloride. Bluish black colour formation shows presence of phenol.

2.4.3 Detection Of Saponins

For 5ml of distilled water, about 0.2 g of the extract was shaken. Frothing formation (creamy appearance of small bubbles) indicates the presence of saponins.

2.4.4 Detection Of Tannins

A small amount of extract was mixed with water and placed on a bath of water. The mixture was filtered, and to the filtrate, ferric chloride was added. The presence of tannins is confirmed by the appearance of dark green coloration.

2.4.5 Detection Of Carbohydrates

0.2gm filtrate was boiled on water bath with 0.2ml each of Fehling solution A and Fehling solution B. A red precipitate indicates the presence of sugar.

2.4.6 Detection Of Oils And Resins

Test solution was applied on filter paper. It developed a transparent appearance on the filter paper. It indicates the presence of oils and resins.

2.5 Quantitative Phytochemical Analysis

2.5.1 Estimation Of Alkaloids

Determination of alkaloids was done using standard process¹³. *D. quercifolia* sample of weight 5 g taken in a 250 ml beaker and 200 ml of 10 percent acetic acid in methanol was added and allowed to stand for 4 hours. This was filtered and the extract was concentrated on a water bath to one quarter of the original volume. Concentrated ammonium hydroxide was applied to the extract in drop wise until the precipitation was complete. The entire solution was allowed to settle, and the precipitate was collected, washed and filtered with diluted ammonium hydroxide. The residue is the alkaloid which was measured and dried.

2.5.2 Estimation Of Flavonoids

Ten grams of *D. quercifolia* plant samples have been harvested repeatedly at room temperature with 100ml of 80 per cent aqueous methanol. The mixture was then filtered into a pre-weighed 250ml beaker with a filter paper. The filtrate initially weighed was moved and kept in a water bath and allowed to evaporate till it dried. The flavonoid percentage content was calculated by difference in weight¹⁴.

2.5.3 Synthesis Of Silver Nano-Particles

0.1 M of aqueous solution of silver nitrate (AgNO_3) was prepared and used for the synthesis of silver nanoparticles. 1 ml of methanolic extract of *D. quercifolia* with 9 ml of 1 mM silver nitrate was combined. Methanol leaf extracts from the *D. quercifolia* and silver nitrate solution were used as the control throughout the experiment.¹⁵ About 200 ml of the solution were centrifuged at 18,000 rpm for 25 min. The pellets obtained were processed at 40°C. The supernatant was heated at temperature maintained between 50°C and 95°C. During the heating process, a change in colour of the solution was observed.

2.5.4 Analytical Characterization

In-order to confirm the formation of Silver Nano particles in *D. quercifolia*, absorption studies were performed on a Perkin-Elmer UV-visible spectrophotometer, Lambda 35, Germany) the spectra were taken between 340 nm and 480 nm in different time intervals up to 24 Hrs. The chemical composition of the synthesized silver nanoparticles was analyzed with a FTIR spectrometer (Perkin-Elmer LS-55-Luminescence spectrometer). Fourier transform infrared spectroscopy (FTIR) is just one of the superlative analytical tool that allows functional groups to be identified in the aqueous bark extract and generated SNs. The solutions were dried at 75°C and KBr was used to characterize the pellet method with dried powders in the range 4000-400 cm^{-1} .

2.5.5 Antimicrobial Studies

The antimicrobial activity was tested using the disc diffusion method¹⁶. *In Vitro* antimicrobial activity was screened using Mueller Hinton Agar (MHA) obtained from Hi-media (Mumbai). The MHA plates were prepared by pouring 15 ml of molten media onto sterile petri dishes. The well diffusion agar method¹⁷ done with some modification. The dextrose agar (SDA) of Sabouraud was used for fungal cultivations. The culture medium was inoculated in Sabourauds dextrose broth with the fungal strains suspended separately. A total disc of 8 mm in diameter was kept in the agar and filled with extracts from plants. Generic antibiotics (Fucanazole, concentration 1 mg / ml) have been used as positive control and fungal plates have been incubated for 72 hours at 37°C. The observed diameters of the inhibition zone were measured. The plates were allowed to solidify for 5 minutes, and 0.1 percent inoculum suspension was swabbed evenly and drying allowed for 5 minutes. The 40 mg concentration of the extract was placed on a 6 mm sterile disc. The loaded disk was placed on the medium surface and the extract was allowed to diffuse for 5 minutes, while the plate was held for incubation at 37°C for 24 hours. At the end of the incubation, inhibition zones formed around the disc were measured in mm with a transparent ruler.

2.6 Antioxidant Activity

2.6.1 Evaluation Of Total Antioxidant Capacity

In an Eppendorff tube, an aliquot of 0.1ml of the sample solution containing a sample in DMSO was mixed with 1ml of reagent solution (0.6 M sulphuric acid, 28mM sodium phosphate, and 4mM ammonium molybdate). For 90min, the tubes were capped and incubated at 95°C in a water bath. The samples were cooled to room temperature, and each solution was calibrated at 695 nm for absorption. The total antioxidant power was expressed as an ascorbic acid equivalent in mM¹⁸.

2.6.2 Reducing Power Assay

An Oyaizu¹⁹ method was developed to test the reducing power. With 2.5ml of phosphate buffer (0.2 M, pH 6.6) and 2.5ml of 1 percent potassium ferricyanide, the above sample including extract together with Ascorbic acid solutions was spiked. The mixture was then held for 20min in a water-bath of 50°C. The resulting solution was easily cooled, spiked with 2.5ml of 10 per cent trichloro acetic acid, and centrifuged for 10 min at 3000rpm. The supernatant (5ml) was then Combined with 5ml distilled water and 1ml ferric chloride of 0.1 per cent. After a 10min reaction the absorbance was

measured at 700 nm. The higher the absorbance, the greater the reduction capacity. The power reduction assay was expressed in terms of equal Ascorbic acid per gram of dry weight basis.

3. RESULTS AND DISCUSSION

Extracts of *D. quercifolia* extract was prepared using Methanol, Ethyl acetate, and Petroleum Ether solvents by using Soxhlet extraction method. Compared to other two extracts (Ethyl acetate and Petroleum Ether), higher yield was obtained in methanol extract.

3.1 Phytochemical Analysis Of *Drynaria Quercifolia*

The comprehensive phytochemical study of *D. quercifolia* rhizome extracts of Methanol, Ethyl acetate, and Petroleum Ether was performed. The methanol extract had major constituents such as alkaloids, flavonoids, terpenoids, saponin, and carbohydrates (Table 1). Ethyl acetate extract had revealed flavonoids, terpenoids, oils & resins. Carbohydrate, Oils & Resins were present in the petroleum ether extract. The methanol extract from *D. quercifolia* observed higher phytochemical activity. Recent studies have been observed on the phytochemistry of medicinal plants, especially on components such as leaves and stems, etc^{20,23}. Phytochemicals are a large group of compounds which act as major antioxidants, especially plant phenolics²⁴.

Table 1 Qualitative phytochemical analysis of *D. quercifolia* extract

Phytochemicals	Observations	Extracts		
		Methanol	Ethyl acetate	Pet. Ether
Alkaloids	Cream colour	+	-	-
Mayer's test	Reddish brown solution/ precipitate			
Flavonoids	Yellow orange	+	+	-
H ₂ SO ₄ test	Reddish brown / Orange colour precipitate			
Steroids	Violet to blue or Green colour formation	-	-	-
Liebermann-Burchard test				
Terpenoids	Reddish brown precipitate	+	+	-
Salkowski test				
Arthroquinone	Pink colour	-	-	-
Borntrager's test				
Phenols	Deep blue to Black colour formation	-	-	-
Ferric chloride test	White precipitate			
Saponin	Stable persistent	+	-	-
Tannin	Brownish green / Blue black	-	-	-
Carbohydrates	Yellow / brownish / blue / green colour	+	+	+
Oils & Resins	Filter paper method	-	+	+

Note: “+” indicates presence and “-” indicates absence

The methanol extract of *D. quercifolia* was subjected to phytochemical quantitative analysis. Total alkaloid content and flavonoid content were found to be 0.496g, 0.237 g respectively (Table 2). Alkaloids have shown a cytotoxic

effect on tumor cell lines, emphasizing their role in the prevention of cancer, neurodegenerative diseases, chronic inflammation, etc.²⁵. Medicinal benefits of flavonoids in plants include antioxidant and anti-inflammatory activities^{26,27}.

Table 2 Quantitative Analysis of *D. quercifolia*

S.No.	Phyto constituents	Methanol Extracts (g)
1.	Alkaloids	0.496 ± 0.05
2.	Flavonoids	0.237 ± 0.12

3.2 Antioxidant Activity

With the increased concentration, the antioxidant activity of the extract increased. The total antioxidant activity of *D. quercifolia* methanol rhizome extract was evaluated at various extract concentrations. For increased extract concentrations, the overall antioxidant activity increased. The frequencies were 497.48 µg / ml, 497.75 µg / ml, 506.13 µg / ml and 513.16 µg / ml, respectively (Table 3). Increased absorption can show an increase in energy reduction²⁸, while decreased compound ability can indicate potential antioxidant property. The reduction capacity of Fe⁺³ to Fe⁺²

have already been determined using the technique described (reduction effect)²⁹. A compound's reduced capacity is also a strong indicator of its future antioxidant activity³⁰. There was a comparison with dietary antioxidants, such as ascorbic acid. Extracts with reduced energy prove that they are electron donors and can minimize the oxidized intermediates of lipid peroxidation procedures to function as main and secondary antioxidants³¹. Test was conducted to determine the power reduction of the *D. quercifolia* methanol rhizome extract. With increasing extract concentration, the percentage of decreased power activity increases.

Table 3 Reducing power Assay of *D. quercifolia*

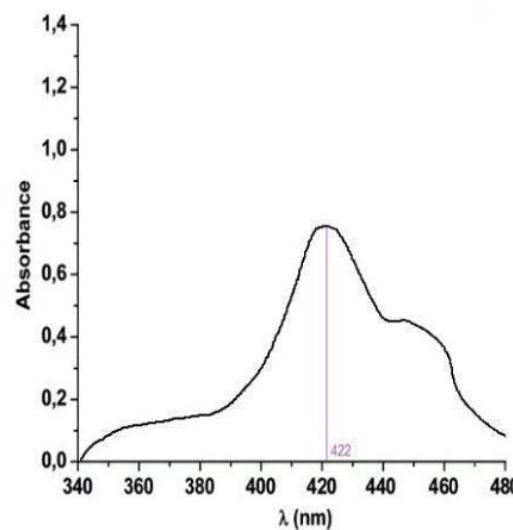
S.no.	Sample (µl)	% IC ₅₀	IC ₅₀
1.	31.25	32.65	

		632.06
2.	250	37.41
3.	500	44.90
4.	750	53.06
5.	1000	62.59

3.3 Antimicrobial Activity

Bacterial strains *B.subtilis*, *S.typhi* and *S.aureus* and fungal strains *C.lunata*, *C.albicans* and *A.niger* were used to study the antimicrobial activity from the synthesized *D. quercifolia* methanol extract. The *in vitro* antimicrobial activity showed that the methanol extract had substantial activity against all the microorganisms studied, especially on high-concentration of *S.typhi*, *S.aureus* and *C.lunata* (60 μ l), but there was activity in the lower concentrations also. The results of antimicrobial activity from the synthesized *D. quercifolia* methanol extract

showed excellent effect on all organisms. The maximum inhibition zone on *C.lunata* (20 mm) was observed in the rhizome extract in methanol synthesized with a concentration of 60 μ l and a minimum inhibition zone observed on *C.albicans* (14 mm) and *A.niger* (14 mm) (Table 4). The antimicrobial activity of nanoparticles also depends on the nanoparticle shapes. This attribute can be further verified by using various formed nanoparticles to study the inhibition of bacterial growth³². According to Pal,³³ the smaller nanoparticles displayed bacterial inhibition with concentration of silver ion I as large as 10^{-3} M.


Table 4 Antimicrobial activity of *D. quercifolia* containing silver nanoparticles

S.No.	Organisms	Control	Methanol		Silver nanoparticles	
			30 μ l	60 μ l	30 μ l	60 μ l
1.	<i>B.subtilis</i> (ATCC No: 39090)	22	09	15	11	16
2.	<i>S.typhi</i> (ATCC No: 6539)	24	09	20	10	18
3.	<i>S.aureus</i> (ATCC No: 6538)	23	08	18	08	17
4.	<i>C.lunata</i> (ATCC No: 34600)	24	11	21	11	20
5.	<i>C.albicans</i> (ATCC No: 10231)	24	12	15	10	14
6.	<i>A.niger</i> (ATCC No: 20611)	22	09	16	11	14

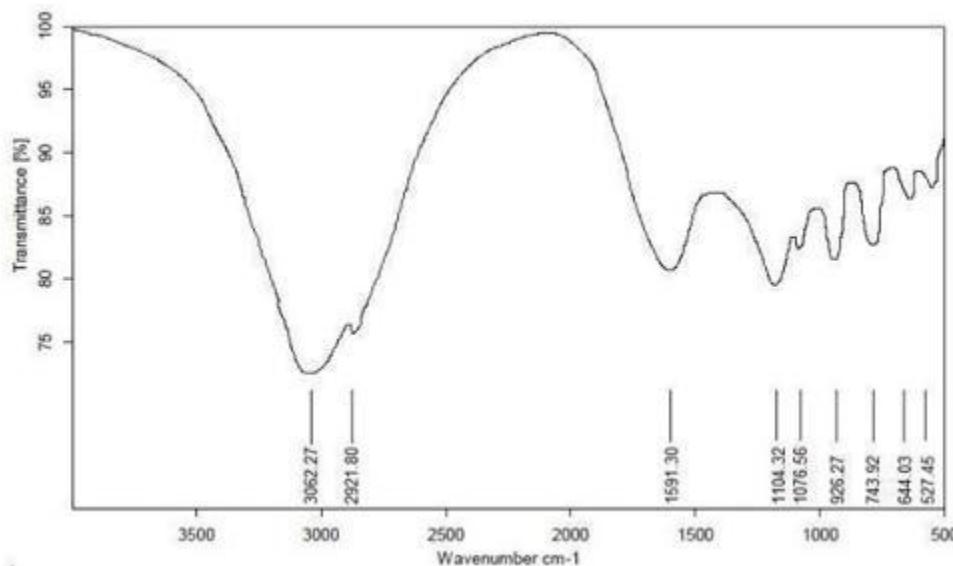
3.4 Spectral Studies Of Silver Nanoparticles

The plasmon surface vibrations of these SNs provided a peak of 420 nm and suggested a reducing AgNO_3 to SNs. It is known that the optical properties of the metal nanoparticles are strongly dependent on their shape and size³⁴. In a 100 ml flask 1 mM silver nitrate solution was prepared. 1 ml of plant extract was combined with a silver nitrate 9 ml of 1 mM.

3.5 Uv-Vis Analysis

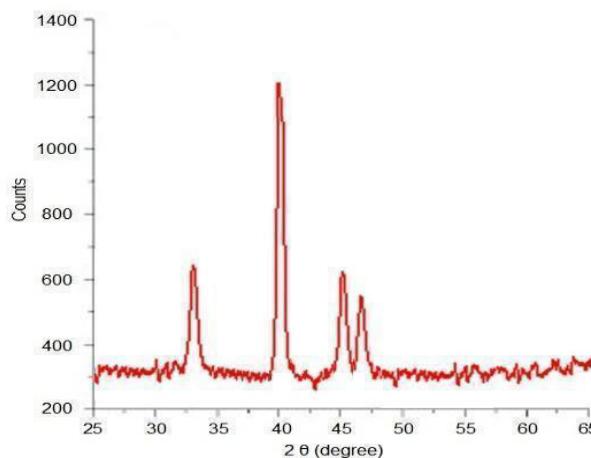
Fig 1 UV-Vis spectroscopy of *D. quercifolia* Synthesized Methanol Extract

Over the entire experiment, the leaf methanol extracts from the *D. quercifolia* and silver nitrate solution were used as a buffer. The final solutions were centrifuged for 25 minutes at 18,000 rpm. The pellets collected had been stored at -40°C. The supernatant was heated at 50°C to 95°C. During the heating process a change in solution colour was observed. The UV-VIS analysis of the silver nanoparticles synthesized using methanol extract of *D. quercifolia* was done. It was seen


that the maximum absorption was obtained at 422 nm in the visible range (Figure 1).

3.6 FTIR Analysis

The FTIR data of the silver nanoparticles revealed that in the =C-H stretch (alkenes) occurred at 3062.27 cm⁻¹, C-H Stretch (alkanes) at 2921.80, N–O asymmetric stretch (nitro


group) at 1591.30 cm⁻¹, C–N stretch (aliphatic amines) at 1104.32 cm⁻¹. C–O (alkoxy) occurred at 1076.56 cm⁻¹, O–H bend (carboxylic acids) at 926.27 cm⁻¹ and ortho

disubstituted aromatic group at 743.92 cm⁻¹. –C≡C–H: C–H bend (alkynes) and C–Br stretch (alkyl halides) occurred at 644.03 cm⁻¹ and 527.45 cm⁻¹ respectively (Figure 2).

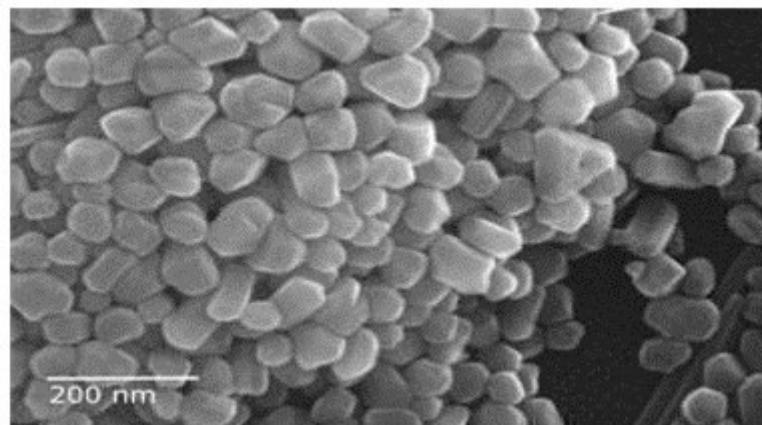
Fig 2 FTIR Analysis of *D. quercifolia* Synthesized Methanol Extract

3.7 XRD Analysis

Fig 3 XRD Analysis of *D. quercifolia* Synthesized Methanol Extract

XRD patterns of ZnO synthesized from leaf extract are shown in Figure 3. The diffraction peaks at 2θ 33.17, 40.62, 45.03 and 47.43 correspond to (211), (111), (200), (103), planes respectively. As indicated, all of the diffraction patterns are well indexed to cubic ZnO structure. The

estimated lattice constants have values $a=b=0.9054 \text{ \AA}$ and $c=6.68 \text{ \AA}$, which are close to the standard values (JCPDS no. 04-0783). According to the XRD data, the mean crystalline sizes (D) of the Silver nanoparticles are calculated using Debye Scherrer's formula.


$$D = \frac{k\lambda}{\beta \cos \theta} \text{ \AA}$$

Where, $\lambda=1.5418 \text{ \AA}$ is the wavelength of the X-ray radiation used. The term θ is the Bragg diffraction angle and β is the full width at half its maximum intensity of diffraction pattern (FWHM) in radian. The obtained sizes are 69.381, 57.82, 92.51 and 126.15 nm.

3.8 SEM Analysis

The SEM analysis of the silver nanoparticles synthesized from methanol extract of *D. quercifolia* reveal that the particles are cubic in structure (Figure 4). Silver nanoparticles (AgNPs)

appear yellowish brown in colour in aqueous medium as a result of surface plasmon vibrations³⁵. As the leaf extracts were added to aqueous silver nitrate solution, the colour of the solution changed from faint light to yellowish brown to reddish brown and finally to colloidal brown indicating AgNP formation. Lalitha³⁶, Simghal³⁷, Philip and Unni³⁸ confirmed the completion of reaction between leaf extract and AgNO₃. The silver nanoparticles were synthesized in both crude extract and methanol extract of plant samples. The colour changes observed indicates the formation of silver nanoparticles^{39,40}.

Fig 4 SEM Analysis of *D. quercifolia* Synthesized Methanol Extract

4. CONCLUSION

The present investigation brings out adequate data on the phytochemical composition in different extracts like methanol, ethyl acetate and petroleum ether. The Methanol extract (Alkaloid, Flavonoid, Terpenoids, Saponin and Carbohydrates) shows higher phytoconstituents when compared to other two extracts. The synthesized silver nanoparticles and its antibacterial activity of methanol extract of *D. quercifolia* were studied. From the study it is concluded that more number of phytochemical constituents are present in methanol extract when compared to other two extracts. As for the antibacterial activity, the methanol extracts show differences in the activity, depending on the concentration of the extract. Synthesized silver nanoparticles show highest antimicrobial activity at higher concentration (60 μ l) against six different organisms tested. The synthesized nanoparticles

7. REFERENCES

- Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? *Environ Int.* 2006;32(8):967-76. doi: [10.1016/j.envint.2006.06.014](https://doi.org/10.1016/j.envint.2006.06.014), PMID 16859745.
- Bharali R, Tabassum J, Azad M. Chemomodulatory effect of *Moringa oleifera*, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice. *Asia Pac J Cancer Preview.* 2003;4:131-9.
- Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect of silver nanoparticles on rice (*Oryza sativa* L. cv. KDM1 105) seed germination and seedling growth. *Ecotoxicol Environ Saf.* 2014;104:302-9. doi: [10.1016/j.ecoenv.2014.03.022](https://doi.org/10.1016/j.ecoenv.2014.03.022), PMID 24726943.
- Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G. Foliar exposure of the crop *Lactuca sativa* to silver nanoparticles: evidence for internalization and changes in Ag speciation. *J Hazard Mater.* 2014;264:98-106. doi: [10.1016/j.jhazmat.2013.10.053](https://doi.org/10.1016/j.jhazmat.2013.10.053), PMID 24275476.
- El-Chaghaby GA, Ahmad AF. Biosynthesis of silver nanoparticles using *Pistacia lentiscus* leaves extract and investigation of their antimicrobial effect. *Orient J Chem.* 2011;27:929-36.
- Momin RK, Kadam VB. Biochemical analysis of leaves of some medicinal plants of genus *Sesbania*. *J Ecobiotechnology.* 2011;3(2):14-6.
- WHO. Basic laboratory methods in medical Parasitology. In: Basic malaria microscopy, Part I. Geneva: World Health Organization; 1991.
- Anonymous. *Una ni pharmacopoeia of India. Part J.* 2007;II. GOI:57.
- Afolayan AJ. Extracts from the shoots of *Arctotis artotoides* inhibit the growth of bacteria and fungi. *Pharm Biol.* 2003;41(1):22-5. doi: [10.1076/phbi.41.1.22.14692](https://doi.org/10.1076/phbi.41.1.22.14692).
- Wu WS, Vallian S, Seto E, Yang WM, Edmondson D, Roth S, Chang KS. *Mol Cell Biol.* 1999;21:2259-68.
- Brain KR, Turner TD. Practical evaluation of phytopharmaceuticals. *Wright Scientechnica*, Bristol. 1975;I:144.
- Evans WC. *Trease and Evans pharmacognosy*. Vol. 14. London: W B Saunders Ltd; 1996. p. 119-59.
- Harborne JB. *Phytochemical methods; A guide to modern techniques of plant analysis*. 2nd ed. London: Chapman & Hall; 1973. p. 270-9.
- Krishnaiah D, Devi T, Bono A, Sarbatly R. Studies on phytochemical constituents of six Malaysian medicinal plants. *J Med Plants Res.* 2009;3(2):67-72.
- Smetana JG, Metzger A, Gettman DC, Campione-Barr N. Disclosure and secrecy in adolescent-parent relationships. *Child Dev.* 2006;77(1):201-17. doi: [10.1111/j.1467-8624.2006.00865.x](https://doi.org/10.1111/j.1467-8624.2006.00865.x), PMID 16460534.
- Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. *Am J Clin Pathol.* 1966;45(4):493-6. doi: [10.1093/ajcp/45.4_ts.493](https://doi.org/10.1093/ajcp/45.4_ts.493), PMID 5325707.
- Perez RD, Sosa RE. Nutritive value of *Clitoria ternatea* for the feeding of growing sheep. [Reunion nacional de investigacion pecuaria]. Vol. 159; 1993.

18. Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonič M, Knez Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. *Food Chem.* 2005;89(2):191-8. doi: [10.1016/j.foodchem.2004.02.025](https://doi.org/10.1016/j.foodchem.2004.02.025).
19. Oyaizu M. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. *Jpn J Nutr Diet.* 1986;44(6):307-15.
20. Balakumar S, Rajan S, Thirunelasundari T, Jeeva S. Antifungal activity of *Aegle marmelos* (L.) Correa (Rutaceae) leaf extract on dermatophytes. *Asian Pac J Trop Biomed.* 2011;1(4):309-12. doi: [10.1016/S2221-1691\(11\)60049-X](https://doi.org/10.1016/S2221-1691(11)60049-X), PMID [23569781](https://pubmed.ncbi.nlm.nih.gov/23569781/).
21. Paul RK, Irudayaraj V, Johnson M, Patric RD. Phytochemical and antibacterial activity of epidermal glands extract of *Christella parasitica* (L.) H. Lev. *Asian Pac J Trop Biomed.* 2011;1(1):8-11. doi: [10.1016/S2221-1691\(11\)60059-2](https://doi.org/10.1016/S2221-1691(11)60059-2), PMID [23569716](https://pubmed.ncbi.nlm.nih.gov/23569716/).
22. Rajan S, Thirunelasundari T, Jeeva S. Anti-enteric bacterial activity and phytochemical analysis of the seed kernel extract of *Mangifera indica* Linnaeus against *Shigella dysenteriae* (Shiga, corrig) Castellani and Chalmers. *Asian Pac J Trop Med.* 2011;4(4):294-300. doi: [10.1016/S1995-7645\(11\)60089-8](https://doi.org/10.1016/S1995-7645(11)60089-8), PMID [21771473](https://pubmed.ncbi.nlm.nih.gov/21771473/).
23. Kala S, Johnson M, Raj I, Bosco D, Jeeva S, Janakiraman N. Preliminary phytochemical analysis of some medicinal plants of South India. *J Nat Conscientia.* 2011;2(5):478-81.
24. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T. Effects of the interaction of tannins with co-existing substances. VI: effects of tannins and related polyphenols on superoxide anion radical and on 1,1-diphenyl-2-picrylhydrazyl radical. *Chem Pharm Bull.* 1989;37(8):2016-21. doi: [10.1248/cpb.37.2016](https://doi.org/10.1248/cpb.37.2016).
25. Lamkadem M, Melhaoui A, Mimouni J, Fontonge R. Cytotoxic effect and electrophysiologic activity of (R)-bgugaine, an alkyl pyrrolidine alkaloid against MRC-5 fibroblasts. *Toxicon.* 2001;39(4):485-90. doi: [10.1016/s0041-0101\(00\)00149-5](https://doi.org/10.1016/s0041-0101(00)00149-5), PMID [11024488](https://pubmed.ncbi.nlm.nih.gov/11024488/).
26. Saxena M, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of medicinal plants. *Journal of Pharmacognosy and Phytochemistry Center for Microbiology and Bio-Technology Research and Training.* Bhopal, India; 2013;8192(1). p. 168-82.
27. Saxena M, Saxena J, Pradhan A. Flavonoids and phenolic acids as antioxidants in plants and human health. *Int J Pharm Sci Rev Res.* 2012;16(2):130-4.
28. Meir S, Kanner J, Akiri B, Philosoph-Hadas SP. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. *J Agric Food Chem.* 1995;43(7):1813-9. doi: [10.1021/jf00055a012](https://doi.org/10.1021/jf00055a012).
29. Yen GC, Duh PD. Scavenging effect of methanolic extracts of peanut hulls on free radical and active oxygen species. *J Agric Food Chem.* 1994;42(3):629-32. doi: [10.1021/jf00039a005](https://doi.org/10.1021/jf00039a005).
30. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by *Bacillus subtilis* IMR-NK1. *J Agric Food Chem.* 2002;50(8):2454-8. doi: [10.1021/jf011369q](https://doi.org/10.1021/jf011369q), PMID [12092913](https://pubmed.ncbi.nlm.nih.gov/12092913/).
31. Chanda S, Dave R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. *Afr J Microbiol Res.* 2009;13:981-96.
32. Mahitha B, Raju BDP, Durgamaha CHN, Lakshmi SNJ. Evaluation of antimicrobial Efficiency of Phyto Fabricated Gold Nanoparticles Using Bacopa Monniera Plant Extract. *Indian J Adv Chem Sci.* 2013;1:94.
33. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium *Escherichia coli*. *Appl Environ Microbiol.* 2007;73(6):1712-20. doi: [10.1128/AEM.02218-06](https://doi.org/10.1128/AEM.02218-06), PMID [17261510](https://pubmed.ncbi.nlm.nih.gov/17261510/).
34. Man WL, Kwong HK, Lam WW, Xiang J, Wong TW, Lam WH, Lau TC. General synthesis of (salen) ruthenium (III) complexes via N-N coupling of (salen) ruthenium (VI) nitrides. *Inorg Chem.* 2007;47:5936-44.
35. Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. *J Saudi Chem Soc.* 2011;15(2):113-20. doi: [10.1016/j.jscs.2010.06.004](https://doi.org/10.1016/j.jscs.2010.06.004).
36. Lalitha A, Subbaya R, Ponmurgan P. Green synthesis of silver nanoparticles from leaf extract *Azhadirachta indica* and to study its anti-bacterial and antioxidant property. *Int J Curr Microbiol Appl Sci.* 2013;2:228-35.
37. Singh G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. Biosynthesis of silver nanoparticles using *Ocimum sanctum* (Tulsi) leaf extract and screening its antimicrobial activity. *J Nanopart Res.* 2011;13(7):2981-8. doi: [10.1007/s11051-010-0193-y](https://doi.org/10.1007/s11051-010-0193-y).
38. Philip D, Unni C. Extra cellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (*Ocimum sanctum*) leaf. *Phys Eng.* 2011;43(7):1318-22.
39. Agrawal B, Mehta A. Antiasthmatic activity of *Moringa oleifera* Lam: A clinical study. *Indian J Pharmacol.* 2008;40(1):28-31. doi: [10.4103/0253-7613.40486](https://doi.org/10.4103/0253-7613.40486), PMID [21264158](https://pubmed.ncbi.nlm.nih.gov/18264158/).
40. Sergeev GB, Shabatina TI. Cryochemistry of nanometals. *Colloids Surf A Physicochem Eng Aspects.* 2008;313-314:18-22. doi: [10.1016/j.colsurfa.2007.04.064](https://doi.org/10.1016/j.colsurfa.2007.04.064).
41. Luque de Castro MD, García-Ayuso LE. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. *Anal Chim Acta.* 1998;369(1-2):1-10. doi: [10.1016/S0003-2670\(98\)00233-5](https://doi.org/10.1016/S0003-2670(98)00233-5).