

M-UNet for Segmentation of Brain Images

Dr. Anna Saro Vijendran¹ and Kalaivani Ramasamy^{2*}

¹Dean-Research, Department of Computer Science, Sri Ramakrishna College of Arts & Science, Coimbatore – 641044, Tamil Nadu, India

²Research Scholar, Department of Computer Science, Sri Ramakrishna College of Arts & Science, Coimbatore – 641044, Tamil Nadu, India

Abstract: A mass or progress of unusual cells in the brain is termed as brain tumor. Several categories of brain tumors occur in human. Certain types of brain tumors are non-cancerous which is indicated as benign, whereas certain brain tumors are cancerous, called malignant. In this paper, images are segmented using Modified- Universal Education and Training, Ltd. (M-UNet). The main aim is to investigate network architectures (M-UNet) based on deep learning which is used for enhanced classification and segmentation of brain tumor images. Segmentation of brain cancer images is the procedure of splitting the tumor from usual brain muscles; in medical routine, it offers valuable information for analysis and treatment planning. It is still a complex job due to the asymmetrical arrangement and perplexing borders of tumors. The Convolutional Neural Network (CNN) and Universal Education and Training, Ltd.(UNet) are considered to be notable techniques in segmentation of images. The concept of CNN is a dominant technique for recognition of images and forecasts. CNN is typically utilized for brain cancer separation, classification, and estimate of existence period for infected people. UNet is a familiar image separation method established mainly for analyzing clinical images that can exactly divide images using an unusual quantity of preparation facts. These qualities make UNet efficient in clinical imaging forum and support wide-ranging implementation of UNet in performing separation jobs in therapeutic imaging. M-UNet is recommended in this paper to slice the given input images in a well-defined manner. Experimental results have shown that the proposed M-UNet achieves accuracy of 97% which is notably better when compared to the existing CNN and UNet techniques. The results are also compared based on Dice Coefficient, Jaccard Coefficient and time period. It is evident that the M-UNet outperforms the existing techniques on all assessment parameters. A novel frame work using M-UNet that includes extraction of both global and local features is proposed to increase the segmentation accuracy. The outcomes show better performance in segmenting the 5 tumor areas on the huge BRATS 2018 dataset. The performance of the network is assessed by comparing the forecast segmentation of tumor areas to the ground truth offered by the dataset. Dice Similarity Coefficient (DSC) and Jaccard Coefficient (JC) give the like nessamid the anticipated tumor area and ground truth by associating the overlay areas. In this paper, brain image segmentation is performed using UNet and M-UNet methods and the proposed method efficiently predicts the border of then segmentation pixel.

Keywords - Brain Tumor, Convolutional Neural Network, Image Recognition, UNet, M-UNet

***Corresponding Author**

**Kalaivani Ramasamy , Research Scholar,
Department of Computer Science, Sri Ramakrishna
College of Arts & Science, Coimbatore – 641044,
Tamil Nadu, India**

Received On 18 October, 2021

Revised On 22 February, 2022

Accepted On 1 April, 2022

Published On 1 May, 2022

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Dr.Anna Saro Vijendran and Kalaivani Ramasamy , M-UNet for Segmentation of Brain Images.(2022).Int. J. Life Sci. Pharma Res.12(3), P36-43 <http://dx.doi.org/10.22376/ijpbs/lpr.2022.12.3.P36-43>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

World Health Organization (WHO) reports that brain tumor is the major reason for cancer conviction rates in 2018¹. Liver and brain tumor separation characterize a vital phase ineffective liver radioactivity treatment and other techniques. Liver cancers are of informal figures and great unpredictability of spot as well as deprived dissimilarity related to the cells in CT images. In today's scenario, manual dissection of images takes too much time and it leads to variations in inter- or intra-operator parameters². Several procedures for instinctive separation of brain and brain cancer have been considered, some are atlas-based³, graphical^{4,5} and deformable^{6,7}. These procedures could provide better class of separation outcomes, but frequently encompasses the practice of certain parametric phases, which are specific to every infected person and confine the representations from being more generally used. The concept of learning-based approach¹³ is projected for programmed separation outcomes grounded on careful attribute engineering, but it is unstable to handle with all medical circumstances because of its high compassion to constructed attributes. In recent times, stimulated by the remarkable accomplishment of deep learning in categorization¹⁴, several literatures on M-UNet with amalgamation of data items reliant High Level attributes for enhanced brain and brain-Tumor separation in CT descriptions are proposed. A learning and categorization^{9,10} of several training sessions on deep learning for separation has been developed and is useful for different organ and tumor segmentation. Almost all these approaches are centered on CNNs. Especially; the UNet has revealed the highest enactment so far. Overall, the outcomes of the separation rely on the border of the input item. UNet arrangements oblige enhanced separation routine through integrating maximum-resolution low-level attributes into the decrypting portion of the grid. Many advanced segmentation methods based on deep learning concepts avoid the link to handover high resolution data through the grid. The set back of this bounce assembly is the replication of low resolution matters¹⁶. Next disadvantage is higher resolution data of the input is insufficient in high level attribute maps mined by the web. Also it is highly problematic to augment the quantity of assembling procedures to mine high level inclusive attributes. For instance, to preserve the background data of the minor item, the quantity of assembling tasks utilized should be minimum when compared to assembling jobs used for the huge item due to perseverance loss afterwards assembling. Unusual growth of tissue in the human brain is brain tumor. Presently, the occurrence of malicious brain cancer is comparatively more; it has an excessive influence on humans¹⁷. To analyze this ailment, a brain cancer is sectioned over better-quality image handling. The leading cancerous brain tumor is termed as the glioma, and its subsequent parts are central tumor, augmenting core, and complete cancer¹⁹. The current separation techniques associated with brain tumors focuses on gliomas which is most common in grownups. Glioma is of 2 categories-High-Grade Glioma (HGG) and Low-Grade Glioma (LGG). The behavior of HGG cancers is cancerous as it grows fast and harms the muscles of the brain. Surgery is the only option for the patients who were affected with HGG tumors, because people of this kind cannot endure for more than a couple of years. The vigorous handling of LGG cancers can lengthen the lifetime²⁰. Brain cancers can be observed and investigated by chief apparatuses like Magnetic Resonance Imaging (MRI). It pays 4

diverse modes to envision the brain: T1-loaded, T2-loaded, post-contrast T1-loaded and Knack. Diverse data from these modes balances each other from healthy brain tumors. Manual division of brain tumors is difficult. At the same time, more focus is required to progress a technique that aims to carry out this process automatically. It is critical to isolate and understand tumors in the therapeutic arena, and a flawless consideration is important. With the recent developments in medical image handling, discovery of cancer by means of ML has become more consistent and refined¹⁵. From a judgmental perspective, it is significant that health specialists can accept the procedure's estimates. In the arena of bioinformatics¹⁶ and health imaging¹⁴, deep learning procedures are necessary to attain inspiring outcomes. Recently, practical claims of soft computing procedures in dissimilar arenas have demonstrated deep learning can have a worthy impression on the life of humans¹⁶. The prominent deep learning approaches in the arena of therapeutic image separation are UNet¹⁷ and Fully Convolutional Network (FCN)¹⁹. In this, UNet has proven to be a consistent procedure by means of performance. The UNet design has a U-proportioned arrangement, in which the left portion accomplishes the encoder job and the right portion takes care of the deciphering task. Additional requirement in this design is that the encoder appends the equivalent cover of the decoder. This representation permits the resulting attribute scheme to obligate attributes of all levels. Added, the outcome is enhanced by incorporating the attributes from diverse stages although conserving the locality data. The 3D separation grounded on MRI¹³ and the 2D separation centered on slice¹⁵ is the foremost approach for brain cancer dissection. In the circumstance of MRI centered 3D separation, there is little preparation data with tags³, and it is challenging to raise the quantity of objects. Especially, massive grid bounds and storage disputes make it tough to prepare 3D models. An exact multipath CNN is projected to slice the brain cancer area in the 2D carved objects of the MRI image. Also, dual preparation stages are considered to handle uneven sessions of input data. A limit uses the style of the journal oriented FCN is recommended to progress the separation routine²³. Later, a 3D system termed as Deep Medic is established that mines multi-scale attribute plots & combines them nearby and altogether by means of two-path architecture. The M-UNet is proposed here and restructures the remaining track and avoids linking to overrule the restrictions of the traditional UNet. The M-UNet integrates attributes in the remaining track into attributes in the bounce linking, and allows (1) to avoid replication of least important attributes (2) to mine attributes with more weight and of high determination data for big data items; and (3) to mine advanced level overall attributes for insignificant objects by utilizing the optimum amount of assembling tasks. When compared with CNN and traditional UNet, the concept of M-UNet is capable of effectively holding edge and morphologic data of the data items. A comprehensive mathematical depiction of the M-UNet is discussed in the subsequent sections. In this paper, M-UNet based segmentation of brain images is proposed. The proposed scheme offers 97% Accuracy. Gliomas are the utmost predominant brain tumors that arise more often in grown-ups and would be originated by glial tissues¹. Approximately 80% of cancerous brain tumors detected in the USA belong to this category². HCG and LCG are its types. HGG categories are cancerous and mature rapidly which typically needs a surgical treatment anywhere the normal persistence duration for infected people has been stated couple of years

or less. LGG tumors are monitored by a limited years of lifespan probability along with the severe medication could be postponed to an extent³. Magnetic Resonance Imaging (MRI)⁴ is the most predominant tools to examine & observe brain tumor images. Details images of brain can be captured in this method and is also used to visualize the range of tumor regions. Because of extremely intricate nature of tumor presence, the physical separation of 3D MRI images needs substantial volume of phase and is vulnerable to incorrectness and inconsistency. Whereas, automatic separation of MRI descriptions can naturally improve the rate of analysis, estimate of progress rates and treatment strategies, mainly in the absence of practiced radiologist. In recent times, deep learning approaches were effectively used in a lot of fields⁵. One among them is brain tumor separation that attained extensive focus in the clinical imaging field. Some of the best current approaches and procedures implemented for brain tumor segmentation⁶ automatically. A precise multi-path CNNs⁷ is projected to slice brain tumor areas over 2D portions of MRI descriptions. Moreover, dual preparation stages were utilized to hold the unfair modules of the input data. A boundary oriented FCN⁸ has been established to maximize the separation outcomes. Then, an innovative 3D network⁹ is proposed, Deep Medic, mines multistate attribute maps, and then incorporates them nearby and altogether by means of dual way architecture. As per the concept of encipher-decipher architectures for the persistence of meaningful separation, grids like UNet¹⁰ also suitably preferable for the brain cancer dissection. All the champs who contributed to the brain Tumor Segmentation (BRATS)¹¹ experiment also profited from encipher-decipher grids. Relating anisotropic complexities, trained three grids for each cancerous sub-part in the serial form¹² is proposed, where the former grid output was deliberated as the succeeding system input. The occurrence of a variation auto-encipher division¹³ is projected for the creation of an input image might offer the competence of normalizing the mutual decipher. A slight alteration version of the UNet architecture¹⁴ is used in many fields. Furthermore, the researchers exploited additional preparation data delivered by their own association to increase the whole performance. A narrow grid¹⁵ is projected by relating an arrangement in which the widened density was engaged. Also, to compute the ambiguity of the tag, the simplification of dual Cross-entropy was utilized. Presentation of an ensemble¹⁶ of many grids is proposed by including multi-scale relative data, totaling a consideration chunk, and dissection of three cancer sub-regions in the waterfall method. Test Time Augmentation (TTA) technique¹⁷ is examined in which numerous expansion approaches are implemented at the assessment phase. By accepting TTA on numerous systems, they established that it can increase the whole outcome of brain tumor separation. Numerous researches¹⁸ have exposed that the 3D forms of UNet design are capable enough to attain improved outcomes associated with entire 2D styles. Though 3D UNet has worthy results, it has additional limitations and computational difficulty than 2D variety and that is the reason behind using 2D UNet architecture and thus boosts the outcomes of the network by consuming less memory space. Subsequently, it is important to mine 2D portions from 3D capacities of MRI images, which grounds not to take advantage of 3D related data of input images. To get rid of this, the Multi-View procedure is considered to improve the system presentation by promoting from 3D related data of input images. Furthermore, since most of the latest approaches (especially

UNet based systems) incorporate low & high-level attributes in a simple method, i.e. seeing identical significance for every attribute plot, it can end in misperception for the prototype. To report this issue, a comprehensive variety of UNet architecture¹⁹ is projected in which channel consideration tool technique is implemented after appending various levels of attributes by taking the loads of each channel adaptively.

2. EXISTING SYSTEM

In this section, the Convolutional Neural Network (CNN) and UNet methods of segmentation are discussed in detail.

A. Convolutional Neural Network

It is a deep learning procedure that takes an input image, allocates loads to several data items in the image and is capable of distinguishing them from each other. The basic prerequisite necessary in a ConvNets is considerably lesser as equated to other procedures. Whereas in original approaches screens are hand-engineered, with sufficient preparation, ConvNets have the capability to acquire those features. The ConvNets design is similar to the arrangement of muscles in the brain of a human and was stimulated by the association of the Pictorial Cortex. Distinct nerves answer back to incitements only in a constrained area of the chromatic arena known as the approachable arena. A gathering of such arenas overlay to shield the whole pictorial part. In cases of tremendously simple images, the technique may demonstrate a typical exactness score while accomplishing estimate of sessions but there is a possibility of inaccurate results when the complex images are considered. A ConvNets is having ability to positively store the spatial and sequential dependencies in an input depiction when the appropriate screens are applied. The architecture achieves a healthier response to the image input set due to the lessening in the quantity of factors used and loads can be reused. That is, the system can be proficient to comprehend the superiority of the image in a healthier way. The aim of the Convolution task is to mine the attributes, from the input image. It is unnecessary to bind with a single convolutional layer in ConvNets. Predictably, the chief ConvLayer is accountable for catching the small scale attributes like edges, shade, incline alignment, etc. With additional layers, the design familiarizes with the large scale attributes, giving us a system which has the healthy indulgence of descriptions in the dataset. There are dual categories of outcomes to the procedure in which the attribute is minimized in dimensionality as equated to the input, and the other in which the dimension is either improved or does not change. This is complete by relating effective padding in case of the former or identical padding in the case of the latter. UNet is a familiar technique to perform segmentation process in image, established mainly for clinical image investigation that can exactly slice images by means of an infrequent quantity of preparation data. These behaviors offer UNet through a maximum effectiveness within the clinical imaging forum and ended in widespread acceptance of UNet as the chief instrument for dissection jobs in therapeutic imaging. The accomplishment of UNet is obvious in its prevalent routine in all chief image tools from CT scans, MRI, X-rays and microscopy. Also, though UNet is principally a separation instrument, there have been illustrations of the procedure of UNet in other presentations. The feasibility of UNet is to keep on elevating by applying the image modalities the accuracy can be improved to an extent.

But the computational complexity remains the same in UNet.

3. PROPOSED SYSTEM

In this section M-UNet method is proposed for segmentation is discussed in detail. The proposed system the M-UNet uses a residual way to filter replication of low resolution attributeplot data. But, unlike existing methodologies, the projected network keeps the residual way on right after assembling. By adapting this approach, high resolution edge data of the attribute plots moving through the skip connections are confined adaptively and are integrated with extra convolution layers in the skip association. In order to evaluate the results of this adaptive filter, a permeation data was defined. Let permeation data be PD.

$$PD = \begin{cases} -0.5, & \text{if } FMy(p, q) < 0.01 \\ \sum \frac{FMx(p, q)}{FMy(p, q)}, & p, q \in \text{object tag}(p, q) \end{cases}$$

Here,

FMx - standardized attribute plot in the skip connection behind the residual path

FMy - standardized attribute plot previous to residual track

Every standardized attribute plot has a range of [0, 1].

Permeation rate can be assigned to -0.5 when $FMy(p, q) < 0.01$.

This indicates that there are no significant attributes for the skip link. For the M-UNet, some of the proven alterations were implemented. Initially, residual connection was utilized in every block of encoder. ³ convolution layers were present for every block of encoder. The outcome attained by previous encoder block was appended to the input of current block for the final convolutional layer, it had stride of 2 which was utilized to update max pooling layer. Behind the concept of stack, the UNet model was taken for the alteration. In case of M-UNet, in place of taking single UNet, dual UNet was considered where the output of the UNet was redirected back to its input. Making use of this repetitive design pattern, consumes minimum parameters and also saves GPU memory. The cost function was a loaded amount of the cost from the UNet in the initial iteration and the UNet in the successive iteration. By taking the intermediate outcome in the estimation of cost, the training can be effectively speeded up. The propounded framework is designed using MU-Net including down and up-sampling paths. In the opening block of the down-sampling path, 2 convolutional layers with 3×3 and 9×9 kernels are followed by ReLU to find low-level local and global feature maps derived from multi-modal MRI input in place of 2 recurrent 3×3 convolutional layers like existing U-Net. The global as well as local feature maps are concatenated. Using both the global and local paths in the extraction of low-level features, the network contextual data of indispensable features are provided. A 2×2 max-pooling with stride of 2 is involved to reduce the size of the image by half. A 3×3 Convolutional layer with ReLU and 2×2 max-pooling with step of 2 are recurrent until the resolution of image reduces from 240×240 to 15×15 and feature maps raise from 4 to 512. 2×3 convolutional layers with ReLU are used in the 5th block

along the down-sampling path to double the feature maps (1024).

4. RESULTS AND DISCUSSION

The system is trained for every segmentation^{22, 21, 27} and 5-fold Cross Validation (CV) is performed to select the finest epoch performance. The foreground and background masks of anticipated tumor regions are obtained at the end of training and testing phases as shown in the last column. The propounded encoder-decoder network framework is based on U-Net that proves to be fine in biomedical image segmentation¹⁶. The kernels of 9×9 and 3×3 sizes are used as global and local feature extraction paths in the propounded deep learning based network for region segmentation for BRATs 2018 dataset. Brain Tumor Segmentation (BRATS) datasets were utilized for trials²³. The preparation sets of these datasets comprise 3D MRI images of 285 infected people, out of that 210 are with HCG and 75 with LCG. The BRATS 2017 and 2018 substantiation groups have 3D MRI capacity of 46 and 66 infected people of unidentified grades. In this, 4 modalities for every individual brain are available, such as R1, R1c (post-contrast R1), R2, and Aptitude which were skull uncovered, resampled and co-registered. The datasets comprises 4 tags like, augmenting tumor, edema, necrosis, and background. In the aspect of assessment, observations are combined into 3 sections including complete cancer area, Cancer central area, and Augmenting cancer area. The specialists of this area have shaped ground fact by physical subdivision. The separation tags for the endorsement sets are not openly accessible, and the contributors must upload the outcomes delivered by their grids to the BRATS online assessment stage in order to attain measurable assessments such as Dice and Jaccard Coefficient. Fig. 1 shows the input image and Fig. 2 shows the segmented image. Fig. 3 shows the output of the proposed M-UNet^{24,31,28,23}. A novel frame work using M-UNet that includes extraction of both global and local features is proposed to increase the segmentation accuracy. The outcomes show better performance in segmenting the 5 tumor areas on the huge BRATs 2018 dataset^{24, 27, 36}. The performance of the network is assessed by comparing the forecast segmentation of tumor areas to the ground truth offered by the dataset. Dice Similarity Coefficient (DSC) and Jaccard Coefficient (JC) give the likeness amid the anticipated tumor area and ground truth by associating the over layers.

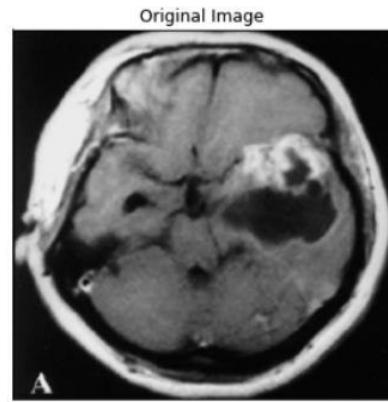


Fig. 1. BRATS 2018 Database Input Image

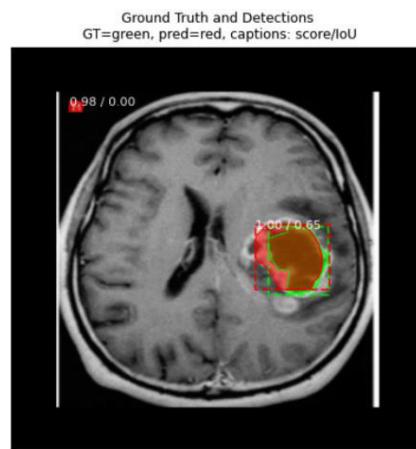


Fig 2 Segmented Image.

UNet segmentation method is applied to brain image and red color show affected region of the image

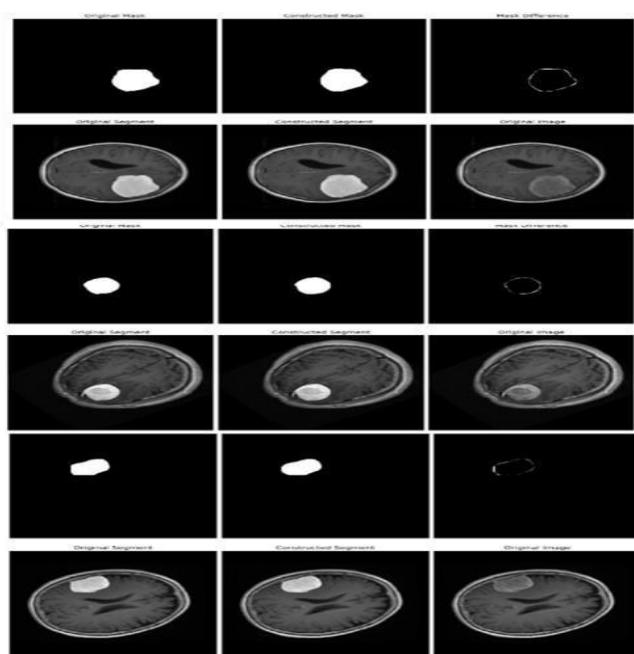


Fig. 3. Image Segmentation of M-UNet Alogirthm

In Fig. 3, Image segmentation^{29, 30, 31}based on M-UNet algorithm. The affected region in the image is accurately determined using the proposed M-UNet algorithm. By using pixel values, the boundary detection is performed efficiently when compared to other existing methods like CNN and UNet.

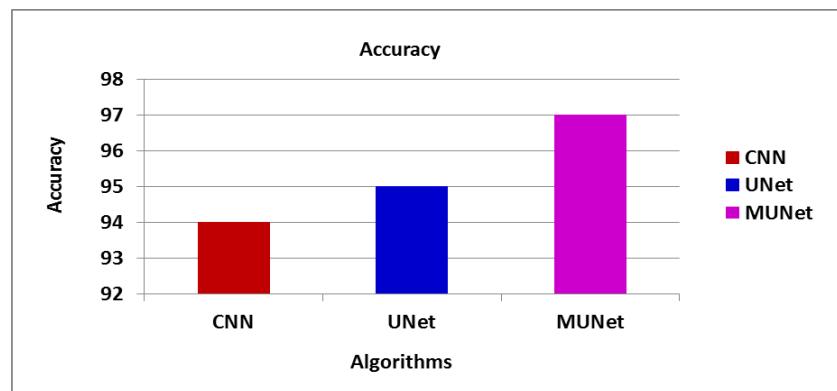


Fig. 4. Accuracy

Fig. 4 shows the Accuracy. The proposed M-UNet (Dice Coefficient, Jaccard Co-efficient) methods gives 3% and 2% better Accuracy when compared to CNN and UNet. As the boundary values are detected based on pixels in the proposed system, it produces better results in terms of Accuracy in the less time period.

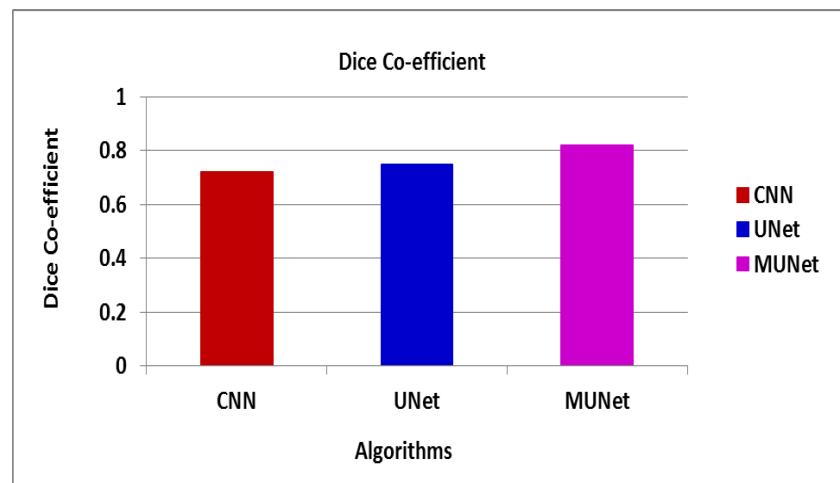


Fig. 5. Dice Coefficient

Fig. 5 shows the Dice Coefficient for image segmentation parameter . Proposed Pixel based image segment method is segment the edge pixel efficiently. The proposed M-UNet involves 4.2% and 13.9% better in Dice Coefficient value when compared to CNN and UNet.

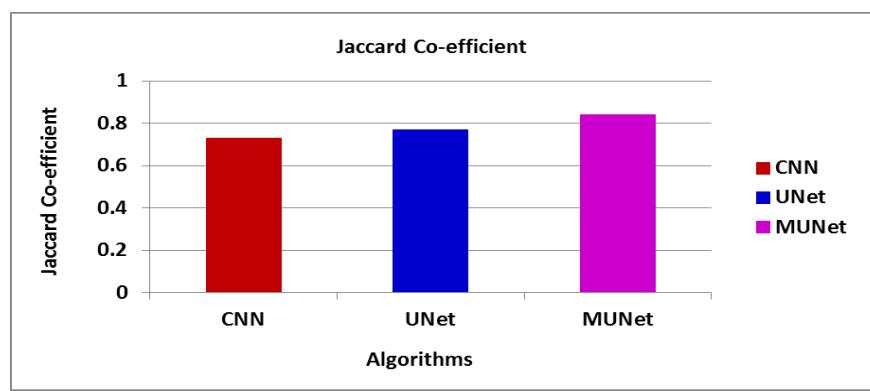


Fig. 6.Jaccard Coefficient

Fig. 6 shows the Jaccard Coefficient .It is Detected the Segmented edge region. The proposed M-UNet involves 5.5% and 15.1% better in Jaccard Coefficient value when compared to CNN and UNet .

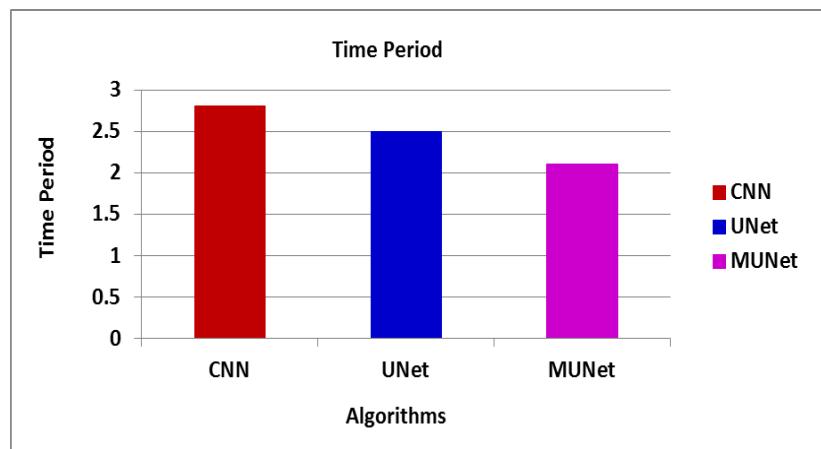


Fig. 7. Time Period

Fig. 7 Shows Time Period Value (Time period value is calculated by seconds). However the Proposed M-UNET executed in less time period value when compared to CNN and UNET Methods.

5. CONCLUSION

A prominent deep learning network for segmentation, M-UNet is discussed, which have offered more accurate outcomes than other networks in tumor areas even where the limits are unknown and the target data item is small. By integrating the residual way and a prototype of object-dependent up-sampling, the recommended system skips repetition of data items with less resolution, estimates higher level feature maps that better denote high resolution edge information of larger data items, and learns to mine even higher level global attributes for small object inputs. The results of existing and proposed approaches are evaluated based on accuracy, Dice Coefficient and Jaccard Coefficient. The results of M-UNet are most promising. There is no need for any pre-processing tasks in the proposed technique. So, it can be casually implemented to the images of other organs with poor contrast. This M-UNet technique also works well for images that are taken from other tools like MRI, PET, or Ultrasound.

6. AUTHOR CONTRIBUTION STATEMENT

Mrs. Kalaivani Ramasamy has collected MRI images of brain, performed segmentation and analyzed the performance of the proposed model with the existing ones.

7. ACKNOWLEDGMENT

The creators would like to thank Dr. Anna Saro Vijendran, Dean-Research from college for supportive discussions around the experiment and insightful audits and quick comments, which have enormously made a difference to progress the quality of this paper.

8. REFERENCES

- Mamelak A. N.,& Jacoby D. B. Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). *Expert opinion on drug delivery*.2007;4(2):175-186.
- Krizhevsky A., Sutskever I., & Hinton G. E. Image net classification with deep convolutional neural networks. *Advances in neural information processing systems*.2012;25:1097-1105.
- Saut O., Lagaert J. B., Colin T., & Fathallah-Shaykh H. M. A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth. *Bulletin of mathematical biology*. 2014;76(9):2306-2333.
- Girshick R., Donahue J., Darrell T., & Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*.2014;580-587.
- Ronneberger O., Fischer P., & Brox T. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*.2015:234-241.
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, I.; Farahani, K.; Kirby, I.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). *IEEE Trans. Med Imaging* 2015, 34, 1993–2024.
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*; Springer: Cham, Switzerland, 2015; pp. 234–241
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*; Springer: Cham, Switzerland, 2015; pp. 234–241
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In *Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention*, Munich, Germany, 5–9 October 2015; pp. 234–241.
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” 2015, pp. 234–241.
- Gholami A., Mang A., & Biros G. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas. *Journal of mathematical biology*.2016;72(1-2): 409-433.
- Çiçek Ö., Abdulkadir A., Lienkamp S. S., Brox T., & Ronneberger O. 3D U-Net: learning dense

volumetric segmentation from sparse annotation. In International conference on medical image computing and computer-assisted intervention. 2016;424-432.

13. Isensee F., Kickingereder P., Wick W., Bendszus M., & Maier-Hein K. H. Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge. In International MICCAI Brainlesion Workshop. 2017;287-297.

14. Kamnitsas K., Ledig C., Newcombe V. F. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical image analysis. 2017;36:61-78.

15. Wang G., Li W., Ourselin S., & Vercauteren T. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In International MICCAI brainlesion workshop. 2017;178-190.

16. Havaei M., Davy A., Warde-Farley D. Brain tumor segmentation with deep neural networks. Medical image analysis. 2017;35:18-31.

17. Shen H., Wang R., Zhang J., & McKenna S. J. Boundary-aware fully convolutional network for brain tumor segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention. 2017;433-441.

18. Samadi F., Akbarzadeh G., & Kaabi H. Change detection in SAR images using deep belief network: a new training approach based on morphological images. IET Image Processing. 2017;13(12):2255-2264.

19. Baid U., Talbar S., Rane S., Gupta S., Thakur M. H., Moiyadi A., ... & Mahajan A. Deep learning radiomics algorithm for gliomas (drag) model: a novel approach using 3d UNet based deep convolutional neural network for predicting survival in gliomas. In International MICCAI Brainlesion Workshop. 2018;369-379.

20. Isensee F., Kickingereder P., Wick W., Bendszus M., & Maier-Hein, K. H. No new-net. In International MICCAI Brainlesion Workshop. 2018;234-244.

21. Wang G., Li W., Ourselin S., & Vercauteren T. Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In International MICCAI Brainlesion Workshop. 2018;61-72.

22. Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization. In International MICCAI Brainlesion Workshop. 2018;311-320.

23. McKinley R., Meier R., & Wiest R. Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In International MICCAI Brainlesion Workshop. 2018;456-465.

24. Zhou C., Chen S., Ding C., & Tao D. Learning contextual and attentive information for brain tumor segmentation. In International MICCAI brainlesion workshop. 2018;497-507.

25. Ghaffari, M., Sowmya, A., & Oliver, R. (2019). Automated brain tumor segmentation using multimodal brain scans: a survey based on models submitted to the BraTS 2012–2018 challenges. IEEE reviews in biomedical engineering.

26. Halstead Jr, R. H., & Ward, S. A. (1980, May). The M-UNet: A scalable decentralized architecture for parallel computation. In Proceedings of the 7th annual symposium on Computer Architecture (pp. 139-145 2018). 156-168.

27. Wu, S.; Li, H.; Guan, Y. Multimodal Brain Tumor Segmentation Using U-Net. In Proceedings of the Pre-Conference Proceedings of the 7th MICCAI BraTS Challenge, Granada, Spain, 16 September 2018; pp. 508-515.

28. Bakas, S.; Reyes, M.; Iakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv 2018, arXiv:1811.02629.

29. Meng, Z.; Fan, Z.; Zhao, Z.; Su, F. ENS-UNet: End-to-end noise suppression U-Net for brain tumor segmentation. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18-21 July 2018; pp. 5886-5889.

30. Kermi, A.; Mahmoudi, I.; Khadir, M.T. Deep convolutional neural networks using U-Net for automatic brain tumor segmentation in multimodal MRI volumes. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; pp. 37-48.

31. Shamir Reuben, R.; Duchin, Y.; Kim, J.; Sapiro, G.; Harel, N. Continuous dice coefficient: A method for evaluating probabilistic segmentations. arXiv 2019, arXiv:1906.11031.

32. Nabil, I.; Rahman, M.S. MultiRes UNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation. Neural Netw. Off. J. Int. Neural Netw. Soc. 2019, 121, 74-87

33. H. Xu, Z. Xu, W. Gu, and Q. Zhang, "A Two-Stage Fully Automatic Segmentation Scheme Using Both 2D and 3D U-Net for Multi-sequence Cardiac MR," 2019, pp. 309-316.

34. T.W. Yu, B. Fang, Y. Liu, M. Gao, S. Zheng, and Y. Wang, "Liver Vessels Segmentation Based on 3d Residual U-NET," 2019, pp. 250-254.

35. Z. Fang, Y. Chen, D. Nie, W. Lin, and D. Shen, "RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting," 2019, pp. 101-109.

36. H. Li, A. Li, and M. Wang, "A novel end-to-end brain tumor segmentation method using improved fully convolutional networks," Comput. Biol. Med., vol. 108, pp. 150-160, 019.

37. Huang, H.M.; Lin, L.F.; Tong, R.F. UNet 3+: A full-scale connected UNet for medical image segmentation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Barcelona, Spain, 4-8 May 2020; pp. 1055-1059.