

Genotoxic and Antitumor Activity of Pollen Grains against Prostate Cancer Cell Line

Magdah Ganash

Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

Abstract: Since the use of engineered antioxidants and antitumor is under investigation, inferable from its likely poisonousness, scientists have deflected their thoughtfulness regarding the quest for characteristic sources to meet the human medication and diet requests. Therefore the study aimed to evaluate the antitumor and antioxidant activities of maize pollen grains against the Prostate Cancer Cell (Pc3) line. Maize pollen grains were collected by Bee through a pollen trap, and then subjected for flavonoids and alkaloids analysis by HPLC method. an *in vitro* assays, were used to test the antitumor properties, against Pc3 cells. Furthermore, its antioxidant potential was also evaluated by DPPH. The detected flavonoids were identified to be quercetin, luteolin kaempferol, rutin, apigenin and naringin and the alkaloids were quinolone, hydroxyindolenine and conofoline. The antitumor efficacy of pollen grains extract increased with concentration and reached to 94.92 % that similar to the toxicity % of adriamycin at 1000 μ g/mL, however, the IC₅₀ (339.81 μ g) of pollen grains extract was highest than IC₅₀ (58.07 μ g) of adriamycin. At 500 μ g/mL of pollen grains extract, morphological changes of Pc3 were recorded. These changes deformed more at 1000 μ g/mL. DPPH scavenging activity was found to be 92.26 % at 1280 μ g/mL of pollen grains extracted with IC₅₀ 425.4 μ g/mL compared with IC₅₀ (13.9 μ g/mL) of the ascorbic acid. DNA fragmentation and quantitative RT-PCR examinations of Bax and Bcl-2 genes demonstrated that pollen grains extract induced cellular apoptosis of Pc3 cells. This study concluded that the maize pollen grains may applied as natural safe source for inhibit Pc3 Cells proliferation as well as applied as antioxidant.

Keywords: Antitumor, Prostate Cancer Cell, Antioxidant, Pollen grains, Apitherapeutic.

***Corresponding Author**

Magdah Ganash , Biology Department, Faculty of Science,
King Abdulaziz University, Jeddah, Saudi Arabia.

Received On 09 February 2021

Revised On 21 April 2021

Accepted On 24 April 2021

Published On 06 May 2021

Funding This Research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Magdah Ganash , Genotoxic and Antitumor Activity of Pollen Grains against Prostate Cancer Cell Line.(2021).Int. J. Life Sci. Pharma Res. 11(3), 36-46 <http://dx.doi.org/10.22376/ijpbs/lpr.2021.12.3.P36-46>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Worldwide, cancer has become a main reason of mortality, more 9.5 million deaths from approximately 18 million as new cancer cases were predictable. Even if numerous reasons were reported for the appearance of cancer disease but the reasons of some cases still mysterious. Cancer invades the most of humans as well as animal cells. Cancer of prostate is one of the largely predominant malignancies and the subsequent driving reason for cancer-related deaths in men among human beings. Rate of prostate cancer has raised strikingly in numerous Asian nations in the previous twenty years ¹. Under stress conditions either biotic or abiotic, adverse molecules were formed inside animals as well as human cells. For example, reactive oxygen species (ROS) are synthesized continuously in cells which encompass free radicals remove comma, like hydroxyl ion and the superoxide anions and non-radical species, as H_2O_2 and singlet oxygen. As indicated by Campos et. al. ² these components add to mature and establishment of chronic degenerative illnesses, for example, malignancy, cardiovascular illnesses sickness, joint pain, gastric ulcer and so forth through harm of practical biomolecules, for example, proteins as well as amino acids, lipids, sugars, nucleic acids. Ever since the exposure to different poisons in climate is unavoidable, it gets important to investigate the molecules of natural sources for its antitumor potential. Through the pollen basket of the forager's hind legs, the pollen grains are transported as a little pellet to the beehive where it is put away and continuously utilized as a nutrient hotspot for the honey Bee hatchlings. Beside the nutritional and physiological characteristics of pollen grains ³ it has additionally picked up consideration due to their various bioactive properties ^{4,5}. Therefore, therapeutic activities were attracted towards all types of pollen grains in many studies. In earlier study, pollen grains contained different compounds comprise gallic acid, naringenin, quercetin 3-o-neohesperidoside, vanillic acid, protocatechuic acid, p-coumaric acid, hesperidin, isorhamnetin, kaempherol, quercetin, isorhamnetin 3-o-rutinoside, rhamnetin 3-o-neohesperidose, 3-o-rutinoside, rutin, apigenin and luteolin ⁶. With respect to healthful properties, Bee pollen has been described as hormone regulator, liver protector, antiatherosclerotic, antiallergic, anticarcinogenic, antioxidant, antimutagenicity, antimicrobial including fungi and bacteria, antianemic, tonic and restorative, intestinal regulator, vasoprotector ⁷⁻⁹. Anticancer potential of some pollen grains was reported by Kaur et al. ¹⁰, where pollen extract of *Bauhinia variegata*, *Cassia glauca*, *C. biflora* and *C. siamea* had antimutagenic activity against many mutagens viz., mutagenic activity of sodium azide for *Salmonella typhimurium* TA 100, furthermore mutagenic potential of 4-nitro-o-phenylenediamine for TA 98 .Leja et al. ¹¹ reveals the existence of bio components in pollen grains such as steroids, lipids, carbohydrates, proteins, amino acids, vitamins carotenoids, flavonoids, polyphenols and terpenes which reflect its bioactivity. Analysis of Bee corn pollen by Chantarudee et al. ¹² reveal its contained a reasonably miscellaneous array of nutritive molecules, comprising invert sugar (19.9 g/100 g), biotin (56.7 μ g/100 g), vitamin A and β carotene (1.53 mg/100 g) These components were detected previously with an average protein content about 23.8% and fatty acids are 3% ¹³. Polysaccharides such as starch and sugars represent the main component of carbohydrates ranging among 13 and 55 g/100 g of pollen grains. Generally, Carpes et al. ¹⁴ found that the contents of pollen grains of

phenolic contents existed in the range 19.28 to 48.90 mg GAE/ g. Not only levels and constituents of pollen components are influenced by botanical origin ^{13,14}, they also depend on climatic conditions, geographical origin, and plant status ¹⁵. Alicic et al. ¹⁶ and Leja et al. ¹¹ reported the action mechanism responsible for antioxidant and antibacterial potential of pollen grains that accompanying with the existence of flavonoids, phenolic acids, and pigments like as β -carotene. Lately, Bleha et al. ¹⁷ evidenced the antioxidant potential of Bee pollen extracts correlated with high content of polyphenols. The high contents of flavonoids and phenols of *Apis mellifera* pollen grains represent the main reasons antioxidant activity ¹⁸. Furthermore, the antiproliferative activities of Bee pollen due to the existence of polyphenols, can control cell proliferation and encourage apoptosis ¹⁹. The current study was assigned to explore the therapeutic potential of maize pollen grains as antioxidant and antitumor natural sources.

2. MATERIALS AND METHODS

2.1 Pollen Grains Source

Samples of pollen grains were collected by Bees through Pollen trap that was fitted to the entrance of a hive of Bees, during the season of maize flowering period August 2020. The hive of Bee was located within 20 meters of maize fields, the main plant near the sampling site, Egypt. The newly collected pollen grains were dehydrated in an oven (40°C for 12 hours) and next it put away at 28°C for further examination.

2.2 Preparation of Pollen Extracts

The crude Pollen grains were prepared by extracting 10g of pollen grains in 25 mL of 100% methanol⁷.

2.3 Cell Line

Cytotoxicity of pollen grains extract was evaluated using a human prostate cancer (Pc3) cell line. The source of Pc3 was the American Type Culture Collection (ATCC, USA). The origin of cells was from homo sapiens (human), tissue (prostate derived from metastatic site: bone), cell type epithelial and disease grade IV (adenocarcinoma)²⁰.

2.4 Estimation of Cytotoxicity Potential of Pollen Extracts Using MTT Protocol

To build up a total monolayer sheet, counted cells 1×10^5 cells/mL (100 μ L/well) were insulated in 96 well tissue culture plates followed by incubation for 24 hours at 37 °C. From 96 well, medium growth was decanted from 96 well microtiter plates after intersecting sheets of cells were formed, cell monolayer was washed twice with wash media. Pollen grains extract and Adriamycin (two-fold dilutions) were made alone in RPMI medium supplemented with 2% serum. The tested compounds at each dilution (0.1 mL) were experienced in the wells with exit control containing three wells, receiving only maintenance medium. At 37 °C, the plate was incubated and then examined. The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) solution was prepared in phosphate buffered saline (5 mg/mL) (Bio Basic Canada Inc). Next, 20 μ L of MTT were added to each well, to thoroughly mix the MTT into the media, placing it on a

shaking table at 150 rpm for 5 minutes. At 37 °C, the plate was incubated in a humidified 5% (v/v) CO₂ for one to five hours to permit the MTT to be metabolized. Followed by resuspend formazan (MTT metabolic product) in 200 µL DMSO on a shaking table at 150 rpm for five minutes, to thoroughly mix the formazan into the solvent. Finally, at 560 nm the optical density was read and the background was subtracted at 620 nm. The cell quantity corresponded with the optical density²⁰.

2.5 Morphological Observation Under Phase Contrast

Twelve-well flat bottom microtiter plates were cultivated by Pc3 cells and then treated with pollen grains extract and Adriamycin (positive control) at different concentrations (31.25-1000 µg/mL). Under a phase contrast microscope, the morphological features of Pc3 cells after 24 hours of treatment were examined.

2.6 HPLC analysis of flavonoids and alkaloids

Methanolic pollen grains extract (10 g of pollen grains in 25 mL of 100% methanol) was analyzed by HPLC, for flavonoids and alkaloids detection. The utilized HPLC-(Agilent 1100) consists of two LC pumps and a UV/V detector. Description of the C18 guard column was 125 mm × 4.60 mm and 5 µm

particle size. Temperature of column was kept at 25 °C. The obtained chromatograms were analyzed using the Agilent ChemStation. The injection volume was 25 µL with flow rate 0.5 mL/minutes. Flavonoids and alkaloids were identified by comparing its retention times with standards⁶.

2.7 Antioxidant Activity of Pollen Grains Extract

According to Barros et al.²¹, the free radical scavenging ability of the pollen grains extract was carried out using DPPH (1,1-diphenyl, 2-picrylhydrazyl). DPPH was dissolved in 95% methanol at concentration (0.004% w/v), then it was added to the extract of pollen grains in the test tube, followed by making serial dilutions ranging from 1 µg to 500 µg. The mixture was homogenized strongly and permitted to stand in the dark for 10 minutes at room temperature 25 °C. The reduction of DPPH radicals was recorded by UV-visible spectrophotometer (Milton Roy, Spectronic 1201) at 515 nm. For comparing the antioxidant of pollen grains extract with synthetic antioxidants. Ascorbic acid was dissolved in distilled water to make the stock solution of a positive control. Furthermore, the same volume of the reaction mixture excluded any pollen grains extracted or ascorbic acid was functioned as blank. The inhibition percentage (IP) of the DPPH radical was recorded regarding the provided formula:

$$IP = \frac{(CA + TA)}{CA} \times 100$$

CA, meaning the absorbance of the control at t = 0 minutes, while **TA** meaning the treatment absorbance at t = 16 minutes.

2.8 DNA fragmentation

Effect of pollen grains extract on DNA fragmentation of Pc3 cells was examined after removal of the cultivated cells, then centrifuged for 5 minutes at 3000 rpm. The gathered pellets of Pc3 cells were mixed with 10 mM Tris-HCl as a hypotonic lysis buffer (pH 8.0) that comprised 0.5% Triton X-100 and 10 mM EDTA for its lyses. RNA of Pc3 cells was broken down via enzyme RNase and next via proteinase K action for two hours at 50 EC. The extraction of DNA was made via a combination of different solvents with a ratio 25:24:1 for phenol, chloroform and isoamyl alcohol, respectively. Followed by the addition a similar quantity of isopropanol for DNA precipitation, then stored for 12 hours at 20EC in dark, then centrifuged for 15 minutes at 12,000 rpm and 4EC. The collected pellet was desiccated in air, re-suspended in buffer (20 µL tris acetate EDTA) appended with 2 µL of 0.25% bromophenol blue, glyceric acid (30%) as a buffer, then separated electrophoretically on agarose gel comprising ethidium bromide (1 µg) and imagined via UV transillumination²².

2.9 cDNA synthesis and real-time PCR (RT-PCR)

Detection of genes expression analysis of Pc3 cells treated by IC₅₀ of pollen grains extract including *Bax* and *Bcl-2* were examined by real time PCR. All primer sequences of oligonucleotides were listed (Table 1). RNA of Pc3 treated by IC₅₀ of pollen grains extracted for 24 hours was using Qiagen RNA extraction/BioRad SYBR®green PCR MMX kit

(Quality Endorsed Company, Australia) and estimated by RT-PCR. Synthesis of cDNA was done followed by PCR amplification. Software Rotor-Gene 6000 Series Software 1.7 (Build 87) was applied for estimation of the melting curve of PCR products. One µL of primers, 2 µL cDNA, and 21 µL reaction buffers (SYBR Green involved) were prepared as reaction mixture. RT-PCR cycles were performed at 95 °C for 4 minutes, then at 95 °C for 35 second followed 58 °C for 30 second, finally at 72 °C for 30 second. β-actin was functional as a housekeeping gene, and the relative quantity of the genes was calculated via 2-ΔΔct²².

3. STATISTICAL ANALYSIS

Three independent replicates of tests were recorded for determining the mean± standard error (S.E). SPSS ver. 22.0 software was carried out by computer for statistical analysis of the obtained data.

4. RESULTS

4.1 Analysis of Pollen Grains Contents and Antitumor Activity

From HPLC analysis, different and varied flavonoids and alkaloids were detected (Table 2 & Fig. 1) in the maize pollen grains. The detected flavonoids were rutin, quercetin, kampherol kaempferol, Apigenin, Naringin and luteolin in different concentrations. Pollen grains of maize had the highest content of quercetin (25 µg/mL) while naringin, rutin

and apigenin were noticed only in a delete and replace few with less few quantities (Table 2). Quinolone (19.30 µg/mL) represents the highest alkaloid in maize pollen grains followed by hydroxyindolenine (10.06 µg/mL) and conofoline (4.12 µg/mL) (Table 2). The antitumor potential of pollen grains extract was tested against Pc3 (Table 3 and Fig. 3) compared with Adriamycin as synthetic antitumor. The observed toxicity (%) of pollen grains extract was dependent on the concentrations. Although the percentage of toxicity (94.92) at pollen grains extract treatment was very similar to toxicity % (94.39) of Adriamycin at 1000 µg/mL, but surprisingly the IC₅₀ (half inhibitory concentration) of Adriamycin was very more less than IC₅₀ of pollen grains extract. The strongest antitumor activity of pollen grains appeared at 500 µg/mL with 77.09 % toxicity (Table 3 and Fig. 2). Under different concentrations of pollen grains extract, morphological profile of PC3 cells were examined compared with Adriamycin and control (Fig. 3a, b & c). As a result of pollen grains extract on Pc3 cells, substantial morphological changes were determined in distinction with the morphology of the untreated Pc3 cells. At 10, 50, 100, 500, and 1000 µg/mL dose, the cells were detached from their substrate and spiked in spindle form and cellular granulation was observed. By increasing the concentration, the rise in the quantity of damaged cells was noted. After addition of pollen grains extract (250 µg/mL concentration), no major change was witnessed, but at the concentrations of 500 µg/mL, changes in the morphology were observed. These changes became more intense with increasing concentration 1000 µg/mL, where . Where the cells became rounded and shrunken, detaching from the surface of tissue culture flasks and floating in the tissue culture substrate, and lastly, they indicated clear cell expanding and burst; while unprocessed Pc3 cells remained in its natural form known as polygonal. On the other hand, the efficacy of

Adriamycin on the morphology of Pc3 cells was more clearly till at low concentrations beginning from 62.5 µg/mL (Fig. 3c).

4.2 Antioxidant Activity of Pollen Grains

DPPH The radical scavenging ability of pollen grains extract was estimated by DPPH method. (Table 4 and Fig. 4) is estimated (Table 4 and Fig. 4). By incrementing the pollen grains extract concentration, it was accompanied by an increase in the activity. High concentration (1280 µg/mL) of pollen grains extract showed DPPH radical scavenging of about 92.26% with IC₅₀ value of 425.4 µg/mL, whereas the positive control ascorbic acid exhibit DPPH radical scavenging with IC₅₀ value of 13.9 µg/mL, which is a well-known antioxidant. create DPPH scavenging reached to 92.26 % but unfortunately, the IC₅₀ of the extract was 425.4 µg/mL, as contrasting to that of the positive control ascorbic acid (IC₅₀, 13.9 µg/mL) as a reference standard, which is a well-known antioxidant.

4.3 DNA Fragmentation and Genes Expression

As illustrated in Fig. (5), Pc3 cells exposed to IC₅₀ dose of pollen grains extract showed breakdown of DNA which appeared fragmented. The clear alterations in the DNA content among the control and treated cells point to that the pollen grains extract have caused obvious cell fatality. The apoptotic effects of Pc3 cells treated by IC₅₀ of pollen grains extract was evaluated through the analyzing of mRNA levels of two genes including Bax and Bcl-2. The obtained finding indicated an increase in Bax gene expression (2.93589-fold) and sharply reduction in the expression of Bcl-2 (0.21004-fold) as comparison with the control (Table 5 and Fig.6). IC₅₀ of pollen grains exert a difference among gene expression of Bax and Bcl-2.

Table 1. Real Time PCR Primers Sequences

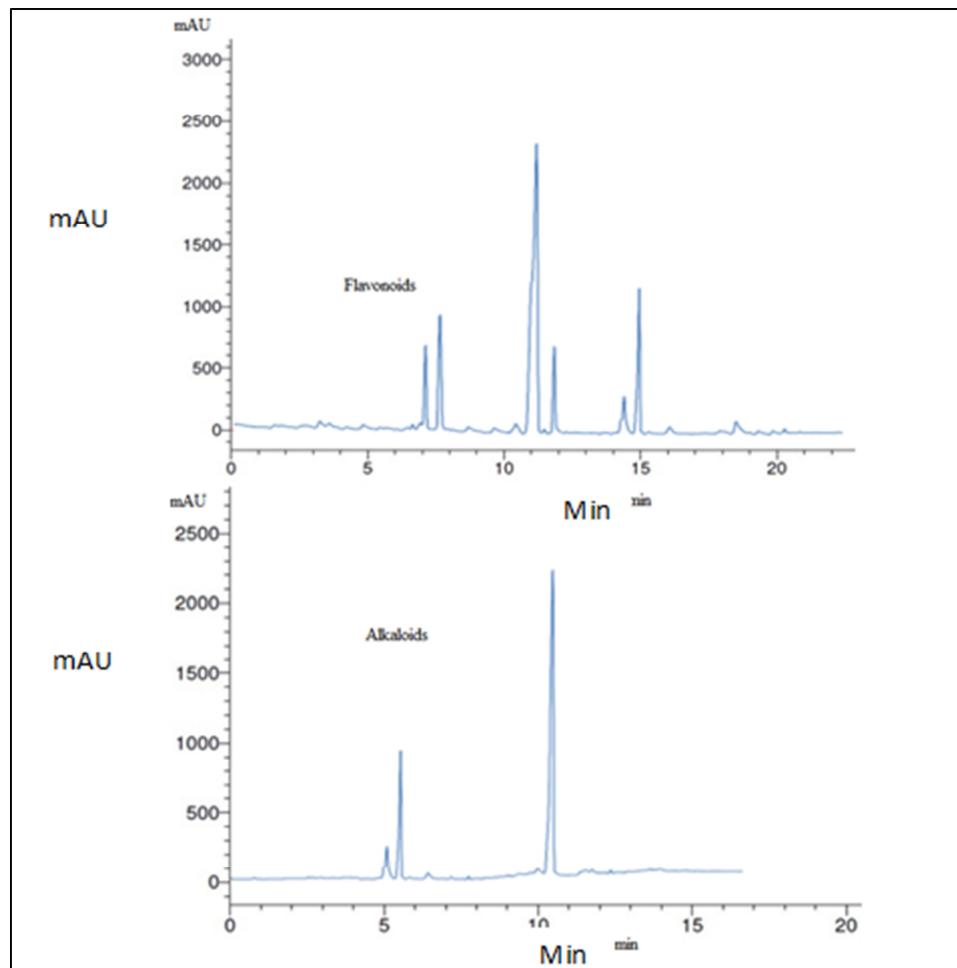
Gen name	Sequences of Primer (5'- 3')	
Bax	Forward (F)	5'-ATGTTTCTGACGGCAACTTC-3'
	Reverse (R)	5'-AGTCCAATGTCCAGCCCAT-3'
Bcl-2	F	5'-ATGTGTGGAGACCGTCAA-3'
	R	5'-GCCGTACAGTTCCACAAAGG-3'

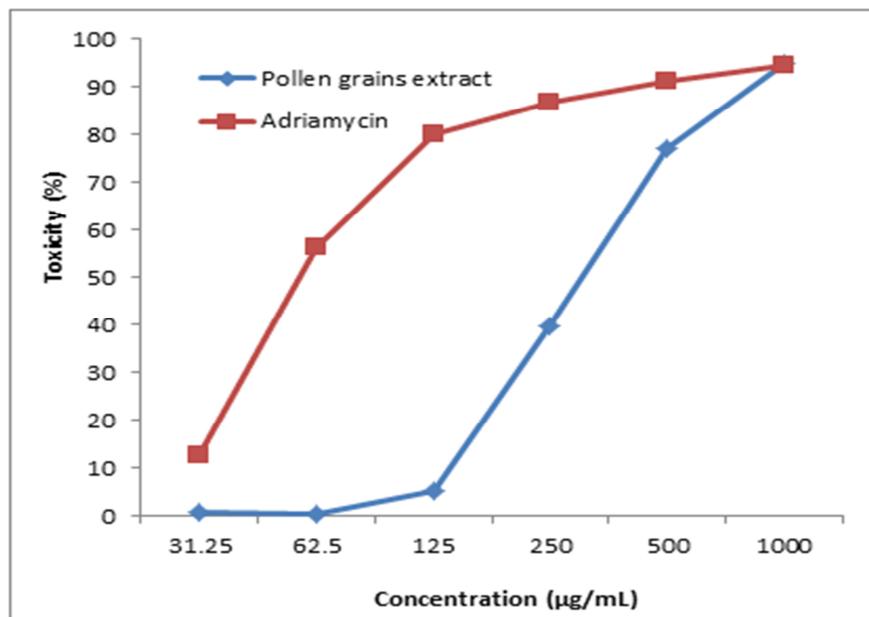
Table 2. Flavonoids and Alkaloids detection in Maze pollen grains by HPLC

Compound	Chemical formula	Concentration mg/mL	RT
Flavonoids	Rutin	C ₂₇ H ₃₀ O ₁₆	8.22
	Kampherol	C ₁₅ H ₁₀ O ₆	9.31
	Quercetin	C ₁₅ H ₁₀ O ₇	25.00
	Apigenin	C ₁₅ H ₁₀ O ₅	7.56
	Naringin	C ₂₇ H ₃₂ O ₁₄	4.12
	Luteolin	C ₁₅ H ₁₀ O ₆	14.59
Alkaloids	Conofoline	C ₄₃ H ₅₂ N ₄ O ₇	4.12
	Hydroxyindolenine	C ₈ H ₇ NO	10.06
	Quinolone	C ₉ H ₇ N	19.30

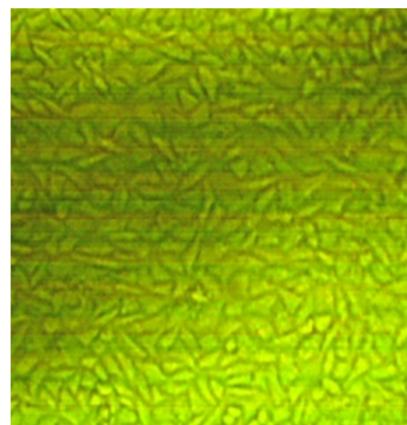
Table 3. Anticancer activity of pollen grains extracts and adriamycin against Pc3 cells

Concentration (µg/mL)	Pollen grains				Adriamycin			
	Mean O.D	Standard Error	Viability %	Toxicity %	Mean O.D	Standard Error	Viability %	Toxicity %
1000	0.374	0.004	5.08	94.92	0.021	0.002	5.61	94.39
500	0.019	0.001	22.90	77.09	0.033	0.005	8.82	91.18
250	0.087	0.006	60.52	39.48	0.050	0.002	13.37	86.63
125	0.226	0.006	94.74	5.25	0.074	0.006	19.88	80.12
62.5	0.354	0.004	99.73	0.27	0.164	0.006	43.85	56.15
31.25	0.373	0.004	99.38	0.62	0.326	0.009	87.25	12.75
IC ₅₀ (µg)	339.81				58.07			

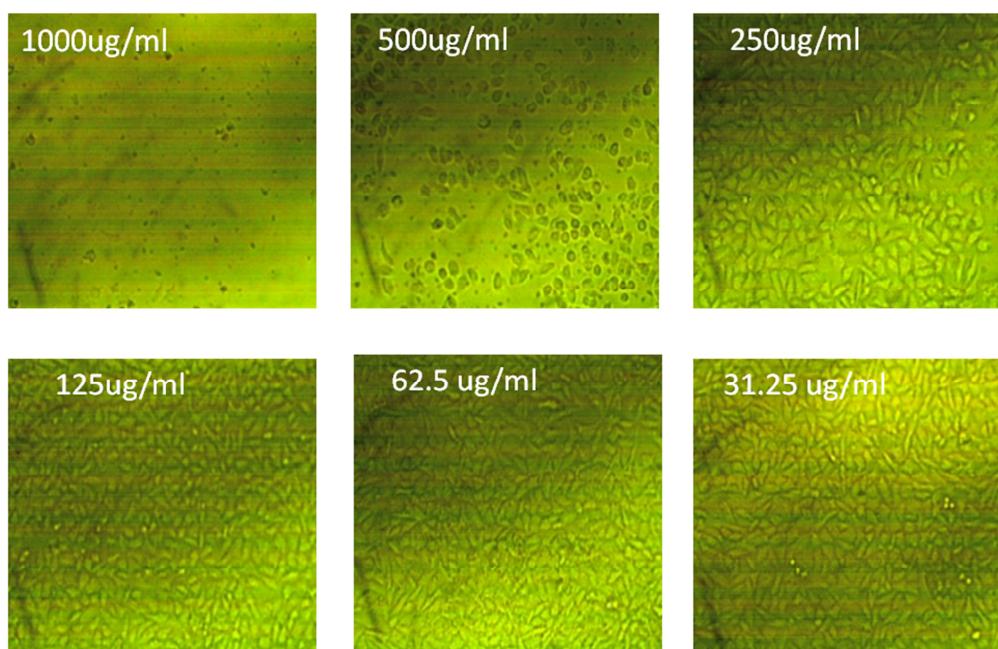

Table 4. Antioxidant capacity of pollen grains extract and ascorbic acid.

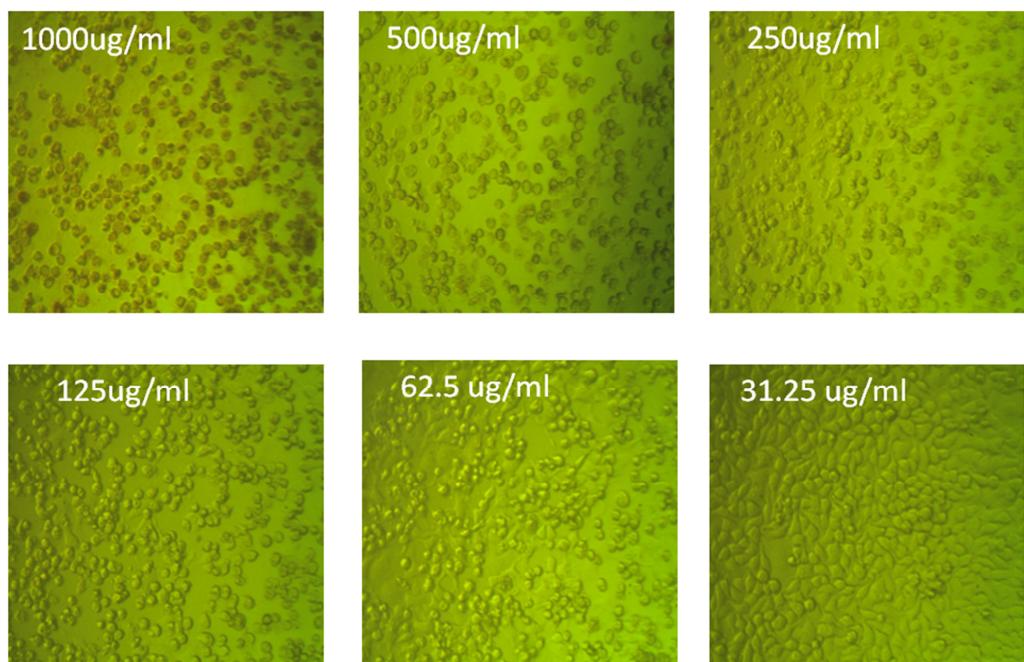

Pollen grains			Ascorbic acid		
Concentration ($\mu\text{g/mL}$)	DPPH Scavenging %	S.D.*	Concentration ($\mu\text{g/mL}$)	DPPH Scavenging %	S.D.
1280	92.26	1.48	40	93.48	0.74
640	73.16	4.52	35	87.53	1.39
320	38.63	2.91	30	80.65	1.21
160	23.06	1.22	25	77.41	0.87
80	17.74	0.84	20	70.94	1.38
40	11.47	0.31	15	54.86	2.96
20	9.74	0.46	10	17.45	2.39
10	8.68	0.34	5	11.78	0.64
0	0	S.D.	0	0	0
$\text{IC}_{50} = 425.4 \pm 10.4 \mu\text{g/mL}$			$\text{IC}_{50} = 13.9 \pm 1.5 \mu\text{g/mL}$		

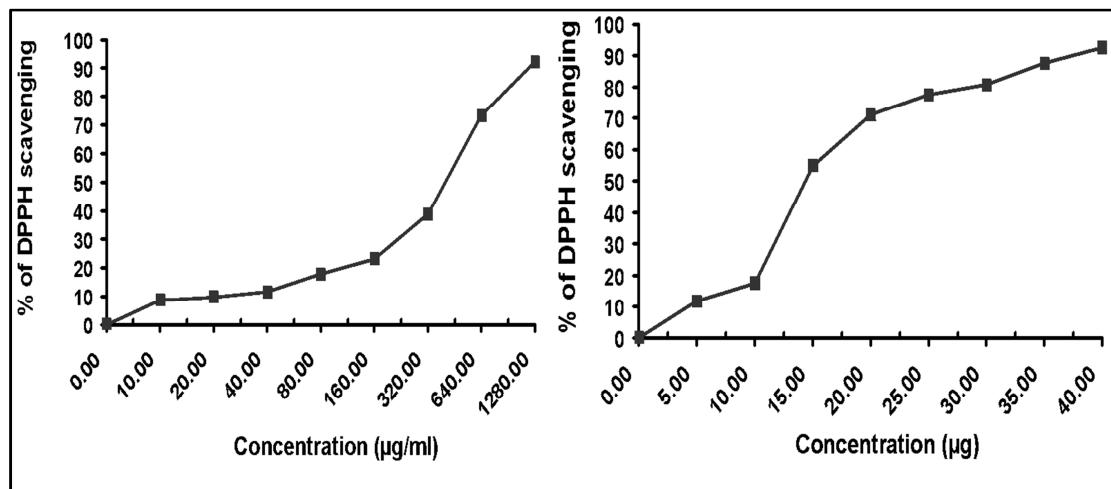
*Values are the average of triplicate tests and represented as mean \pm standard deviation.

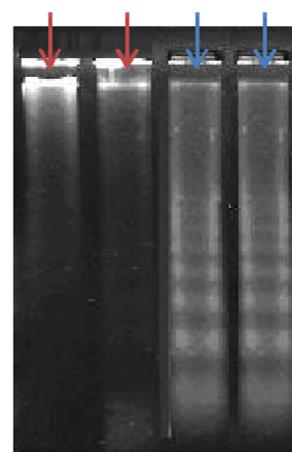

Table 5. Bax and Bcl-2 genes expression Pc3 cells treated with IC_{50} concentrations of pollen grains extract

Sample	Bax							
	Control cells				Test cells			
	B Actin	Bax	ΔCTC	B Actin	Bax	ΔCTE	$\Delta\Delta CT$	FLD
	HC	TC	TC-HC	HE	TE	TE-HE	$\Delta CTE - \Delta CTC$	$2^{\Delta\Delta CT}$ Eamp = 1.844
Treated PC3	24.65	32.76	8.11	24.83	31.18	6.35	-1.76	2.93589
Control Pc3	24.65	32.76	8.11	24.65	32.76	8.11	0	1
<i>Bcl-2</i>								
Treated PC3	24.65	29.82	5.17	24.83	32.55	7.72	2.55	0.21004
Control Pc3	24.65	29.82	5.17	24.65	29.82	5.17	0	1


Fig.1. HPLC Chromatogram of Flavonoids and Alkaloids Detected In Pollen Grains Extract.


Fig. 2. Cytotoxicity of pollen grains extract and Adriamycin against PC3 cells.


Fig. 3a. PC3 cells without any treatment (Control).


Fig. 3b. Image of PC3 cells at different concentrations of pollen grains extract.

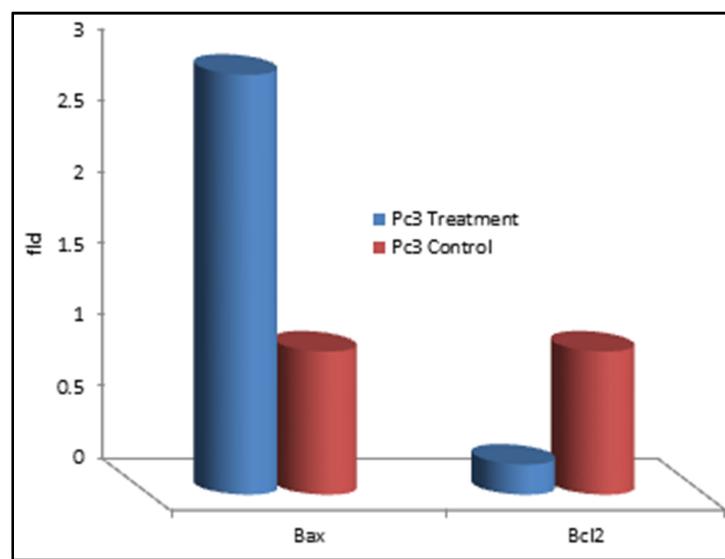

Fig. 3c. Image of Pc3 cells at different concentrations of Adriamycin.

Fig. 4. DPPH radical scavenging activity of pollen grains (left) extract and Ascorbic acid as Reference standard (right).

Fig. 5. DNA fragmentation assay of Pc3 cells treated with IC₅₀ concentration of pollen grains extract (blue arrow) compared with control (red arrow).

Fig 6. Bax and Bcl-2 genes expression of Pc3 exposed to pollen grains extract.

5. DISCUSSION

Although different plants and its parts comprising aerial parts such as stem or leaves as well as roots and bark have been discovered for its biological activity like as antimutagenicity, antigenotoxicity, antitumor, antioxidant activities and etc., but only a few scientific studies are offered on the medicinal potential of plant pollen grains particularly maize. Currently, pollen grains are used as nutritious food and studied for its potential therapeutic properties due to its contents of various compounds. The detected flavonoids by HPLC such as quercetin, kampherol and luteolin may not be specific to Maize pollen grains, because it is detected in other plant pollen grains *Eucalyptus* and *Cecropia*²³. Quercetin and kaempferol²⁴ were previously identified in the species *Ricinus communis* L. According to some literatures on the content of pollen grains, the phenolic compounds specifically quercetin, kaempferol, caffeic acid²⁵ and naringenin²⁶ represent the main effective compounds in biological activities. Rutin and Kampferol were detected in pollen grains of *Phoenix canariensis*²⁷. Earlier in 1984 Ceska and Styles²⁸, recognize the chemical flavonoids ingredients of pollen grains of corn, such as flavanol glycoside, quercetin, isorhamnetin and kaempferol, although they did not explore the apigenin, naringin and luteolin that were reported in the present study. However, Chantarudee et al.¹² detected the flavone 7-O-R-apigenin and phenolic hydroquinone as a bioactive compound in corn pollen grains. In the present study, a highest content of quercetin (25 µg/mL) was recorded in Pollen grains of maize. From prior research²⁹, the yellow color of maize pollen grains is associated with the existence of the quercetin as a flavonoid pigment beside its derivatives. The obtained finding is in well accordance with these data. Alkaloids are considered as an important group exhibiting diverse biological activities. Surprisingly, the existence of quinolone in the pollen grains is extracted under study, and records the highest level. These contents of quinolone reflect the therapeutic potential of pollen grains extract. Currently, studies revealing a widespread array of biotic and pharmacological applications for quinoline including antimalarial, bactericidal, fungicidal, antihelmintic, cardiotonic, anticonvulsant, anti-inflammatory and antioxidant activity³⁰, beside anticancer and analgesic activity³¹. Therefore it has attracted scholars' attention for more recent development of

quinolone and its derivatives. From HPLC analysis the detected phytochemicals in pollen grains are excellent alternatives for chemical drugs. The finding cytotoxicity of maize pollen grains may due to presence of rutin and quercetin, where the validities of anticancer properties for 3,3',4',5,7-pentahydroxyflavone-3-rhamnoglucoside (Rutin) against different cell lines was reported including leukemia³², colon cancer and neuroblastoma³³. The current results are partly in agreement with the finding of some prior reports concerning the vital role of natural separated compounds from pollen grains of *Secale cereale* as secalosides on S180 sarcoma by Jaton et al.³⁴. The authors observed that secalosides had been very effective for suppressing the tumor of S180 sarcoma. Observation about the antitumor activity was previously confirmed, where pollen grains of some plants such as *Rosa rugosa*³⁵, as well as other plants such as *Cassia biflora*, *C. glauca*, *C. siamea* and *Bauhinia variegata*³⁶ showed antitumor activities. It was earlier reported that derivatives of polysaccharides of *Brassica napus* L. pollen grains have appeared antitumor potential against Sarcoma 180-bearing mice and B16 melanoma bearing mice³⁷. Depending on the morphological examination in the provided research, it was exhibited that the extract of pollen grains encouraged apoptosis in Pc3 cells but not as observed in case adriamycin, where morphological deformation of Pc3 cells was more obviously at its lowest concentrations. However, adriamycin caused extra noticeable morphological changes compared to those observed with pollen grains extract, these alterations were mostly confined to apoptotic and cytotoxic changes to the cells. But Adriamycin causes side effects such as failure of kidney functions³⁸. The antioxidant properties of the obtained pollen grains were observed with DPPH scavenging up to 92.26 %. This observation was previously confirmed by Chantarudee et al.¹² where pollen grains derived from maize (*Zea mays*), provided a good free radical scavenging activity. As mentioned above, these pollen grains extract contain numerous flavonoids. For example quercetin and rutin have been recognized to be concomitant to antioxidative action in living organizations. Furthermore, represses protein kinases, restrains DNA topoisomerases and manages gene expression correlated to oxidative stress and the antioxidant defense system^{29, 39-41}. Another explanation of the antioxidative effects of pollen grains extract is perhaps coupled to the efficiency of antioxidant

enzymes. Antioxidant activity was reported for many pollen grains but varied significantly among different pollen types as mentioned earlier⁴¹, where antioxidant activity more than 60% was recorded for pollen of numerous plants such as *Robinia pseudoacacia*, *Malus domestica*, *Pyrus communis*, *Sinapis alba*, *Taraxacum officinale* and *Phacelia tanacetifolia*. To understand the mechanism of cells death that is exposed to pollen grains extract, DNA fragmentation was achieved on Pc3 cells in the current study. Although, no documents were available on the effect of pollen grains extracted on DNA fragmentation in Pc3 cells but effects of other plant products were detected, therefore the finding here is in line with that of Salim et al.⁴² who recorded fragments in DNA of Pc3 treated by propolis. Increases in *Bax* gene expression (2.93589-fold) while decreasing in *Bcl-2* gene expression (0.21004-fold) were observed compared with the control. The finding expression established that intrinsic and extrinsic apoptotic pathways were effective. Replace the word Risen with increase in Risen in *Bax* gene expression and decline the expression of *Bcl-2* were observed in Pc3 but treated by Baneh extract.⁴³ Increase in the sensitivity of apoptosis according to Yao et al.⁴⁴ was due to increasing expression of *Bax* gene, which is parallel to the finding of the present study. Previously, Beginini et al.⁴⁵ suggested that *Bax* and *Bcl-2* associated with apoptotic actions. Immunoblotting tests by Ma et al.⁴⁶ exhibited that cytochrome c was liberated accompanied with increment *Bax* expression; and *Bcl-2* was down-regulated from HeLa cells because of its exposure to *Pinus massoniana* bark extract. Herein the results suggested

9. REFERENCES

1. Sim HG, Cheng CW. Changing demography of prostate cancer in Asia. *Eur J Cancer*. 2005;41(6):834-45. doi: [10.1016/j.ejca.2004.12.033](https://doi.org/10.1016/j.ejca.2004.12.033), PMID 15808953.
2. Campos MG, Webby RF, Markham KR, Mitchell KA, da Cunha AP. Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. *J Agric Food Chem*. 2003;51(3):742-5. doi: [10.1021/jf0206466](https://doi.org/10.1021/jf0206466), PMID 12537451.
3. Kroyer G, Hegedus N. Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. *Innov Food Sci Emerg Technol*. 2001;2(3):171-4. doi: [10.1016/S1466-8564\(01\)00039-X](https://doi.org/10.1016/S1466-8564(01)00039-X).
4. Ferreira ICFR, Aires E, Barreira JCM, Esteve LM. Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract. *Food Chem*. 2009;114(4):1438-43. doi: [10.1016/j.foodchem.2008.11.028](https://doi.org/10.1016/j.foodchem.2008.11.028).
5. Silva TMS, Camara CA, Lins ACS, Agra Mde F, Silva EMS, Reis IT, Freitas BM. Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees *Melipona rufiventris* (Uruçu-amarela). *Ann Acad Bras Cienc*. 2009;81(2):173-8. doi: [10.1590/s0001-37652009000200003](https://doi.org/10.1590/s0001-37652009000200003), PMID 19488621.
6. Han L, Liu X, Yang N, Li J, Cai B, Cheng S. Simultaneous chromatographic finger printing and quantitative analysis of flavonoids in pollen typhae by high-performance capillary electrophoresis. *Acta Pharmacol Sin B*. 2012;2(6):602-9. doi: [10.1016/j.apsb.2012.10.003](https://doi.org/10.1016/j.apsb.2012.10.003).
7. Rzepecka-Stojko A, Maciejewska-Paszek I, Stec M, Kurzeja E, Keska A, Pawlowska-Goral K. The influence

that promoting of *Pc3* apoptosis as a result pollen grains extract may be due to the active role of mitochondrial death signaling pathway. Furthermore, the reasons for the apoptosis process may relate to proapoptotic *Bcl-2* family members.

6. CONCLUSION

From the referenced outcomes and its discussion it can be concluded that the extract pollen grains replace with pollen grains extract has the potent anticancer and antioxidant molecules which might be liable for its mitigating and chemoprotective as well as validate the origin of utilizing this natural extract as folkloric cures and represents a safe alternative in medical practice. Modulation of *Bax* and *Bcl-2* genes expression indicated apoptosis induction in *Pc3* cells treated by pollen grains extract. Furthermore, the action mode mechanism of the promising compounds in the pollen grains extract against cancer should be investigated more.

7. ACKNOWLEDGMENTS

For the Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

of extraction method on obtaining polyphenolic compounds from bee pollen. *Farmakologiczny przegląd naukowy*. 2010;1:38.

8. Denisow B, Denisow-Pietrzyk M. Biological and therapeutic properties of bee pollen: a review. *J Sci Food Agric*. 2016;96(13):4303-9. doi: [10.1002/jsfa.7729](https://doi.org/10.1002/jsfa.7729), PMID 27013064.
9. Velásquez p, Rodríguez K, Retamal M, Giordano A, Valenzuela LM, Montenegro G. Relation between composition, antioxidant and antibacterial activities and botanical origin of multi-floral bee pollen. *J Appl Bot Food Qual*. 2017;90:306-14. doi: [10.5073/JABFO.2017.090.038](https://doi.org/10.5073/JABFO.2017.090.038).
10. Kaur R, Nagpal AK, Katnoria JK. Antimutagenic potential of pollen grains of some medicinal plant species. *Int J Pharm Pharm Sci*. 2016;8(7):232-6.
11. Leja M, Mareczek A, Wyżgolik G, Klepacz-Baniak J, Czeckońska K. Antioxidative properties of bee pollen in selected plant species. *Food Chem*. 2007;100(1):237-40. doi: [10.1016/j.foodchem.2005.09.047](https://doi.org/10.1016/j.foodchem.2005.09.047).
12. Chantarudee A, Phuwapraisirisan P, Kimura K, Okuyama M, Mori H, Kimura A, Chanchao C. Chemical constituents and free radical scavenging activity of corn pollen collected from *Apis mellifera* hives compared to floral corn pollen at Nan, Thailand. *BMC Complement Altern Med*. 2012;12:45. doi: [10.1186/1472-6882-12-45](https://doi.org/10.1186/1472-6882-12-45), PMID 22513008.
13. Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM. Chemical composition and botanical evaluation of dried bee pollen pellets. *J Food Compos Anal*. 2005;18(1):105-11. doi: [10.1016/j.jfca.2003.10.008](https://doi.org/10.1016/j.jfca.2003.10.008).
14. Carpes ST, Mourao GB, Alencar SM, Masson ML. Chemical composition and free radical scavenging

activity of *Apis mellifera* bee pollen from Southern Brazil. *Braz J Food Technol.* 2009;12(3):220-9. doi: [10.4260/BJFT2009800900016](https://doi.org/10.4260/BJFT2009800900016).

15. Morais M, Moreira L, Feás X, Estevinho LM. Honeybee-collected pollen from five Portuguese Natural Parks: palynological origin, phenolic content, antioxidant properties and antimicrobial activity. *Food Chem Toxicol.* 2011;49(5):1096-101. doi: [10.1016/j.fct.2011.01.020](https://doi.org/10.1016/j.fct.2011.01.020), PMID [21291944](https://pubmed.ncbi.nlm.nih.gov/21291944/).

16. Alicic D, Šubarić D, Jašić M, Pašalić H, Ačkar Đ. Antioxidant properties of pollen;3(1):6-12. hr/126235. [Hrana u. Zdravlju i bolesti; 2014].

17. Bleha R, Shevtsova T, Sinica A, Kruzik V, Brindza J. Morphology, physicochemical properties and antioxidant capacity of bee pollens. *Czech J Food Sci.* 2019;37(1):1-8. doi: [10.17221/139/2018-CJFS](https://doi.org/10.17221/139/2018-CJFS).

18. Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH. Physicochemical and antioxidant properties of Malaysian honeys produced by *Apis cerana*, *Apis dorsata* and *Apis mellifera*. *BMC Complement Altern Med.* 2013;13:43. doi: [10.1186/1472-6882-13-43](https://doi.org/10.1186/1472-6882-13-43), PMID [23433009](https://pubmed.ncbi.nlm.nih.gov/23433009/).

19. Premratanachai P, Chanchao C. Review of the anticancer activities of bee products. *Asian Pac J Trop Biomed.* 2014;4(5):337-44. doi: [10.12980/APJTB.4.2014C1262](https://doi.org/10.12980/APJTB.4.2014C1262), PMID [25182716](https://pubmed.ncbi.nlm.nih.gov/25182716/).

20. van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. *J Immunol Methods.* 1994;174(1-2):311-20. doi: [10.1016/0022-1759\(94\)90034-5](https://doi.org/10.1016/0022-1759(94)90034-5), PMID [8083535](https://pubmed.ncbi.nlm.nih.gov/8083535/).

21. Barros L, Baptista P, Ferreira ICFR. Effect of *Lactarius piperatus* fruiting body maturity stage on antioxidant activity measured by several biochemical assays. *Food Chem Toxicol.* 2007;45(9):1731-7. doi: [10.1016/j.fct.2007.03.006](https://doi.org/10.1016/j.fct.2007.03.006), PMID [17459553](https://pubmed.ncbi.nlm.nih.gov/17459553/).

22. Abid-Essefi S, Baudrimont I, Hassen W, Ouanes Z, Mobio TA, Anane R, Creppy EE, Bacha H. DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by vitamin E. *Toxicology.* 2003;192(2-3):237-48. doi: [10.1016/s0300-483x\(03\)00329-9](https://doi.org/10.1016/s0300-483x(03)00329-9), PMID [14580790](https://pubmed.ncbi.nlm.nih.gov/14580790/).

23. Freire KRL, Lins ACS, Dórea MC, Santos FAR, Camara CA, Silva TM. Palynological origin, phenolic content, and antioxidant properties of honeybee-collected pollen from Bahia, Brazil. *Molecules.* 2012;17(2):1652-64. doi: [10.3390/molecules17021652](https://doi.org/10.3390/molecules17021652), PMID [22314384](https://pubmed.ncbi.nlm.nih.gov/22314384/).

24. Upasani SM, Kotkar HM, Mendki PS, Maheshwari VL. Partial characterization and insecticidal properties of *Ricinus communis* L foliage flavonoids. *Pest Manag Sci.* 2003;59(12):1349-54. doi: [10.1002/ps.767](https://doi.org/10.1002/ps.767), PMID [14667057](https://pubmed.ncbi.nlm.nih.gov/14667057/).

25. Sarić A, Balog T, Sobocanec S, Kusić B, Sverko V, Rusak G, Likić S, Bubalo D, Pinto B, Reali D, Marotti T. Antioxidant effects of flavonoid from Croatian *Cystus incanus* L. rich bee pollen. *Food Chem Toxicol.* 2009;47(3):547-54. doi: [10.1016/j.fct.2008.12.007](https://doi.org/10.1016/j.fct.2008.12.007), PMID [19124059](https://pubmed.ncbi.nlm.nih.gov/19124059/).

26. LeBlanc BW, Davis OK, Boue S, Delucca A, Deeby T. Antioxidant activity of Sonoran Desert bee pollen. *Food Chem.* 2009;115(4):1299-305. doi: [10.1016/j.foodchem.2009.01.055](https://doi.org/10.1016/j.foodchem.2009.01.055).

27. Hifnawy M, Mahrous A, Ashour R. Phytochemical investigation of *Phoenix canariensis* Hort. ex Chabaud leaves and pollen grains and spathe volatile analysis. *J App Pharm Sci.* 2016;10:3-9. doi: [10.7324/JAPS.2016.601214](https://doi.org/10.7324/JAPS.2016.601214).

28. Ceska O, Styles ED. Flavonoid from *Zea mays* pollen. *Phytochemistry.* 1984;23(8):1822-3. doi: [10.1016/S0031-9422\(00\)83510-4](https://doi.org/10.1016/S0031-9422(00)83510-4).

29. Žilić S, Vančetović J, Janković M, Maksimović V. Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (*Zea mays* L.) pollen. *J Funct Foods.* 2014;10:65-74. doi: [10.1016/j.jff.2014.05.007](https://doi.org/10.1016/j.jff.2014.05.007).

30. Weyesa A, Mulugeta E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: a review. *RSC Adv.* 2020;10(35):20784-93. doi: [10.1039/D0RA03763J](https://doi.org/10.1039/D0RA03763J).

31. Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Shaquizzaman M, Alam MM. Quinoline: A versatile heterocyclic. *Saudi Pharm J.* 2013;21(1):1-12. doi: [10.1016/j.jps.2012.03.002](https://doi.org/10.1016/j.jps.2012.03.002), PMID [23960814](https://pubmed.ncbi.nlm.nih.gov/23960814/).

32. Lin JP, Yang JS, Lin JJ, Lai KC, Lu HF, Ma CY, Sai-Chuen Wu R, Wu KC, Chueh FS, Gibson Wood W, Chung JG. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. *Environ Toxicol.* 2012;27(8):480-4. doi: [10.1002/tox.20662](https://doi.org/10.1002/tox.20662), PMID [21254320](https://pubmed.ncbi.nlm.nih.gov/21254320/).

33. Alonso-Castro AJ, Domínguez F, García-Carrancá A. Rutin exerts antitumor effects on nude mice bearing SW480 tumor. *Arch Med Res.* 2013;44(5):346-51. doi: [10.1016/j.arcmed.2013.06.002](https://doi.org/10.1016/j.arcmed.2013.06.002), PMID [23867787](https://pubmed.ncbi.nlm.nih.gov/23867787/).

34. Jaton JC, Roulin K, Rose K, Sirotnak FM, Lewenstein A, Brunner G, Fankhauser CP, Burger U. The Secalosides, novel tumor cell growth inhibitory glycosides from a pollen extract. *J Nat Prod.* 1997;60(4):356-60. doi: [10.1021/np9606557](https://doi.org/10.1021/np9606557), PMID [9134744](https://pubmed.ncbi.nlm.nih.gov/9134744/).

35. Wang B, Diao Q, Zhang Z, Liu Y, Gao Q, Zhou Y, Li S. Antitumor activity of bee pollen polysaccharides from *Rosa rugosa*. *Mol Med Rep.* 2013;7(5):1555-8. doi: [10.3892/mmr.2013.1382](https://doi.org/10.3892/mmr.2013.1382), PMID [23525233](https://pubmed.ncbi.nlm.nih.gov/23525233/).

36. Kaur R, Nagpal A, Katnoria JK. Exploration of antitumor Properties of Pollen Grains of Plant Species belonging to Fabaceae Family. *J Pharm Sci Res.* 2015;7(3):127-9.

37. Yang X, Guo D, Zhang J, Wu M. Characterization and anti-tumor activity of pollen polysaccharide. *Int Immunopharmacol.* 2007;7(3):401-8. doi: [10.1016/j.intimp.2006.11.001](https://doi.org/10.1016/j.intimp.2006.11.001), PMID [17276899](https://pubmed.ncbi.nlm.nih.gov/17276899/).

38. Akyol S, Ugurcu V, Balci M, Gurel A, Erden G, Cakmak O, Akyol O. Caffeic acid phenethyl ester: its protective role against certain major eye diseases. *J Ocul Pharmacol Ther.* 2014;30(9):700-8. doi: [10.1089/jop.2014.0046](https://doi.org/10.1089/jop.2014.0046), PMID [25100535](https://pubmed.ncbi.nlm.nih.gov/25100535/).

39. Moskaug JØ, Carlsen H, Myhrstad M, Blomhoff R. Molecular imaging of the biological effects of quercetin and quercetin-rich foods. *Mech Ageing Dev.* 2004;125(4):315-24. doi: [10.1016/j.mad.2004.01.007](https://doi.org/10.1016/j.mad.2004.01.007), PMID [15063108](https://pubmed.ncbi.nlm.nih.gov/15063108/).

40. Sezer ED, Oktay LM, Karadadasx E, Memmedov H, Gunel NS, Sozmen E. Assessing anticancer potential of blueberry flavonoids, quercetin, kaempferol, and gentisic acid, Through oxidative stress and apoptosis parameters on HCT-116 cells. *J Med Food.* 2019;22:1-13.

41. Gegotek A, Jarocka-Karpowicz I, Skrzyldewska E. Cytoprotective Effect of ascorbic acid and Rutin against

Oxidative Changes in the proteome of skin Fibroblasts Cultured in a three-dimensional System. *Nutrients*. 2020;12(4):1074. doi: [10.3390/nu12041074](https://doi.org/10.3390/nu12041074), PMID [32294980](https://pubmed.ncbi.nlm.nih.gov/32294980/).

42. Salim El, Abd El-Magid AD, Farara KM, Maria DSM. Antitumoral and antioxidant potential of Egyptian propolis against the PC3 prostate cancer cell line. *Asian Pac J Cancer Prev*. 2015;16(17):7641-51. doi: [10.7314/apjcp.2015.16.17.7641](https://doi.org/10.7314/apjcp.2015.16.17.7641), PMID [26625775](https://pubmed.ncbi.nlm.nih.gov/26625775/).

43. Amiri M, Nasrollahi F, Barghi S, Ebrahimi N, Rajizadeh A, Dehghan Nayyeri N, Kazerouni F, Rahimipour A, Namaki S, Ahmadi H. The effect of ethanol Baneh skin extract on the expressions of Bcl - 2, Bax, and caspase -3 concentration in human prostate cancer pc3 cells. *Int J Cancer Manag*. 2018;11(3):e9865. doi: [10.5812/ijcm.9865](https://doi.org/10.5812/ijcm.9865).

44. Yao K, Xing HC, Wu B, Li Y, Liao AJ, Yang W, Liu ZG. Effect of TIEG1 on apoptosis and expression of Bcl-2/Bax and Pten in leukemic cell lines. *Genet Mol Res*. 2015;14(1):1968-74. doi: [10.4238/2015.March.20.6](https://doi.org/10.4238/2015.March.20.6), PMID [25867342](https://pubmed.ncbi.nlm.nih.gov/25867342/).

45. Begnini KR, Moura de Leon PM, Thurow H, Schultze E, Campos VF, Martins Rodrigues F, Borsuk S, Dellagostin OA, Savegnago L, Roesch-Ely M, Moura S, Padilha FF, Collares T, Pêgas Henriques JA, Seixas FK. Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. *Evid Based Complement Alternat Med*. 2014;2014:639856. doi: [10.1155/2014/639856](https://doi.org/10.1155/2014/639856), PMID [25530785](https://pubmed.ncbi.nlm.nih.gov/25530785/).

46. Ma H, Lai F, Xie H, Wang J, Wang H. Involvement of the Bcl-2 family members in *Pinus massoniana* bark extract induced apoptosis in HeLa cells. *Phytother Res*. 2008;22(11):1472-6. doi: [10.1002/ptr.2496](https://doi.org/10.1002/ptr.2496), PMID [18803251](https://pubmed.ncbi.nlm.nih.gov/18803251/).