

International Journal of Life science and Pharma Research ISSN 2250-0480

Research Article

Buccal tablets of Enalapril Mleate

Formulation And *Invitro*, *In Vivo* Evaluation Of Mucoadhesive Buccal Tablet Of Enalapril Maleate

Joan vijetha R^I And Balamurugan k* [D^I]

¹Annamalai University, Annamalai nagar, Chidambaram, Tamil Nadu, India

Abstract: The buccal area of the mouth mucosal cavity provides an adorable route of administration for systemic and local medication distribution. Among the several transmucosal locations accessible, the mucosa of the buccal cavity was determined to be the most convenient and easily approachable site for the administration of therapeutic drugs as retentive dose forms delivery. The objective of the current research is based on to improve the bioavailability and efficacy of the Enalapril maleate (EM) a commonly used antihypertensive drug through buccal mucosal. The pure drug EM and excipient polymers such as, hydroxypropyl methylcellulose (HPMC K100), Carbopol 934p, Chitosan and polyvinyl pyrrolidone (PVP K30) were obtained from manufacturing industries. EM buccal tablets were prepared using direct compression. The powder blend formulation studies such as Bulk density, tapped density, Hausner ratio, Carr's index and angle of repose were carried out, moisture absorption study was performed by using 5%W/V agar, residence time was carried out using porcine buccal mucosa, ex vivo permeation was performed using Franz diffusion cell and in vivo drug release for API and formulated tablets were studies using rabbits. The result of our study showed that the powder flow properties were found to be within the limits, moisture absorption study was 67.63%, residence time till 8.15 hrs, ex vivo permeation 99.12% and in vivo drug release was extended till 24 hrs. The bioregion in which it will remain in contact were perfectly done with appropriate evaluation techniques (Residence time), the moisture absorption study was carried out to check how much moisture the tablet can absorbed to release the drug and was found satisfactory. The ex vivo permeation study was performed by Franz diffusion cell to check the drug permeation through buccal mucosa. The in vivo studies were performed on New Zealand rabbits and can be concluded that the drug release from the formulated F6 was better than the marketed API.

Key words: Enalapril maleate, buccal delivery system, BSC class III, hypertension, polymers

*Corresponding Author

Citation

K.Balamurugan , Annamalai University, Annamalai nagar, Chidambaram, Tamil Nadu, India

Received On 26 November, 2021
Revised On 9 December, 2021
Accepted On 10 December, 2021
Published On 10 December, 2021

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Joan vijetha R, Balamurugan k, Formulation And Invitro, In Vivo Evaluation Of Mucoadhesive Buccal Tablet Of Enalapril Maleate. (2021). Int. J. Life Sci. Pharma Res. 11(6), P98-105 http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.6. P98-105

This article is under the CC BY- NC-ND Licence (https://creativecommons.org/licenses/by-nc-nd/4.0)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

Int J Life Sci Pharma Res., Volume I I., No 6 (NOVEMBER) 2021, pp P98-105

I. INTRODUCTION

Drug delivery system (DDS) is a tool that permits the introduction of a drug substance within the body and progresses its efficacy and safety by regulating its rate, time, and site of drug release within the body. DDS embraces the administration of the active/inactive therapeutic product, which releases the active moiety of the product, by the successive transport across the biological membranes to the target site of action.² There are various routes of delivering the drug into the systemic circulation such as, ocular, nasal, oral, buccal, sublingual, pulmonary, transdermal, and vaginal/anal³. However, the oral cavity has been cited as one of the best sites for the delivery of drugs, either mucosal or transmucosal can be achieved through this route. The oral mucosal surface, usually being rich in blood supply, enhances drug bioavailability, thereby enabling rapid drug transport into the systemic circulation.⁴ Hence, it is an alternate route of delivery of drugs over both injectables and enteral methods. A Schematic diagram of how the drug absorption takes place via buccal route is shown in figure 1. Mucoadhesive delivery systems (MDDS) is a concept from the early 1980, it has gained considerable interest in pharmaceutical technology. The delivery of drugs through buccal mucosa (inside of the cheeks) of the oral cavity between upper gingiva (gums) is called buccal drug delivery system (BDDS). The mucosa of the oral cavity consists of (1) mucus layer, (2) epithelium, (3) connective tissue and (4) smooth muscle layer. The mechanisms involved in BDDS are drug adhering to the mucous membrane, swelling and diffusion. BDDS targets to treat local & systemic conditions. BDDS give an extended time of contact at the attached site,

upgrade the patient compliance, improve the therapeutic performance of drug, high drug loading capacity, excellent accessibility, painless administration, avoids first pass metabolism and lay a lower financial burden when contrasted with the other dose structures. There are few disadvantages of BDDS such as; if the BDDS adhere too firmly to the mucosa membrane it required much force to extract the formulation after use, which could cause mucosa injury and few patient suffer unpleasant feeling. The aim of the study is to formulate, and evaluate the mucoadhesive buccal tablets of EM by direct compression to improve the drug release and subsequently oral bioavailability. During formulation of the buccal tablets various factors were taken into consideration such as molecular weight of the polymer, pH of the polymer, concentration of the polymer, flexibility of the polymer chain, swelling factor and stereochemistry of the polymers.⁶ The objective of the study is to formulate and evaluate the formulation for its power flow properties (Bulk density, tapped density, Hausner ratio, Carr's index and angle of repose), moisture absorption study, residence time, ex vivo permeation and in vivo drug release. The buccal delivery system will help to overcome the bioavailability problems of EM belongs to an antihypertensive drug of BCS III. Its absolute bioavailability is 40%, $t_{1/2}$ in the range of 11-14 hrs and a daily dose of 2.5 to 40 mg / day. Due to close contact with buccal mucosa the drug penetration will be rapid, bypasses first pass metabolism and increases bioavailability, the EM has further log P value of 2.45 and pKa of 3 which makes it a suitable for oral mucosal drug delivery system.^{5,6} Enalaprilat, the active metabolite of enalapril, inhibits ACE. Inhibition of ACE decreases levels of angiotensin II, leading to less vasoconstriction and decreased blood pressure⁷.

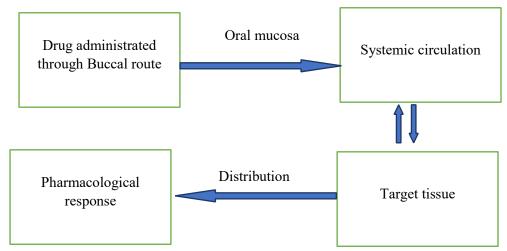


Fig 1. Schematic diagram of drug absorption via buccal route

2. MATERIALS AND METHODS

EM and Aspartame were obtained as a gift sample from Dr. Reddy's Laboratories Ltd. Hyderabad. India. PVP-K30, Chitosan are gift samples from Hetero laboratories, Hyderabad. HPMC K100M and Ethylcellulose were procured from SD Fine Chemicals. Pvt. Ltd. Mumbai. India. Mannitol has been purchased from Finar chemicals. Ltd. Mumbai and magnesium stearate was obtained from Himedia Laboratories and all other chemicals used are of analytical grade. For Ethical Committee Approval for Animals, the animal approval for the ethical committee was obtained from Vaagdevi institute of pharmaceutical science no.:

1663/PO/Re/S/2012/CPCSEA. The animal was maintained as per Helinski declaration for animal maintenance.

2. I Formulation of EM buccal tablets

Each tablet contains 20 mg of EM before direct compression; EM was mixed manually with Carbopol 934p, HPMC K-100M, Chitosan, PVP K-30, mannitol and aspartame were screened through sieve no 60 and mixed for 10 min. The backing layer (EC) was compressed using an 8.0mm flat faced punch on a tablet compression machine. After mixing the blend with magnesium stearate for 3-5 min, the tablets were compressed using 8mm flat-faced punches, with a sixteen station CEMACH rotary tablet-punching machine.

Composition of the prepared mucoadhesive buccal tablet

formulations of EM were given in table 1.

Table 1 Composition of buccal tablets of Enalapril Maleate									
Properties	Ingredients (mg)	FI	F2	F3	F4	F5	F6	F7	F8
API	Enalapril maleate	20	20	20	20	20	20	20	20
mucoadhesive polymer	Carbopol 934	5	10			5	10	10	5
	HPMC K100M	20	20	20	20	20	20	20	20
	Chitosan			7.5	15	7.5	15	7.5	15
Binding agent	PVP K-30	30	30	30	30	30	30	30	30
Lubricant	Mg stearate	I			I		I	I	ı
Sweetening agent	Mannitol	33	28	30.5	23	25.5	13	20.5	18
	Aspartame	I			I		I	I	ı
Backing membrane	Ethyl cellulose	50	50	50	50	50	50	50	50
	Total	160	160	160	160	160	160	160	160

2. 2 Pre formulation studies of EM powder blend

Before direct compression, all the ingredients were screened through sieve no 60. EM was mixed manually with different ratios of polymers such as Carbopol 934p, HPMC K-100M and Chitosan, to this PVP K-30 (binder), mannitol (diluent) and aspartame (sweetening agent) were mixed for 10 min. The above blend was mixed with magnesium stearate (lubricant) for 3-5 min.

2. 3 Evaluation of EM powder blend before compression

2.3.1 Bulk density5

Bulk density is determined by a constant mass method using a measuring cylinder. The bulk density of powder is the ratio of the mass of an untapped powder sample to its volume, including the contribution of the inter-particulate void volume. It is expressed in gm/ml and is given by

Bulk density = M/Vo

Where,

M = mass of the powder (weight taken in g) Vo = Void volume (Untapped Volume in ml).

2.3.2 Tapped density

Tapped density is the ratio between mass of powder blend and its volume after tapping. Tapped volume is measured by tapping the measuring cylinder till there is no change of reading. It is expressed in gm/ml and is given by

Tapped density = M/Vf

Where M = mass of the powder (weight taken in g);Vf= Tapped Volume (Final bulk volume after tapped in ml)

2.3.3 Hausner ratio

Hausner ratio is an indirect index to predict powder flow. It is calculated by the following formula.

Hausner ratio = Tapped density (ρT)/Bulk density (ρB)

2.3.4 Compressibility index (Carr's index)

Compressibility index (Carr's index) is an indirect parameter to assume flow property of powder. Compressibility index determined by measuring the initial volume (Vo) and final volume (Vf) after complete tapings of powder sample in a measuring cylinder.

Compressibility index (CI) =(Vo-Vf)/Vo X 100

2. 4 Angle of repose⁶

The angle of repose is the three-dimensional angle (relative to the horizontal base) assumed by a cone-like pile of material formed by different methods. The method is the fixed height method. In the fixed funnel, the method employs a funnel that was secured with its tip at a given height (2 cm), above the graph paper that was placed on a flat horizontal surface. Granules or tablet blends were carefully poured through the funnel until the apex of the conical pile just touches the tip of the funnel. The angle of repose is calculating using formula.

 θ =tan-I (h/r)

Where, h = height of the powder pile; r = radius of pile circle.

2. 5 Evaluation of EM buccal tablets

2. 6 Moisture absorption study⁷:

Agar (5% w/v) was dissolved in hot water and was transferred into a petri dish and allowed to solidify. Six EM buccal tablets from each formulation were placed in a vacuum oven overnight prior to the study to remove moisture. They were then placed on the surface of the agar and incubated at 37 ± 2 °C for one hr. Then the tablets were removed and weighed and the percentage of moisture absorption was calculated by using following formula:

% Moisture Absorption = Final weight – Initial weight x 100/ Initial Weight

2. 7 Residence time8:

The residence time was tested using a modified USP disintegration apparatus. The disintegration medium was 800 mL of PB (pH 6.8) maintained at 37 °C. The porcine buccal mucosa was tied to the surface of a glass slide vertically attached to the apparatus. The tablet was hydrated using PB (pH 6.8) and was placed in intimate contact with the porcine buccal mucosa for 30 sec. It was then immersed in the disintegration medium, time of displacement of the tablet from the mucosal surface was noted.

2. 8 Ex vivo permeation9

Ex vivo permeation study of EM buccal tablets through the porcine buccal mucosa obtained from local slaughter house was performed using Franz diffusion cell with a diffusion area of 4.53 cm² and the receptor compartment volume of 16 mL at 37 $^{\circ}$ C \pm 0.2 $^{\circ}$ C and 50 rpm. This temperature and rpm were maintained by using a magnetic stirrer. The tissue was placed in Krebs buffer at 4°C until experiments started. The EM buccal tablet was placed in the donor chamber and wetted with I mL of PB (pH 6.8). The amount of drug permeated through the membrane was determined by removing aliquots (0.5 mL) from the receiver chamber at predetermined time intervals and filtered through a filter paper and the medium of the same volume (0.5 mL), which was pre-warmed at 37 °C, was then replaced into the receiver chamber. By measuring the absorbance of the drug at 212 nm using a UV-visible spectrophotometer, the amount of permeation was determined.

2. 9 In vivo drug release 10

In vivo studies were carried out in white New Zealand rabbits in individual cages before the study and were anesthetized by

xylazine 4 mg/kg and ketamine 100 mg/kg intradermal injection upon the introduction of anaesthesia, a drop of water was placed on the surface of the tablet, the tablet was applied to the oral cavity by pressing for 30 sec. Blood samples of 0.5 ml were withdrawn in regular time interval of 0.5 hr, 1 hr, 2 hr, 4 hr, 8 hr, 10 hr, 12 hr, 16 hr, 20 hr and 24 hr was obtained after centrifuged at 4500 rpm for 15 min and the analysis were carried out. A set of 4 rabbits were induced with formulated drugs and 1 rabbit was induced with API.

3. STATISTICAL ANALYSIS:

The statistical analysis was performed using Microsoft excel software 2010. The average of the four rabbits was calculated using the formula , Avg± \sum N=4. The AUC (Area Under the Curve was calculated using the formula , Area=(Y₁+Y_O/2)(X₁-X_O).

4. RESULTS AND DISCUSSION:

4.1 Flow properties of blend

The table 2 below shows the result of powder flow properties such as bulk density, tapped density, Hausner's ratio Carr's index and angle of repose which were performed using the formula to check the were the powder flow of the blend lies within the standard range. The limits of repose angle (°) are good (25-30), excellent (31-35), fair (36-40), passable (41-45), poor (46-55), very poor (56-65) and very very poor > 66. The flow property of the prepared blend was 21.7.±0.1 and was good.

Table 2. Results of flow properties of blend						
Formulation	Angle of	Bulk	Tapped	Hausner's	Carr's compressibility	
Code	repose(θ)	density(g/cm³)	density(g/cm³)	ratio	index (%)	
FI	25.6±0.05	0.58±0.01	0.67 ±0.01	1.15	13.45	
F2	37.9±0.25	0.66±0.06	0.76 ±0.06	1.15	13.15	
F3	22.1±0.1	0.69±0.02	0.76 ±0.02	1.10	10.00	
F4	21.4±0.25	0.64±0.06	0.75 ±0.06	1.17	14.66	
F5	30.5±0.1	0.59±0.04	0.69 ±0.04	1.16	14.49	
F6	21.7.±0.1	0.59± 0.04	0.69 ± 0.04	1.16	14.49	
F7	38.9±0.35	0.66±0.02	0.75 ±0.02	1.13	1200	
F8	34.7'±0.1	0.58±0.03	0.67 ±0.03	1.15	13.45	

4.2 Moisture absorption study and Residence time

Based on the moisture absorption studies for the buccal tablet, one can determine the integrity after absorbing moisture^{7.} The table 3 and 4 below shows the moisture

absorption and retention time which varies depending on the polymer ratio. FI and F2 are less susceptible to moisture absorption without Chitosan, and can be seen that the moisture absorption and retention time is also less with the F3 and F4 due to the absence of Carbopol, whereas F6 has the highest moisture absorption and retention time due to the highest polymer ratio. Retention

time helps one to understand how much min the drug can stay in contact with the buccal cavity.

Table 3. Results of moisture absorption study & retention time						
Formulation Code	Moisture absorption (%)	Retention time (Min)				
FI	12.09±1.22	5 hrs 41 min				
F2	16.72± 1.57	5 hrs 55 min				
F3	11.06±1.36	5 hrs 38 min				
F4	13.00±1.36	5 hrs 52 min				
F5	54.87±0.24	6 hrs 55 min				
F6	67.63 ±1.22	8 hrs 15 min				
F7	53.76±0.23	6 hrs 20 min				
F8	60.57±1.25	7 hrs 50 min				

± SD

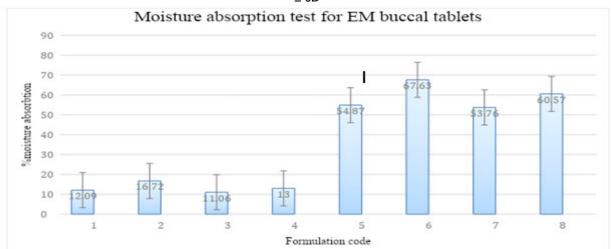


Fig 2. Graphical representation of moisture absorption

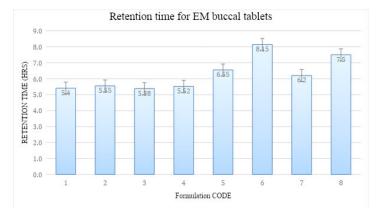


Fig 3. Graphical representation of retention time

4.3 Ex vivo permeation study:

The ex vivo permeation study shows the feasibility of this route of administration for a drug candidate. Porcine buccal mucosa has been extensively used as an ex vivo model to study the permeability in the buccal route by using the Franz diffusion cell. A mucosal tissue thickness of about 500 µm is recommended for *in vitro* transbuccal permeation studies

since the epithelium remained the major permeability barrier for all diffusants at this thickness. The ex vivo permeation study using Franz diffusion cell showed that the EM buccal tablets were released from the formulation and permeated through the buccal membrane and hence could possibly permeate through the human buccal membrane. The results were shown in table 4 and figure 4, indicating that the drug permeation was slow and steady.

	Table 4. Results of ex vivo permeation study							
Time		Drug release %						
	FI	F2	F3	F4	F5	F6	F7	F8
	09.17±0.20	09.29±0.22	10.27±0.26	10.77±0.30	12.17±0.20	15.58±0.10	14.17±0.20	15.17±0.20
2	20.22±0.18	18.10±0.06	23.38±0.17	27.88±0.24	25.02±0.18	30.93±0.24	26.02±0.20	20.22±0.28
3	29.01±0.09	25.03±0.12	40.04±0.28	34.65±0.34	33.01±0.09	46.81±0.25	31.11±0.11	31.21±0.12
4	34.87±0.20	33.83±0.20	46.57±0.09	50.34±0.36	39.37±0.20	68.73±0.47	44.07±0.26	40.37±0.13
5	57.23±0.10	54.09±0.15	57.11±0.05	60.71±0.68	45.23±0.11	76.02±0.11	57.23±0.10	54.33±0.14
6	66.58±0.15	62.08±0.19	70.96±0.53	63.25±0.37	60.68±0.14	82.45±0.22	69.58±0.05	68.58±0.15
7	70.24±0.16	68.46±0.20	76.28±0.11	69.54±0.24	72.20±0.12	88.76±0.26	75.24±0.16	76.94±0.26
8	76.43±0.11	72.38±0.23	78.06±0.65	75.06±0.20	78.46±0.10	99.12±0.19	81.32±0.10	86.43±0.11

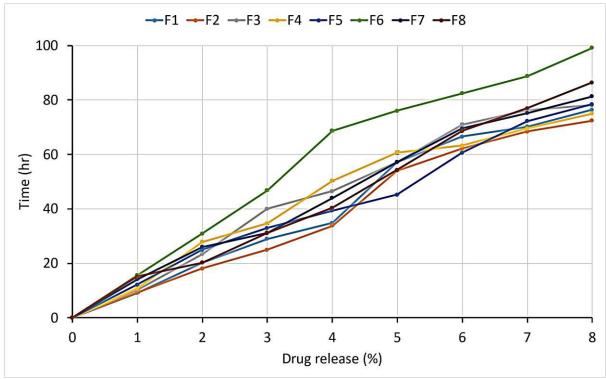


Fig 4. Results of ex vivo permeation

4.4 In vivo drug release

From the result of bulk flow, moisture absorbance, ex vivo permeation study and residence study it can be concluded that F6 formulation gave the best result. Hence in vivo studies were carried out for formulation F6. A set of 4 rabbits were taken and the

formulated buccal tablet was placed in the buccal cavity of the rabbit and for I rabbit API i.e EM was placed in the buccal cavity. Through this in vivo study the drug release, AUC and $T_{\rm max}$ were also calculated. The time taken for the drug to get absorbed till elimination of the drug was noted in table 5 and, the graphical representation of the same is shown in figure 5.

Table 5. Results of in vivo drug release					
Time (hrs)	Rabbit	Rabbit			
	F6	API			
0.5	9.0±1.04	15±1.20			
I	13.90±1.50	32.4±0.23			
2	25.54±3.42	56.98±1.34			
4	51.05±1.58	76.21±0.14			
6	99.32±0.71	98.05±0.19			
8	83.92±5.08	69.37±0.86			
10	64.24±3.00	28.33±0.91			
12	38.33±6.81	6.7±1.54			
16	27.79±1.52	0			
20	6.37±1.02	0			
24	0	0			

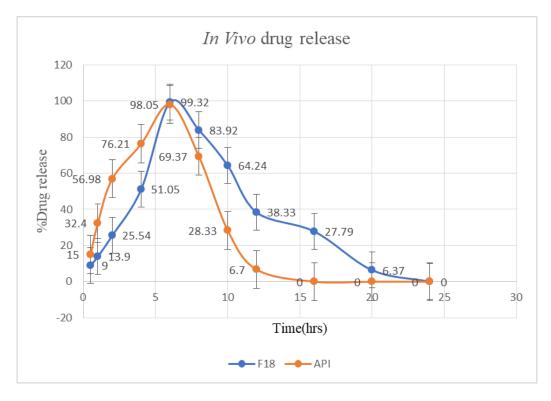


Fig 5. In vivo drug release

From the graph, the AUC of EM buccal tablet F6 was calculated and was found to be 892.66 mg.hrs/litre and $T_{\rm max}$ was 6hr. and for API AUC was calculated and was found to be to be 677.54 mg.hrs/litre and Tmax was 6hr.

5. CONCLUSION

In the current research, the region in which it will remain in contact was perfectly done with appropriate evaluation techniques (Residence time), the moisture absorption study was carried out to check how much moisture the tablet can absorb to release the drug and was found satisfactory. The ex vivo permeation study was performed by Franz diffusion cell to check the drug permeation through porcine buccal mucosa and was found to have drug permeation till 8hrs and Ajay Semalty et al, 24 formulated Enalapril maleate film found to have permeation till 10 hrs were as the study done by Dilip kumar et.al 25 formulated buccal tablets showed permeation till 8hr similar to the current study. The in vivo studies were performed on New Zealand rabbits and can be concluded that the drug release from the formulated F6 was better than the marketed API. The results of the study show that therapeutic levels of enalapril can be delivered through buccal cavity. It was concluded from the powder flow

property, residential time, ex vivo permeation and in vivo drug release that the formulation F6 is the most promising ratio of polymers that has been used.

6. AUTHORS CONTRIBUTION STATEMENT

Joan Vijetha R contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript and Balamurugan K contributed to discuss the methodology and to correct the manuscript.

7. ACKNOWLEDGEMENTS

Authors thankfully acknowledge Dr. Reddy's laboratories Ltd. Hyderabad for providing the gift sample of enalapril maleate. The authors are thankful to all the staff and colleagues of the Department of Pharmacy, Annamalai University. For their continued support. We would also like to thank Vaagdevi institute of pharmaceutical science for providing all the need to carry out animal study.

8. CONFLICT OF INTEREST

Conflict of interest declared none

8. REFERENCE

- Amit Nayak K, Syed Ahmad A, Sarwar Beg, Tahseen Ara J Mohammad Hasnain S. Drug delivery. Applications of Nanocomposite Materials in Drug Delivery. 2018 June:255-282.
- Hong Wen, Huijeong Jung, Xuhong Li. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. 2015 Nov:1327-1340.
- 3. Laura Elizabet Lansdowne. Drug delivery. Technology networks drug delivery.2020 Dec.
- 4. Jeremy Bartlett A, Kees van der Voort Maarschalk. Understanding the Oral Mucosal Absorption and Resulting Clinical Pharmacokinetics of Asenapine. AAPS PharmSciTech. 2012 Dec; 13(4): 1110–1115.
- 5. Bindu Boddupalli M, Zulkar Mohammed NK, Ravinder Nath A, David Banji. Mucoadhesive drug delivery system: An overview. J Adv Pharm Technol Res. 2010 Oct-Dec; 1(4): 381–387.
- 6. Abdul Ahad, Abdullah Mohammed Al-Mohizea, Fahad Ibrahim Al-Jenoobi, Mohd. Aqil. Transdermal delivery

- of angiotensin II receptor blockers (ARBs), angiotensin converting enzyme inhibitors (ACEIs) and others for management of hypertension. Drug Delivery,2014 Jul; 23(5): 79-590.
- 7. Vivek Puri, Ameya Sharma, Paramjot Maman, Nishant Rathore, Inderbir Singh, overview of mucoadhesive biopolymers for buccal drug delivery systems. Int J App Pharm. 2019 Oct; 11(6):18-29.
- 8. Kuldeep Waidya, Tenali Janaki, Bali Reddy, Krishna Reddy K.N.V, Rao, Rajeshwar Dutt. Formulation and characterisation of repaglinide buccal tablets. IJPAR. 2019 Jan Mar; 8(1): 67-80
- 9. Mangilal I T, Uurekha U, Meena P, Priyanka B, Ravikumar M, Naga Ganesh M.
- 10. Formulation and evaluation of metoprolol tartrate buccal adhesive tablets using natural edible mucoadhesives. IJPRAS, 2015; 4(2):29-46.
- 11. Chinna Reddy P, Chaitanya K.S.C, Madhusudan Rao Y, A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods, Daru. 2011; 19(6): 385–403.
- 12. Chinna Reddy Palem, Ramesh Gannu, Shravan Kumar Yamsani, Vamshi Vishnu Yamsani& Madhusudan Rao Yamsani. Development of bioadhesive buccal tablets for felodipine and pioglitazone in combined dosage form: In vitro, ex vivo, and in vivo characterization. Drug Delivery. 2011 Feb; 18(5):344-352.
- Amira El-Nahas E, Ahmed Allam N, Amal El-Kamel H. Mucoadhesive buccal tablets containing silymarin Eudrag it-loaded nanoparticles: formulation, characterisation and ex vivo permeation. J Microencapsul.2017 Aug;34(5):463-474
- Celik B. Risperidone mucoadhesive buccal tablets: formulation design, optimization and evaluation. Drug Design, Development and Therapy.2021(11).3355-3365
- 15. Ayrivan Puratchikody, Viswanadhan Vasantha Prasanth, Sam Thomas Mathew, Balaraman Ashok Kumar. Development and characterization of mucoadhesive patches of salbutamol sulfate for unidirectional buccal drug delivery. Development and

- characterization of mucoadhesive patches of salbutamol sulfate for unidirectional buccal drug delivery. Acta Pharm. 2011 Jun;61(2):157-70
- Esim O, Savaser A, Ozkan C.K, Bayrak Z, Tas C, Ozkana Y. Effect of polymer type on characteristics of buccal tablets using factorial design. Saudi Pharm J. 2018 Jan; 26(1): 53–63.
- 17. Silvia Rossi Giuseppina Sandri Carla M, Caramella. Buccal drug delivery: A challenge already won?. Drug Discovery Today: Technologies.2005;2(1):59-65
- Debjit Bhowmik, Smapath kumar K.P and Lokesh Deb. Buccal Drug Delivery System-A Novel Drug Delivery System. Research Journal of Science and Technology. 2018 June; 8(2):1-9
- Ikinci G, Senel S, Wilson C.G. Development of a buccal bioadhesive nicotine tablet formulation for smoking cessation. International Journal of Pharmaceutics.2004; 27:173-198.
- Gazzi Shaker, Chegonda Kumar K, Chandra Sekhara Rao Gonugunta. Formulation and Evaluation of Bioadhesive Buccal Drug Delivery of Tizanidine Hydrochloride Tablets. AAPS PharmSci Tech.2009; 10(2):530-539.
- 21. Gupta A, Garg G, Khar R.K. Mucoadhesive buccal drug delivery system-A Review. Indian Drugs.1992; 29(13):586-593.
- 22. Vijayraghavan C, Ravi T.K. Buccal delivery of Nifedipine using novel natural mucoadhesive polymer as an excipients in buccal tablets. Indian Drugs.2004;41(3):143-148.
- 23. Pramodkumar T.M, Desai K.G, Shivakumar H.G. Mechanism of buccal permeation enhancers, Ind. J. Pharm. Edu. 2002; 36(3):147-152.
- 24. Ajay Semalty, Ujjwal Nautiyal, Mona Semalty. Formulation and Evaluation of Mucoadhesive Buccal Films of Enalapril Maleate. Indian J. Pharm. Sci., 2010, 72 (5): 571-575.
- 25. Dilip Kumar. Formulation and *in-vitro* evaluation of buccoadhesive tablets of an antihypertensive drug: enalapril maleate. Pharmatutor.2013.