

Ethno- Medicinal Properties of *Glycyrrhiza Glabra L.* (Licorice): A Mini Review

Queen Saikia^{1*} , Ajit Hazarika² and Jogen Chandra Kalita³

¹Research Scholar, Department of Zoology, Gauhati University, Guwahati, Assam India

²Principal, Tyagbir Hem Baruah College, Jamugurihat Sonitpur, Assam, India

³Professor, Department of Zoology, Gauhati University, Guwahati, Assam India

Abstract: Plants have long been valued for their medicinal properties. The secret to efficient treatment is finding the right herb. The purpose of this review is to provide an updated overview of *Glycyrrhiza glabra L.*, “the guardian of herbs” regarding its traditional uses, phytochemistry, and emphasizing the relevance of a few key characteristics of this plant. This review covers a combination of all aspects from an aphrodisiac point of view that were missed by previous articles. This article is presented to include all of the most recent information on its phytochemical and pharmacological effects, which were investigated using a variety of approaches. The plant can be a suitable candidate to manage the long fought erectile dysfunction in men. The extract and the constituents have been found effective in inducing NO signaling pathway that has beneficial effects in initiation and maintenance of erection. It is an age-old plant that belongs to the family Fabaceae. *G. glabra* (Licorice) has been used in folk medicine all over the world for its ethnomedicinal characteristics, and has historically been recognized as a preventative treatment for stomach ulcers, according to pharmacological research. It comprises a wide range of biological actions, including antibacterial, anti-inflammatory, antiviral, antioxidant, as well as others, for which it has been used to treat a variety of disorders ranging from simple cough to hepatitis, as well as more serious conditions like SARS and cancers. This study presents a critical, and thorough assessment of the current understanding of *G. glabra* composition and therapeutic potential. This article concludes that *G. glabra* is actually a potent herb that can cure almost all illnesses.

Keywords : *Glycyrrhiza glabra L.*, Biological activities, Aphrodisiac, Erectile dysfunction, NO signaling

***Corresponding Author**

Received On 22 November, 2021

Revised On 22 March, 2022

Accepted On 28 March, 2022

Published On 1 May, 2022

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Queen Saikia, Ajit Hazarika and Jogen Chandra Kalita , Ethno- Medicinal Properties of *Glycyrrhiza Glabra L.* (Licorice): A Mini Review.(2022).Int. J. Life Sci. Pharma Res.12(3), P44-50 <http://dx.doi.org/10.22376/ijpbs/lpr.2022.12.3.P44-50>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Glycyrrhiza glabra L. is a well-known medicinal herb from the family Fabaceae (Leguminosae). It is a perennial herb. The name "Glycyrrhiza" comes from two Greek words: *glykys*, which means "sweet," and *rhiza*, which means "root." The genus *Glycyrrhiza* has around 30 species worldwide. However, the *glabra* species is exclusively found in Eurasia, Central and South-Western Asia, and the Mediterranean region (Spain, Italy, Turkey, Iran, Iraq), Central Asia, and China's northwest corner.^{1,2} It has tall pinnate leaves with 9–17 leaflets, with purple to pale bluish flowers, and oblong pod-shaped fruits that contain many seeds with stoloniferous roots. It is traditionally the most extensively used herb in Ayurveda, both as a medicine and as a flavoring agent to conceal the unpleasant taste of other medications. This plant's medicinal properties have been known since 500 BC, and it is renowned as the "guardian of herbs."³ The presence of glycyrrhizin, a bioactive compound of *G. glabra*, makes it 50 times sweeter than sucrose. For its sweetness, it is known by many different local names, such as licorice, sweet wood, mulaithi, yasthimadhu, kanzoh, and ganca. The roots and rhizomes are the crucial attributes of this plant's medicinal value.⁴

I.2. Traditional Uses

Licorice is a versatile medicine, and its compounds have been used to treat throat and bronchial infections for over 2,000 years.⁵ The dried rhizome and root of licorice were used as expectorants and carminatives in ancient Egypt, China, Greece, India, and Rome. Traditionally, licorice has been recommended as a prophylactic agent for gastrointestinal ulcers. It is also effective against other ailments such as respiratory problems, epilepsy, fever, sexual disorders, paralysis, rheumatism, leucorrhea, malaria, hemorrhagic diseases, heartburn, paralysis, and jaundice.^{5,6} It is also used as a contraceptive, laxative, anti-asthmatic, and antiviral agent. *Glycyrrhiza* roots possess demulcent and purgative properties, making them useful for the treatment of coughs. It can help with anemia, gout, sore throat, tonsillitis, flatulence, sexual debility, hyperplasia, fever, skin disorders, and swellings. It is a mild laxative that helps calm and tones the mucous membranes while also relieving muscle spasms.⁷ Licorice extracts have been shown in clinical investigations to be more effective than well-known synthetic substitutes. It is high in flavonoids and is being studied as an antioxidant, cancer preventive, botanical booster, and immunological function booster, including interferon production.⁸ Acidity, leucorrhoea, hemorrhage, jaundice, hiccup, hoarseness, bronchitis, vitiated vatadosha disorders, gastralgia, diarrhea, fever with delirium, and anuria are among conditions that licorice can help with.⁹ It is a key component of therapeutic oils for rheumatism, hemorrhagic illnesses, epilepsy, and paralysis.¹⁰ According to research conducted over several years, glycyrrhizin breaks down in the gut and has an anti-inflammatory action similar to hydrocortisone and other corticosteroid hormones. It is a great tonic and a demulcent for genitourinary catarrh.¹¹ It is used in the confectionery and tobacco industries. The root of this plant contains black material. To extract the black material present in licorice, the plant's roots are roasted. After that, the materials are dried and sold. Licorice is also employed as a foaming ingredient in beers and fire extinguishers. The extracts from this plant are used to flavor beer, soft drinks, and pharmaceutical items.¹⁰

I.3. Phytochemistry

The chemical elements present in the roots of this plant are primarily responsible for its medicinal properties. The phytochemical screening of licorice roots generated a large number of different components. The water-soluble, physiologically active compound makes up 40–50 percent of *G. glabra*'s total dry material weight. Starches (30%), pectins, polysaccharides, simple sugars, gums, mucilage (Rhizome), amino acids, triterpene saponin, flavonoids, mineral salts, bitters, essential oil, fat, asparagines, estrogen, tannins, glycosides, protein, resins, sterols, volatile oils, and various other substances are all found in this complex.¹² Glycyrrhizin and its isomer glycyrrhetic acid are the main components of *G. glabra*, accounting for 10–25% of the licorice root extract. The tribasic acid glycyrrhizin can be converted into a variety of salts. It is present in the form of calcium and potassium salts in licorice root.⁷ Licorice extracts are used to make the ammoniated salt of glycyrrhizin. The Food Chemicals Codex has developed the standards for this salt form. This salt is utilized in the food industry as a taste enhancer and flavoring agent.^{13–15} Among Asian traditional therapies, glycyrrhizin is the most often used anti-inflammatory agent on neutrophil functions, including ROS (reactive oxygen species) generation. Glycyrrhizin thus finds application as a free radical quencher as well as a lipid peroxidation chain reaction blocker. Glycyrrhizin demonstrated chemopreventive, antioxidant, and antiproliferative effects in an animal model.¹⁶ Flavonoids present in licorice roots include liquiritin, rhamnoliquiritigenin, licoxyranocoumarin, glisoflavone, licoarylcoumarin, and coumarin-GU-12.¹⁷ Dry roots yield five novel flavonoids: glucoliquiritinapioside, shinflavanone, shinpterocarpin, prenyllicoflavone A, and 1-methoxyphaseolin.¹⁸ The plant's flavonoid concentration gives licorice its yellow color. Glabridin and hispaglabridins A and B are isoflavones with significant antioxidant properties. Glabridin and glabrene both exhibit estrogen-like properties.¹⁹ It also contains four isoprenoid-substituted phenolic compounds (Isoangustone A, semilicoisoflavone B, licoriphenone, and 1-methoxyficifolinol), as well as kanzonol R (prenylatedisoflavan derivative) and several volatile components (pentanol, tetramethylpyrazine, hexanol, terpinen-4-ol, Propionic acid, benzoic acid, furfuraldehyde, 2,3 butanediol, furfurylformate, maltol, 1-methyl-2-formylpyrrole, trimethylpyrazine).^{13,14,20} The HPLC examination of the methanolic extract of licorice revealed the presence of several organic acids such as acetic, propanoic, fumaric, malic, butyric, and tartaric acids. Raw licorice and tea licorice infusions also contain a variety of amino acids, minerals, proteins, lipids, fibre, silica, and carbs.²¹

I.4. Pharmacological Activities

Licorice and its derivative compounds have a wide range of pharmacological properties due to their different modes of action. *Glycyrrhiza* is a known inhibitor of 11 beta-hydroxysteroid dehydrogenases (11-HSD2) that prevents cortisol inactivation and hence increases mineralocorticoid effectiveness, or pseudohyperaldosteronism...²² Glycyrrhetic acid has an inhibitory effect on 11HSD2 even at low serum concentrations, but its binding to the mineralocorticoid receptor takes place later after it has accumulated in the blood. Calo et al.²³ used MNL (mononuclear leukocyte) to look into the inflammatory effects of glycyrrhetic acid and aldosterone. They

discovered that incubating mononuclear cells with glycyrrhetic acid boosted the expression of two inflammation indicators, PAI-1 and p22phox and that this effect was reversed when they added canrenone to the mixture (canrenone is an aldosterone antagonist). Elevated water and salt reabsorption over potassium excretion occur as a result of increased mineralocorticoid activity, resulting in high blood pressure and the development of edema.²⁴ Glycyrrhetic acid and glycyrrhizin, for example, have been shown to inhibit the proliferation of numerous RNA and DNA viruses, including herpes simplex, herpes zoster, and human immunodeficiency virus. They also affect aldosterone hepatic metabolism and block 5-reductase activity, which is responsible for the symptoms of well-known pseudoaldosterone.²⁴

1.4.1. Hepatoprotective Activity

G. glabra is used to treat disorders such as hepatitis B, hepatitis C, liver fibrosis, and cirrhosis.²⁵ *G. glabra* has been proven in bile duct ligation-induced rats to reduce inflammation, collagen deposition, and hydroxyproline levels, as well as control hepatic fibrous tissue hyperplasia.²⁶ An aqueous extract of licorice is found effective in reducing cadmium-induced serum transaminases. It also reduces liver cell edema and necrosis.²⁷ As observed in hepatic mice, experimentally induced plasma ALT is effectively inhibited by flavonoids present in licorice. It might imply that those flavonoids could be used to treat fatty liver disease.²⁸

1.4.2. Anti-Inflammatory Activity

Licorice and its phytochemical constituent, glycyrrhetic acid (GA), exert an anti-inflammatory effect through various pathways. GA suppresses glucocorticoid metabolism by inhibiting 11b-HSD (11 beta hydroxysteroid hydroxylase).²⁹ Because GA is a strong inhibitor of 11b-HSD, it causes a buildup of glucocorticoids with anti-inflammatory properties.³⁰ When GA or glycyrrhizin is administered orally, the results are confirmed. Because of its powerful anti-inflammatory properties, *G. glabra* is used to treat renal and hepatic disorders.³¹ The researchers found that glycyrrhizin inhibits the formation of liver granulomas and the production of inflammatory cytokines. Whereas Wang et al.³² found that it has anti-inflammatory effects on endometriosis. In the in vitro study, glycyrrhizin inhibits neutrophils from producing reactive oxygen species, which are a potent mediator of tissue inflammation.^{33,34} Glycyrrhizin has been demonstrated to improve dendritic cell activity, increase allogeneic T cell proliferation and production of IFN-gamma and IL-10, and decrease IL-4 production.³⁴

1.4.3. Gastrointestinal Tract Effect

The methanolic extract of the root of *G. glabra* has potent antiulcer effect. The antiulcer effect may be exerted by suppressing the endogenous stomach acid output provoked by acetylcholine and histamine.³⁵ It has mucosal safeguarding properties because of which secretin could be a potential mediator of licorice's antiulcer effects.³⁶ In an HCl/ethanol-induced ulcer, the hydroalcoholic extract of *G. glabra* (50-200 mg/kg) was found to have an antiulcerogenic effect that could be linked to an elevation in gastric mucosal defense factors.³⁷ Liquiritigenin, one of the active components in licorice, was found to have the strongest antispasmodic effect.³⁸

1.4.4. Endocrine Gland Effect

For menopausal women, licorice and its extracts are widely accessible as dietary phytoestrogens, as a natural alternative to hormone replacement therapy to relieve menopausal symptoms. In competitive radiometric binding tests, liquiritigenin and ILG exhibit similar affinities to ER, with IC50 values of 7.5 and 7.8 M, respectively. ILG binds to ER with an IC50 of 16 M, whereas liquiritigenin binds to ER with a weak affinity (200 M).²⁴ However, a study found that licorice-derived components such as liquiritigenin and glyasperin C, shows a more than a 10-fold preference for ER β .³⁹ This finding might imply that licorice extract could prove to be beneficial to menopausal women due to moderate estrogenic activity and ER β selectivity.

1.4.5. Effect on Cardiovascular System

In Chinese medicine, Zhigancao decoction (roasted licorice decoction), which contains licorice, is a traditional and common prescription for practically any type of arrhythmia. In clinic participants with premature ventricular contractions, Zhigancao decoction appears to have beneficial effects on enhancing the total effective rate and treating several ventricular premature beats.⁴⁰ Roasted licorice extract prevents ventricular fibrillation, lowers heart rate, and extends the Q-T interval in electrocardiogram data.⁴¹ Strophanthin G, aconitine, digoxin, and calcium chloride have all been shown to cause heart rhythm abnormalities, with roasted licorice injection being able to counteract this.⁴² Flavones and triterpenes, which are active components of licorice, have been studied for their ability to protect the cardiovascular system and prevent endothelial dysfunction.^{43,44}

1.4.6. Antiviral Activity

Antiviral activity of *G. glabra* extracts has been demonstrated against a number of viruses, including herpes simplex, varicella-zoster, Japanese encephalitis, influenza, and vesicular stomatitis virus.⁴⁵ Glycyrrhizin and 18 glycyrrhetic acids, two triterpenoids, have been found to have antiviral properties in several studies.⁴⁵ These compounds can inhibit virus gene expression and replication, diminish HMBG1 binding to DNA, and lower forces of attraction and stress.^{45,46} They can also increase host cell activity by limiting the breakdown of the IB enzyme, which is necessary for the amplification of the physiological inflammatory process, increasing T lymphocyte multiplication, and suppressing host cell apoptosis.⁴⁵ Nonetheless, Cinatl et al.⁴⁷ found that adding these active principles during the adsorption stage is less efficient than adding them after virus adsorption. Glycyrrhizin has strong immune-stimulating properties and causes a synergistic effect with the duck hepatitis virus (DHV) vaccine. Thus, glycyrrhizin treatment, either alone or in combination with the DHV vaccine, may result in immune activation and antiviral activity against DHV.⁴⁸ Glycyrrhizin boosts the immune system of mice in the presence of HSV-1 infection.⁴⁹ Furthermore, glycyrrhizic acid was found to have a noticeable effect on the Kaposi sarcoma-associated herpesvirus (KSHV). After all other therapies have failed; glycyrrhizic acid was reported efficacious in terminating the persistent infection of KSHV.⁷ Almost for 20 years, intravenous glycyrrhizin has been used to relieve severe hepatitis in Japan.⁵⁰ It also prevents hepatocellular carcinoma in chronic hepatitis C patients.⁵¹ Glycyrrhizin can also be administered

intravenously to treat autoimmune hepatitis.⁵² Antiviral activities of Ribavirin, 6 – Azauridine, Pyrazofurin, Mycophenolic acid, and glycyrrhizin were recently tested against two clinical isolates of SARS virus (FFM -1 and FFM -2) from SARS patients admitted to Frankfurt University's clinical center, and it was discovered that glycyrrhizin was effective in controlling viral replication.⁴⁷

1.4.7. Antimicrobial Activity

G. glabra extracts and its constituent compounds possess antimicrobial properties. Secondary metabolites, including saponins, alkaloids, and flavonoids, are responsible for the antibacterial activity.^{45,53} Glabridin, Glabrol, Glabrene, Hispaglabridin A, hispaglabridin B, methylglabridin, and 3-hydroxyglabrol, all identified from *G. glabra*, are the active compound having antimicrobial activity.⁴⁵ Gupta et al.⁵⁴ suggest a decrease in bacterial gene expression, inhibition of bacterial growth, and a reduction in bacterial toxin production with the use of *G. glabra*. Licochalcone E found in *G. glabra* could be employed in the chemical synthesis of new anti-*Staphylococcus aureus* compounds, reducing toxin production in methicillin-resistant *S. aureus* and MRSA.⁴⁵ The antibacterial activity of *G. glabra* against *Mycobacterium tuberculosis*, was due to glabridin, which was reported to be the main component for this activity.⁵⁵ Licoisoflavone and licochalcone A were previously found as antitubercular phenolic compounds.⁵⁶ Because liquorice extracts are high in liquiritigenin, liquiritin, licochalcone A, and glabridin, *Candida albicans* is vulnerable to them.⁵⁷⁻⁵⁹ Nonetheless, according to Karahan et al.⁶⁰, environmental conditions can influence antibacterial action by affecting chemical component concentrations and biological activity.

1.4.8. Sedative Activity

Anesthetics, neuroleptics, anxiolytics, and anticonvulsant drugs all target GABA receptors since GABA is the most common inhibitory neurotransmitter in the central nervous system.⁵⁵ *G. glabra* works as a GABA receptor modulator, causing sedative and anxiolytic effects.⁶¹ GABA responses in acutely isolated dorsal raphe neurons of a rat were used to assess Glabridin. Glabridin potentiated GABA-induced responses by positive regulation of GABA receptors, resulting in sedative and hypnotic effects.⁶² Glabridin, which can pass the blood-brain barrier, may also contribute to the hypnotic effect.⁵⁵

1.4.9. Antidepressive Effect

Licorice extract is a useful remedy for depression. Licorice extract has been found in recent research to have antidepressant effects in mice during forced swim tests (FST) and tail suspension tests, TST.⁶³ In the FST model, mice were forced to swim in a small space and were induced to exhibit a typical immobility behavior. This condition reveals a depressed state. The TST model also causes a state of immobility that is said to mimic human depression. Both models are commonly used to evaluate antidepressant medications. The exact processes through which licorice extract exerted this effect are unknown. The extract may, however, interact with 1 adrenoceptors and dopamine D2 receptors, boosting norepinephrine and dopamine levels in the mice brain.⁶³

1.4.10. Neuro-Protective Activity

Alzheimer's disease (AD) is a neurodegenerative disease caused by a genetic mutation that causes amnesia and cognitive impairments such as depression, apathy, and psychosis, all of which are detrimental to daily living.⁶⁴ Different *Glycyrrhiza* species were studied for their clinical effectiveness against neurodegenerative disorders. The study revealed licorice extracts were beneficial against degenerative disorders like tautopathies and Alzheimer's disease. This property is expected because of the antioxidant property of licorice.⁶⁵ 1-methyl-4-phenylpyridinium, a neurotoxic substance that interferes with mitochondrial oxidative phosphorylation, causes ROS generation, cytotoxicity, and glutathione downregulation (GSH), a critical component of the brain's antioxidative system, which is inhibited by glycyrrhizin and *G. inflata* extract.^{66,67} Increased oxidative stress in dementia is mostly caused by decreasing GSH levels.⁶⁸ Isoliquiritigenin's influence on mitochondrial activity may be linked to the effect of *glycyrrhiza* extract on oxidative stress.⁶⁹

1.4.11. Anti-Cancer Activity

Licorice extract is utilized in herbal formulations to treat malignancies such as prostate cancer. In tumor cell lines, this extract triggered Bcl2 phosphorylation and cell cycle arrest, similar to the therapeutically utilized anti-microtubule drug paclitaxel.⁷⁰ It was also discovered to trigger apoptosis in human monoblastic leukemia U937 cells. Lico coumarone, a chemical with antioxidant and antibacterial properties, was found.⁷¹ The transcription factor Activator Protein 1 (API) is present in the nucleus. Blocking AP-1 activity caused by the tumor promoter could be employed to stop the induced cellular transformation. Inhibited TPA induced AP-1 activity in TPA treated cells, but glycyrrhizin induced API activity in untreated cells.⁷² This mechanism could be used as a paradigm for the creation of new cancer-fighting chemoprotective agents.

1.4.12. Aphrodisiac Activity

Aphrodisiac property of *G. glabra* is worth mentioning. This plant extract has been shown to be effective in treating male sexual problems. The spray-dried amorphous solid dispersion of tadalafil using glycyrrhizin was assessed for its efficacy towards male rats and found a significantly improved aphrodisiac activity of tadalafil. Sexual behavior was found to be increased compared to the control counterpart. Tadalafil, which is insoluble in water, was found to be significantly soluble using this technique.⁷³ There are also observations that *G. glabra* aqueous extract could significantly enhance mount frequency and intromission frequency in male rats. The extract could reduce mount latency and intromission latency.⁷⁴

1.4.13. Expectorant Activity

The use of liquorice powder and extract to treat sore throats, coughs, and bronchial catarrh was found to be effective. The ethanolic extract of *G. glabra* has been shown to be an effective candidate for the treatment of cough. The experiment was carried out in albino mice by experimentally inducing cough using sulphur dioxide gas.⁷⁵

2. CONCLUSION

The medicinal properties of *Glycyrrhiza glabra*, as well as the phytochemical substances derived from the plant, are discussed in this paper. Glycyrrhizic acid, 18-glycyrrhetic acid, glycyrrhizin, and licochalcones are the main chemicals found in *G. glabra* preparations. This plant species is known for antibacterial, antiviral, antitussive, immunostimulant, antioxidant, anti-inflammatory, and anticancer activities. They also possess anti-inflammatory, and antispasmodic properties. Apart from these properties, *G. glabra* is well established as natural aphrodisiac. Consumption of the dried roots, extract, or the constituent compounds of this plant could escalate sexual wellness. Consumption of this plant could also help cure cough. More research is needed into the mechanisms of action of extracts and compounds, as well as the evaluation of effective doses, interactions, and side effects.

6. REFERENCES

1. Hayashi H, Sudo H. Economic importance of licorice. *Plant Biotechnology*. 2009; 26(1):101-4.
2. Shah SL, Wahid F, Khan N, Farooq U, Shah AJ, Tareen S, Ahmad F, Khan T. Inhibitory effects of *Glycyrrhiza glabra* and its major constituent glycyrrhizin on inflammation-associated corneal neovascularization. *Evidence-Based Complementary and Alternative Medicine*. 2018.
3. Ody, P. Complete Guide to Medicinal Herbs. Dorling Kindersley, London, 2000. pp. 75.
4. Yu JY, Ha JY, Kim KM, Jung YS, Jung JC, Oh S. Anti-inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. *Molecules*. 2015 ; 20(7):13041-54.
5. Armanini D, Fiore C, Mattarello MJ, Bielenberg J, Palermo M. History of the endocrine effects of licorice. *Experimental and clinical endocrinology & diabetes*. 2002; 110(06):257-61.
6. El-Saber Batiha G, Magdy Beshbishi A, El-Mleeh A, M Abdel-Daim M, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of *Glycyrrhiza glabra* L.(Fabaceae). *Biomolecules*. 2020 ;10(3):352.
7. Damle M. *Glycyrrhiza glabra* (Licorice)-a potent medicinal herb. *International Journal of Herbal Medicine*. 2014;2(2):132-6.
8. Xiaoying W, Han Z, Yu W. *Glycyrrhizaglabra* (Licorice): ethnobotany and health benefits. In *Sustained energy for enhanced human functions and activity*. Academic Press. 2017; 231-250.
9. Sheth A. *The Herbs of India*. Edn 1, Vol 2, Hi Scan Pvt Ltd, Gujrat, 2005; 566.
10. Kaur R, Kaur H, Dhindsa AS. *Glycyrrhiza glabra*: a phytopharmacological review. *International journal of pharmaceutical Sciences and Research*. 2013; 4(7):2470.
11. Nadkarni KM. *Indian Materia Medica*, Popular Prakashan Pvt. Ltd., Mumbai, 1976; 582-4.
12. Hoffmann D. *The New Holistic Herbal*, Edn 2, Element, Shaftesbury, 1990.
13. Biondi DM, Rocco C, Ruberto G. New Dihydrostilbene Derivatives from the Leaves of *Glycyrrhiza glabra* and Evaluation of Their Antioxidant Activity. *Journal of natural products*. 2003 ; 66(4):477-80.
14. Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (*Glycyrrhiza* sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. *Regulatory Toxicology and Pharmacology*. 2006 ; 46(3):167-92.
15. Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MB. Liquorice (*Glycyrrhiza glabra*): A phytochemical and pharmacological review. *Phytotherapy research*. 2018 ; 32(12):2323-39.
16. Rahman S, Sultana S. Glycyrrhizin exhibits potential chemopreventive activity on 12-O-tetradecanoyl phorbol-13-acetate-induced cutaneous oxidative stress and tumor promotion in Swiss albino mice. *Journal of Enzyme Inhibition and Medicinal Chemistry*. 2007;22(3):363-9.
17. Lohar AV, Wankhade AM, Faisal M, Jagtap A. A review on *glycyrrhiza glabra* linn (liquorice)-an excellent medicinal plant. *European Journal of Biomedical*. 2020; 7(7):330-4.
18. The wealth of India. A Dictionary of Indian Raw Materials and Industrial Products, First supplement series, National Institute of Sciences Communication and Information Resources, Vol 3, CSIR, New Delhi, D-1, 2005; 195-198.
19. Vaya J, Belinky PA, Aviram M. Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. *Free Radical Biology and Medicine*. 1997; 23(2):302-13.
20. Tamir S, Eizenberg M, Somjen D, Israel S, Vaya J. Estrogen-like activity of glabrene and other constituents isolated from licorice root. *The Journal of steroid biochemistry and molecular biology*. 2001; 78(3):291-8.
21. Badr, S. E., Sakr, D. M., Mahfouz, S. A., Abdelfattah, M. S. 2013. Licorice (*Glycyrrhizaglabra* L.): Chemical composition and biological impacts. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*. 2013 4(3), 606-621.
22. Sabbadin C, Bordin L, Donà G, Manso J, Avruscio G, Armanini D. Licorice: From pseudohyperaldosteronism to therapeutic uses. *Frontiers in endocrinology*. 2019 ; 10:484.
23. Calò LA, Zaghetto F, Pagnin E, Davis PA, De Mozzi P, Sartorato P, Martire G, Fiore C, Armanini D. Effect of aldosterone and glycyrrhetic acid on the protein

3. AUTHORS CONTRIBUTION STATEMENT

Queen Saikia gathered the data and wrote the manuscript, Ajit Hazarika and Jogen C kalita aided in writing, conceptualized and reviewed the manuscript. All authors contributed to the final manuscript.

4. FUNDING ACKNOWLEDGEMENT

The authors received no funding for this work.

5. CONFLICT OF INTEREST

Conflict of interest declared none.

expression of PAI-1 and p22phox in human mononuclear leukocytes. *The Journal of Clinical Endocrinology & Metabolism*. 2004; 89(4):1973-6.

24. Omar HR, Komarova I, El-Ghonemi M, Fathy A, Rashad R, Abdelmalak HD, Yerramadha MR, Ali Y, Helal E, Camporesi EM. Licorice abuse: time to send a warning message. *Therapeutic advances in endocrinology and metabolism*. 2012 Aug; 3(4):125-38.

25. Eisenburg J. Treatment of chronic hepatitis B. Part 2: Effect of glycyrrhizic acid on the course of illness. *Fortschritte der Medizin*. 1992; 110(21):395-8.

26. Zheng YF, Wei JH, Fang SQ, Tang YP, Cheng HB, Wang TL, Li CY, Peng GP. Hepatoprotective triterpene saponins from the roots of *Glycyrrhiza inflata*. *Molecules*. 2015; 20(4):6273-83.

27. Li W, Asada Y, Yoshikawa T. Flavonoid constituents from *Glycyrrhiza glabra* hairy root cultures. *Phytochemistry*. 2000; 55(5):447-56.

28. Hajiaghamohammadi AA, Ziae A, Samimi R. The efficacy of licorice root extract in decreasing transaminase activities in non-alcoholic fatty liver disease: A randomized controlled clinical trial. *Phytotherapy Research*. 2012; 26(9):1381-4.

29. Teelucksingh S, Mackie AD, Burt D, Edwards CR, McIntyre MA, Brett L. Potentiation of hydrocortisone activity in skin by glycyrrhetic acid. *The Lancet*. 1990; 335(8697):1060-3.

30. Walker BR, Edwards CR. 11 β -Hydroxysteroid dehydrogenase and enzyme-mediated receptor protection: Life after liquorice?. *Clinical endocrinology*. 1991; 95(4):281-9.

31. Xiao Y, Xu J, Mao C, Jin M, Wu Q, Zou J, Gu Q, Zhang Y, Zhang Y. 18 β -glycyrrhetic acid ameliorates acute *Propionibacterium acnes*-induced liver injury through inhibition of macrophage inflammatory protein-1 α . *Journal of Biological Chemistry*. 2010; 285(2):1128-37.

32. Wang XR, Hao HG, Chu L. Glycyrrhizin inhibits LPS-induced inflammatory mediator production in endometrial epithelial cells. *Microbial pathogenesis*. 2017; 109:110-3.

33. Akamatsu H, Komura J, Asada Y, Niwa Y. Mechanism of anti-inflammatory action of glycyrrhizin: effect on neutrophil functions including reactive oxygen species generation. *Planta medica*. 1991; 57(02):119-21.

34. Bordbar N, Karimi MH, Amirghofran Z. The effect of glycyrrhizin on maturation and T cell stimulating activity of dendritic cells. *Cellular Immunology*. 2012; 280(1):44-9.

35. Ishii Y, Fujii Y. Effects of FM100, a fraction of licorice root, on serum gastrin concentration in rats and dogs. *The Japanese Journal of Pharmacology*. 1982; 32(1):23-7.

36. Takeuchi T, Shiratori K, Watanabe SI, Chang JH, Moriyoshi Y, Shimizu K. Secretin as a potential mediator of antiulcer actions of mucosal protective agents. *Journal of clinical gastroenterology*. 1991; 13:S83-7.

37. Jalilzadeh-Amin G, Najarnezhad V, Anassori E, Mostafavi M, Keshipour H. Antiulcer properties of *Glycyrrhiza glabra* L. extract on experimental models of gastric ulcer in mice. *Iranian journal of pharmaceutical research: IJPR*. 2015; 14(4):1163.

38. Nagai H, Yamamoto Y, Sato Y, Akao T, Tani T. Pharmaceutical evaluation of cultivated *Glycyrrhiza uralensis* roots in comparison of their antispasmodic activity and glycy coumarin contents with those of licorice. *Biological and Pharmaceutical Bulletin*. 2006; 29(12):2442-5.

39. Hajirahimkhan A, Simmler C, Yuan Y, Anderson JR, Chen SN, Nikolić D, Dietz BM, Pauli GF, van Breemen RB, Bolton JL. Evaluation of estrogenic activity of licorice species in comparison with hops used in botanicals for menopausal symptoms. *PloS one*. 2013; 8(7):e67947.

40. Liu W, Xiong X, Feng B, Yuan R, Chu F, Liu H. Classic herbal formula Zhigancao Decoction for the treatment of premature ventricular contractions (PVCs): a systematic review of randomized controlled trials. *Complementary therapies in medicine*. 2015; 23(1):100-15.

41. Liu X, Jing L. Study of roasted liquorice decoction on arrhythmia. *Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica*. 2007; 32(23):2471-3.

42. Chen R, Yuan C. Experimental anti-arrhythmic effects of zhigancao (prepared licorice) injection. *Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica*. 1991; 16(10):617-9.

43. Feng L, Zhu MM, Zhang MH, Wang RS, Tan XB, Song J, Ding SM, Jia XB, Hu SY. Protection of glycyrrhizic acid against AGEs-induced endothelial dysfunction through inhibiting RAGE/NF- κ B pathway activation in human umbilical vein endothelial cells. *Journal of ethnopharmacology*. 2013; 148(1):27-36.

44. Zhou R, Xu L, Ye M, Liao M, Du H, Chen H. Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways. *Hormone and metabolic research*. 2014; 46(11):753-60.

45. Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. *Acta Pharmaceutica Sinica B*. 2015; 5(4):310-5.

46. Anagha K, Manasi D, Priya L, Meera M. Scope of *Glycyrrhiza glabra* (Yashtimadhu) as an antiviral agent: a review. *International Journal of Current Microbiology and Applied Sciences*. 2014; 3(12):657-65.

47. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. *The Lancet*. 2003; 361(9374):2045-6.

48. Soufy H, Yassein S, Ahmed AR, Khodier MH, Kutkat MA, Nasr SM, Okda FA. Antiviral and immune stimulant activities of glycyrrhizin against duck hepatitis virus. *African Journal of Traditional, Complementary and Alternative Medicines*. 2012; 9(3):389-95.

49. Sekizawa T, Yanagi K, Itoyama Y. Glycyrrhizin increases survival of mice with herpes simplex encephalitis. *Acta virologica*. 2001; 45(1):51-4.

50. van Rossum TG, Vulto AG, Hop WC, Schalm SW. Pharmacokinetics of intravenous glycyrrhizin after single and multiple doses in patients with chronic hepatitis C infection. *Clinical therapeutics*. 1999; 21(12):2080-90.

51. Rossum TV, Man RD. Glycyrrhizin as a potential treatment for chronic hepatitis C. *Alimentary pharmacology & therapeutics*. 1998; 12(3):199-205.

52. Yasui S, Fujiwara K, Tawada A, Fukuda Y, Nakano M, Yokosuka O. Efficacy of intravenous glycyrrhizin in the early stage of acute onset autoimmune hepatitis. *Digestive diseases and sciences*. 2011 ; 56(12):3638-47.

53. Hayashi H, Fukui H, Tabata M. Examination of triterpenoids produced by callus and cell suspension cultures of *Glycyrrhiza glabra*. *Plant cell reports*. 1988; 7(7):508-11.

54. Gupta VK, Fatima A, Faridi U, Negi AS, Shanker K, Kumar JK, Rahuva N, Luqman S, Sisodia BS, Saikia D, Darokar MP. Antimicrobial potential of *Glycyrrhiza glabra* roots. *Journal of ethnopharmacology*. 2008 ; 116(2):377-80.

55. Simmler C, Pauli GF, Chen SN. Phytochemistry and biological properties of glabridin. *Fitoterapia*. 2013 ; 90:160-84.

56. Chakotiya AS, Tanwar A, Srivastava P, Narula A, Sharma RK. Effect of aquo-alcoholic extract of *Glycyrrhiza glabra* against *Pseudomonas aeruginosa* in Mice Lung Infection Model. *Biomedicine & pharmacotherapy*. 2017; 90:171-8.

57. Chandra JH, Gunasekaran H. Screening of phytochemical, antimicrobial and antioxidant activity of glycyrrhiz glabra root extract. *Journal of Environmental Biology*. 2017; 38(1):161.

58. Lee JY, Lee JH, Park JH, Kim SY, Choi JY, Lee SH, Kim YS, Kang SS, Jang EC, Han Y. Liquiritigenin, a licorice flavonoid, helps mice resist disseminated candidiasis due to *Candida albicans* by Th1 immune response, whereas liquiritin, its glycoside form, does not. *International immunopharmacology*. 2009; 9(5):632-8.

59. Singh V, Pal A, Darokar MP. A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant *Staphylococcus aureus*. *Free Radical Biology and Medicine*. 2015; 87:48-57.

60. Karahan F, Avsar C, Ozyigit Il, Berber I. Antimicrobial and antioxidant activities of medicinal plant *Glycyrrhiza glabra* var. *glandulifera* from different habitats. *Biotechnology & Biotechnological Equipment*. 2016; 30(4):797-804.

61. Hoffmann KM, Beltrán L, Ziembra PM, Hatt H, Gisselmann G. Potentiating effect of glabridin from *Glycyrrhiza glabra* on GABA_A receptors. *Biochemistry and biophysics reports*. 2016; 6:197-202.

62. Jin Z, Kim S, Cho S, Kim IH, Han D, Jin YH. Potentiating effect of glabridin on GABA_A receptor-mediated responses in dorsal raphe neurons. *Planta medica*. 2013;79(15):1408-12.

63. Dhingra D, Sharma A. Antidepressant-like activity of *Glycyrrhiza glabra* L. in mouse models of immobility tests. *Progress in Neuro-Psychopharmacology and Biological Psychiatry*. 2006; 30(3):449-54.

64. Palmer AM. Pharmacotherapy for Alzheimer's disease: progress and prospects. *Trends in pharmacological sciences*. 2002; 23(9):426-33.

65. Jewart RD, Green J, Lu CJ, Cellar J, Tune LE. Cognitive, behavioral, and physiological changes in Alzheimer disease patients as a function of incontinence medications. *The American journal of geriatric psychiatry*. 2005; 13(4):324-8.

66. Chang KH, Chen IC, Lin HY, Chen HC, Lin CH, Lin TH, Weng YT, Chao CY, Wu YR, Lin JY, Lee-Chen GJ. The aqueous extract of *Glycyrrhiza inflata* can upregulate unfolded protein response-mediated chaperones to reduce tau misfolding in cell models of Alzheimer's disease. *Drug Design, Development and Therapy*. 2016; 10:885.

67. Dringen R. Metabolism and functions of glutathione in the brain . *Progress in neurobiology*. 2000; 62(6):649-71.

68. Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. *Journal of Neuropathology & Experimental Neurology*. 2010 Feb 1; 69(2):155-67.

69. Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. *Pharmaceutical biology*. 2017; 55(1):5-18.

70. Rafi MM, Vastano BC, Zhu N, Ho CT, Ghai G, Rosen RT, Gallo MA, DiPaola RS. Novel polyphenol molecule isolated from licorice root (*Glycyrrhiza glabra*) induces apoptosis, G2/M cell cycle arrest, and Bcl-2 phosphorylation in tumor cell lines. *Journal of agricultural and food chemistry*. 2002; 50(4):677-84.

71. Watanabe M, Hayakawa S, Isemura M, Kumazawa S, Nakayama T, Mori C, Kawakami T. Identification of licocoumarone as an apoptosis-inducing component in licorice. *Biological and Pharmaceutical Bulletin*. 2002; 25(10):1388-90.

72. Hsiang CY, Lai IL, Chao DC, Ho TY. Differential regulation of activator protein 1 activity by glycyrrhizin. *Life sciences*. 2002; 70(14):1643-56.

73. Ahmed MM, Fatima F, Kalam MA, Alshamsan A, Soliman GA, Shaikh AA, Alshahrani SM, Aldawsari MF, Bhatia S, Anwer MK. Development of spray-dried amorphous solid dispersions of tadalafil using glycyrrhizin for enhanced dissolution and aphrodisiac activity in male rats. *Saudi Pharmaceutical Journal*. 2020; 28(12):1817-26.

74. Awate SA, Patil RB, Ghode PD, Patole V, Pachauri D, Sherief SH. Aphrodisiac activity of aqueous extract of *Glycyrrhiza glabra* in male wistar rats. *WJPR*. 2012; 1:371-8.

75. Jahan Y, Siddiqui HH. Study of antitussive potential of *Glycyrrhiza glabra* and *Adhatoda vasica* using a cough model induced by sulphur dioxide gas in mice. *International journal of Pharmaceutical Sciences and research*. 2012; 3(6):1668.