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Abstract: Arsenic is considered as a class 1 carcinogen and first among toxicants ranked by the Environmental Protection Agency. 
Arsenic toxicity includes deleterious effect on gut microbiota, gastrointestinal disorder, immunological disturbances, disrupting 
metabolism and compromising the host health. Over 103–104 microorganisms with possibly 500 to 1,000 different species inhabit 
within the gut with 150 times more genes than the human genome. They help to digest food and play an essential role in our well-
being. Gut microbiota affects our whole metabolism as well as the immune system of the host. Arsenic induced toxicity is a major 
health challenge leading to many neurological and immunological problems and inhibits the growth of many bacterial species 
common in the gastrointestinal tract. The Gut microbiome carries multiple functions that are beneficial to the hosts. Arsenic 
exposure will be a critical concern for human health. Human gut microbiomes may be biochemically responsible for arsenic 
metabolism, change in the arsenic compounds and several arsenical transformations that may lead to arsenic toxicity. Arsenic 
metabolism occurs in the liver by arsenic methyltransferase (AS3MT) which methylates it into the inorganic arsenic, and ultimately 
eliminated through urine. Recent studies showed that biotransformation of gut microbiome causes alteration of microbiome 
morphology and physiology that may alter the ArsBC gene activity due to arsenic toxicity. We aimed at summarising that arsenic 
induced perturbed gut microbiome communities that trigger systemic responses in diverse organs. Due to gut microbiota 
perturbation, changes in gut permeability and metabolism have been identified, and there is a shift in the population of gut bacterial 
species having arsenic resistant genes that result in disturbance of host metabolic homeostasis. Here we review known aspects of 
arsenic gut microbes' interaction, this will help to understand about arsenic toxicity with the gut microbiome and their deleterious 
effects. 
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1. INTRODUCTION  
 
Arsenic ranks first among toxicants, as indicated by the 
Environmental Protection Agency (EPA) and the Agency for 
Toxic Substances and Disease Registry (ATSDR).1 Arsenic is 
ubiquitous in the environment, and humans are thus exposed 
to inorganic and organic arsenic through medicinal, criminal, 
environmental and occupational sources.2  More than 80% of 
arsenic compounds are used to manufacture products with 
agriculture applications such as insecticides, herbicides, 
fungicides, algaecides, wood preservatives, dyestuffs, and 
medicines to eradicate tapeworms in sheep and cattles. 
However, the primary exposure to inorganic arsenic is the 
ingestion of high metal contaminated drinking water for the 
general population. Arsenic has been found in groundwater 
in West Bengal and Bangladesh, and individuals using such 
water suffer from arsenicosis.3 The level of arsenic in 
drinking water is found more than the standard limit (10 
μg/L) recommended by the World Health Organization 
(WHO) and EPA, being toxic to over 200 million people 
worlwide.4 Arsenic is found in nature as inorganic arsenic 
compounds by forming compounds with oxygen, chlorine 
and sulphur.5 Accumulation of inorganic arsenic and 
methylated arsenicals are found in various brain parts, with 
maximum amount in the pituitary.6 The impact of 
microbiomes on host health and diseases is well reported. 
The gut microbiome is maintained by host environments that 
affect the host's metabolic, immune, and neuroendocrine 
functions, making it an important pathway contributing to 

health inequities.7 Report showed that the human gut 
microbiome may biochemically change the arsenic 
compounds, and several arsenical transformations by bacteria 
may lead to arsenic toxicity to the host.8 Arsenic exposure is 
common through arsenic contaminated water and food, 
leading to disturbance in gut microbial activities. Microbiome 
composition and diversity in the gastrointestinal tract (GIT) 
vary, with individuals playing an essential role in determining 
the initial fate, mobility and relative toxicity of arsenic, 
whether inhaled or ingested. Gut microbiome also plays a 
major role in arsenic redox speciation, which enters GIT by 
intake of arsenic polluted food and water.9 Toxicity of arsenic 
is associated with its metabolism from inorganic to organic 
forms, namely the trivalent species monomethylarsonic acid 
(MMA) and dimethylarsinic acid (DMA). Inorganic arsenic is 
more toxic than organic arsenic (MMA, DMA), and arsenite 
(As (III)) toxicity is greater than arsenate toxicity (As (V)).10 
The disease showing symptom variability is may be due to the 
link between arsenic metabolism via intestinal microbiota, 
host exposure, and disease possibility.9 The disturbance in 
the gut microbiome could result in gut dysbacteriosis, 
gastrointestinal infection, immunomodulation, and 
neurobehavioral changes.11-13 Therefore, the microbiota of 
GIT plays a crucial role in the host's health and metabolism, 
including humans.14 This review summarises the role of gut 
microbiomes that may influence the arsenic metabolism and 
variation in toxicity of arsenic susceptibility to the host health 
[Figure 1]. 

 

 

Fig 1: Environmental exposure of arsenic possesses alteration in gut microbiome  
linked to disease occurrence in hosts. Adapted from: Assefa et al., 2020 15. 

 
1.1 Occurrence, distribution and compounds 
 
Arsenic is a metalloid present ubiquitously in nature. Trace amounts 
are found in soil, water and air, present as sulfides in combination 
with ores of lead, copper, nickel, antimony, cobalt and iron. The 
sources of arsenic are volcanic eruption, smelting of metals, fuel 
combustion and the practice of pesticides. The water acts as a 

carrier of arsenic in the environment, and it is used in agrochemical 
products, pharma companies and glass industries.16,17 Arsenic is 
geologically present in groundwater, making it an integral part of 
drinking water in most parts of the world. On comparing globally, 
Bangladesh, India, China and Taiwan report the highest level of 
arsenic.18 Compounds of arsenic can be categorised into three 
classes: inorganic, organic, and arsine gas [Table 1]. 
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Table 1.  Naturally occurring arsenic and its compounds 

CAS no. Chemical 
name 

Synonyms Formul
a 

Referenc
e 

            Inorganic arsenic (As) 

1327-53-3 As (III) oxide 
As trioxide, arsenous oxide, white 

As 
As2O3 16 

13768-07-5 Arsenious acid Arsenious acid AsHO2 17 
7784-34-1 As (III) chloride As trichloride, arsenous trichloride AsCl3 17 
1303-33-9 As (III) sulfide As trisulfide orpiment As2S3 17 
1303-28-2 As (V) oxide As pentoxide As2O5 17 
7778-39-4 Arsenic acid Ortho-arsenic acid H3AsO4 17 
10102-53-1 Arsenic acid Meta-arsenic acid HAsO3 17 

Organic arsenic 
593-52-2 Methyl arsine Arsine, methyl CH3AsH2 17 
593-57-7 Dimethyl arsine Arsine, dimethyl C2H7As 17 

593-88-4 Trimethylarsine  (CH3)₃As 17 
Arsine gas 

7784-42-1 Arsine Arsenic hydride AsH3 19 
 
Inorganic arsenic has two most common oxidation states: 
trivalent and pentavalent. Inorganic arsenic compounds with 
trivalent oxidation state including arsenic trioxide, sodium 
arsenite and arsenic trichloride, while pentavalent oxidation 
state includes arsenic pentoxide, arsenic acid, and 
arsenates,eg. lead arsenate (PbHAsO4) and calcium arsenate 
[Ca3(AsO4)2]. Arsanilic acid (C6H8AsNO3), methylarsonic acid 
(CH5AsO3), dimethylarsinic acid (C2H7AsO2) and 
arsenobetaine (C5H11AsO2) are usual organic arsenic 
compounds.20 Arsine gas (AsH3) is colourless and flammable 
and generated when arsenic containing compounds release 
nascent hydrogen. Arsenic toxicity is distinct from the 
toxicity of inorganic or organic arsenic compounds.21 

 

1.2 Arsenic toxicity 
 

At present, arsenic exposure is still a major health problem. 
About 140 million people in 50 countries consume arsenic 
contaminated water above the WHO standard (0.05mg).22 
Arsenic interferes with general cellular processes like cellular 
enzymes, cell respiration and mitosis by affecting the 
sulfhydryl group of cells, thus referred to as protoplasmic 
poison.22  Effects of arsenic exposure on lungs, kidney, 
bladder, liver, testis, uterus and prostate gland lead to cardiac 
diseases, developmental defects, haematological, neurological 
and reproductive problems, black foot disease and cancer.24 
Arsenic causes hepatotoxicity indicated by an increase in 
alkaline phosphatase, acid phosphatase, serum glutamic 
oxaloacetic transaminase (SGOT) and serum glutamic pyruvic 
transaminase (SGPT) due to hepatic damage. Arsenic is also 
deposited in the liver and blood and affects enzymatic 
pathways.25  Toxicity of arsenic plays a significant role in 
generating reactive oxygen species (ROS), DNA repair 
inhibition, abnormal gene expression via epigenetic 
modifications, altered glucocorticoid and hypothalamus-
pituitary-adrenal (HPA) axis pathway signalling and adult 
neurogenesis.9 Recent studies suggested that impaired 
neurological functions are mainly caused in children on 
exposure to low arsenic concentration.26 HPA axis is a multi-
centre combination involved in modulating a variety of 
biological and physiological phenomenon. Arsenic exposure 
leads to a disruption in the system that leads to a chain of 

widespread effects. Arsenic exposure has been shown to 
elevate hypothalamic corticotropin releasing factor (CRF), 
modified corticosterone (CORT) secretion, reduction in 
hippocampal hydroxysteroid dehydrogenase type 1 (11β-
HSD1), and decreased expression of brain derived 
neurotrophic factor (BDNF). This impairment in the HPA 
axis leads to molecular and cognitive pathology.5,27  
 
1.3 Absorption, accumulation and methylation 
 
Arsenic ingestion in human body occurs via food and water, 
which is absorbed mainly through GIT even at a low dose. 
The uptake of almost 90% of soluble arsenic is in inorganic 
trivalent or pentavalent forms.28 After absorption in the 
stomach and intestine, it is released into the bloodstream and 
accumulates in many parts of the brain, muscles, bones, 
kidneys and lungs in the form of inorganic and methylated 
arsenicals.6,29 Flow of arsenic from the blood seems to follow 
a three-compartment model, which speculates 
biomethylation of inorganic arsenic.16 In humans, data based 
on autopsy indicates the highest concentration of arsenic in 
skin, nails and hair.30 Arsenic distribution in the organs shows 
2-25 times greater in the kidneys, liver, bile, brain, skeleton, 
skin, and blood for trivalent than pentavalent forms.31 Arsenic 
is detoxified through a process called methylation. It is 
cycling in any environment, and human exposure is recently 
considered a bioactivation and detoxification pathway and is 
directly related to its chemical speciation.32 Methylation 
materialises through alternating reductive and oxidative 
methylation reactions; the addition of methyl group (CH3) is 
the main factor for reducing pentavalent to trivalent 
arsenic.33 Methylated MMA and DMA are relatively less toxic, 
having less binding capacity to tissues and greater elimination 
from the body than unmethylated forms. Arsenic metabolism 
occurs in the liver. Arsenic methyltransferase (AS3MT)  
methylates the inorganic arsenic in liver in the presence of a 
methyl donor S-adenosylmethionine (SAM) and a cofactor 
glutathione (GSH) to significant monomethylated (MMAIII), 

monomethylarsonic acid (MMAV) and dimethylated arsenic 
metabolites (DMAIII), and dimethylarsinic acid (DMAV), which 
is ultimately eliminated through urine [Figure 2].10,34 
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Fig 2. Proposed pathway of arsenic metabolism in the human body. Arsenic methyltransferase (AS3MT) 
methylates arsenate (As V) reduced to arsenite (As III) in the presence of a methyl donor S-

adenosylmethionine (SAM) and a cofactor glutathione (GSH) to significant monomethylated (MMAIII), 
monomethylarsonic acid (MMAV) and dimethylated arsenic metabolites (DMAIII) and dimethylarsinic acid 

(DMAV). Adapted from: Marafante E et al., 1985, Khairul Is et al., 2017, Wei S et al., 2019 10,34,35. 
 

Reports showed that the gut microbiome of humans is 
directly involved in the arsenic reduction/oxidation 
methylation pathway. In this process, inorganic arsenic (As 
V), on reduction, converts into more toxic inorganic arsenic 
(As III), which on methylation and oxidation transforms into 
MMAV simultaneously. On reduction of MMAV, MMAIII is 
formed, which on oxidative methylation converted into 
DMAV, and further reduced to DMAIII .36-37 

 

2. Arsenic-Microbe's interaction  
 

Arsenic-microbes interaction derives from environmental 
microbiology, where microbial metabolism is the major 
factor of arsenic speciation, mobility, and toxicity.8 In all 
environments, microbes are the leading carriers, where 
arsenic and microbes coexist together and thus structural 
part of arsenic cycling for arsenic transformation. Arsenic is 
transformed by oxidation, reduction, or demethylation based 
on microbial catalysts.31 All the reactions carried out by 
microbes are of self-interest as may be carried out for 
detoxification of poison or cellular energy generation.9 
Recent studies showed that due to arsenic toxicity, gut 
microbiome biotransformation cause alteration of 
microbiome morphology and physiology that may directly 
alter the ArsBC gene activity.8 Although ingested arsenic 
come first in contact with the GIT and effect resident 
bacteria. Orally ingested arsenic is detoxified and removed 
from the body by gut microbiomes by affecting their 
metabolism and making the novel arsenic metabolites 
accessible to the host.38 Toxicant killing of microbiome 
members may alter the maintenance of the gut epithelial 
barrier, regulate host inflammatory responses, and synthesise 
or recycle essential metabolites and cofactors involved in the 
host toxic responses pathway.8 Exposure of environmentally 
relevant concentrations of arsenic in drinking water impact 
the microbial community of the colon to alter both 
microbiome and host metabolism.12 

 

2.1 Effect on gut microbiome 
 

Several studies showed that due to arsenic, the constitution 
of 
the microbiome community is changed. In the context of 

phylogenetic examining studies, fish, rodents, and ruminants 

are compatible in representing arsenic induced disrupting 

microbiome community constitution.39,40 Arsenic exposure 

leads to alteration of microbiome composition in the gut 

because of various factors, including variable arsenic 

tolerance and detoxification capacity, e.g. Methyl Arsenite 

efflux permease (ArsP), non-heme iron-dependent type-I 

extradiol dioxygenase with lyase activity of C-As bond  (ArsI) 

or methyl arsenite oxidase (ArsH), among genera and 

species, arsenic–based antibiotics production, e.g. 

nourseothricin;41-43 and those changes could have developed 

arsenic resistance acquired from spontaneous mutations. 

This may modify host metabolism that, in turn, alter gut 

microbial community.44 Reports suggested that mice exposed 

to arsenic results in elevation of Bacteroidetes population.12 

Elevated Bacteroidetes number may be due to gram-negative 

bacteria as they have lipopolysaccharide (LPS) on their outer 

membrane. The LPS cause widespread inflammation, 

disrupting normal biological functions, and it is an important 

virulence factor.45 Increased concentrations of pathogenic 

arginine metabolites have been detected in the arsenic 

exposed mouse circulation. Intracellular pathogens such as 

Salmonella typhimurium increase the level of arginine 

metabolites by utilising the arginine pool of the host on 

infection. The elevation in arginine metabolites is a causative 

factor to perturb the gut microbiomes and infection.46 The 

New Hampshire Birth Cohort Study (NHBCS) showed the 

link between arsenic exposure and gut microbiome 

constitution in over 1500 pregnant women (18–45 ages) and 

subsequently in their offsprings. In 204 arsenic exposed six 

week old infants, urinary samples showed arsenic 

concentration below the quantification limit of 4.8μg/L and 

suppressed microbiome composition of several genera 

(Firmicutes, Bacteroides, and Bifidobacterium). They reported 

sex-dependent differences in the infant gut microbiome 

composition, leading to perturbation in the gut microbiota 

community.47 Six week old female C57B1/6 mice showed 

variation in the various intestinal flora, leading to clear β-
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diversity clustering between treated and control individuals, 

exposing arsenic resulting decrease in order Streptophyta, 

Clostridiales, and Erysipelotrichales, whereas Bacillales were 

increased in arsenic exposed individuals.48 Stool microbiome 

samples of Bangladesh children were analysed who were 

exposed to arsenic contaminated drinking water and found 

modified microbiome constitutional shifts, with elevated copy 

number of Proteobacteria and arsB and arsC on increasing 

arsenic exposure.49 

 

3. Arsenic toxicity to Gut microbiome and host 
health 

 

The gut microbiome impacts various biological functions, 
including metabolic processes, energy cycle, and immune 
system development.50 In the human body, cells and gut 
microbiome due to stored arsenic within them, harmful 
effects are ensured.51 Disruption of gut microbiome 

composition due to arsenic exposure results in host diseases. 
Bacterial communities are susceptible to altering the host 
surrounding and thus disturbance in gut microbiomes and 
secretion of virulence factors such as LPS due to microbiome 
shift favouring more infective bacterial species, cause an 
increase in pathogenic arginine metabolites and may be 
responsible for originating host diseases.13 Advancement of 
liver fibrosis and hepatocarcinoma are induced by the change 
in gut microbiome permeability and rise in pathogen-
associated molecular patterns (PAMPs) such as LPS. 
Moreover, arsenic exposed at a higher dose increases the 
chances of mitochondria damage to impair energy 
metabolism and cause cell death.52 Altered gut microbiome 
constitution and its functions are associated with oxidative 
stress and many pathological diseases like diabetes, 
inflammatory bowel disease (IBD), cancer, Parkinson's 
disease, cardiovascular diseases, allergies, and inflammatory 
diseases occurring in hosts due to dysbiosis.52-54 [Table 2].  

 

Table 2: Arsenic toxicity induced gut microbiome and related health effects 

Animal Model Dose of arsenic exposure Major findings References 

Mice 
Arsenic trioxide (10, and 
250 ppb) for 2, 5, and 10 

weeks 

Arsenic concentration changed the diversity of bacteria at 
both genetic and morphological levels, especially within two 

bacterial phylum Bacteroidetes and Firmicutes. The level of 
arsenate metabolites was found elevated in the blood. 

Histopathological study of the liver revealed increased nitrate 
and nitrite levels at a higher dose and decreased bacterial 

colonies. 

12 

Larvae 
zebrafish 

20 days post 
fertilisation 

(dpf) 

Arsenic compound (10, 50, 
and 100 ppb) exposure for 

20 days 

Arsenic alters the microbial composition, diversity and 
causes dysbiosis, and at higher doses increase the level of 

class 1 integron gene in developing larval zebrafish 
microbiota. The higher concentration causes increased 
expression of the int gene (1 integron gene), which is 

responsible for horizontal transfer of resistance gene and 
even at the lowest concentration, there was destabilisation in 

bacterial colonies. 

40 

Mice 
C57BL/6 

 

Fed with 10ppm arsenic 
compound in drinking water 

for four weeks 

The 16S rRNA sequencing after a particular exposure of 
arsenic revealed imbalanced homeostasis of the host and 

changed significantly gut microbiota. 

46 
 
 

Mice 
C57BL/6 

 

One group of mice fed with 
50 ppm cadmium chloride 
and another group with 50 
ppm sodium arsenite for 

two weeks as drinking water 

16S rRNA gene amplicon sequencing and untargeted LC-
MS/MS metabolomics indicate that bacterial diversity in 
cadmium was much lower compared to arsenic both 

quantitatively and qualitatively. 

55 

Mice 
C57BL/6 

 
 
 

Exposed with 0, 50, and 500 
ppb of arsenic with zinc 

adequate and with 0, 50, and 
500 ppb of arsenic with 

marginally zinc-deficient for 
six weeks in fresh drinking 

water 

This study was carried out to observe the individual and 
combined effect of two metals, zinc, and arsenic on the gut 
microbiota of mice. The zinc was restricted in the diet of 
mice while arsenic was provided; this resulted in reduced 

diversity of bacteria while their combined effect modified the 
diversity. There was also a decrease in zinc levels in plasma, 

and DNA damage was also reported. 

56 

Pathogen-free 
grade C57BL/6 

female mice 

Treated with 100ppb of 
sodium arsenite for 13 
weeks in drinking water 

16S rRNA sequencing data showed that the overall diversity 
of bacteria was reduced. The expression of genes related to 
carbohydrate metabolism decreased while lipopolysaccharide 
synthesis gene, DNA repair gene, and stress responsive gene 
expression increased after treatment. The expression level of 

genes related to the synthesis of vitamins B6, B12, and K2 
and folic acid elevated. 

57 

Wild-type and 
IL-10 gene 

knockout mice 

Arsenic compound 
exposure (10ppm) for four 

weeks in drinking water 

16S rRNA gene sequencing and HPLC-ICP-MS data showed 
that due to the absence of IL-10 gene, the rate of infection 

was higher in the host's gut, which in turn affects the 
composition of bacteria and as well as arsenic metabolism. 

58 
 
 
 

  
 



 

ijlpr 2021; doi 10.22376/ijpbs/lpr.2021.11.6.L52-60                                                                                           Environmental Science                 

 

L-57 

 

3.1 Gastrointestinal tract disorders 
 
In the GIT, very high exposure to arsenic causes gastric mucosal 
hyperaemia and haemorrhagic injury, whereas low and moderate 
arsenic level alters cell signalling that regulates cell differentiation 
and functions.59 Reports suggest that moderate level of arsenic 
exposure (250 ppb) degrade intestinal microbial biofilms that 
increase bacterial spores, reduce intracellular inclusion and alter 
gut microbiome leading to modified physiological functions 
resulting in the potential opening of niche for pathogenic 
microbes like, Bacteroidetes which may cause GIT related 
disorders and inflammation.12 Intestinal microbes are responsible 
for converting organic arsenic to harmful inorganic arsenic, 
altering certain microbial population viability. When 50 ppm 
arsenic is exposed to mice results in variation in microbiome 
metabolic profile by altering some gut microbial family's 
abundance suggested by the metagenomic study.46 

 

3.2 Immunological disturbances  
 

The infectious agents of pathogenic bacteria trigger immune 
system alterations leading to several immunological 
disturbances.60 Dysfunction of mucosal barrier is caused by 
bacterial penetration product resulting in direct contact of 
immune cell.61 Mechanisms implied by chronic microbiome 
change for disease growth are similar to vascular and metabolic 
disease, including dysfunctional metabolism, altered lipid -
deposition, and chronic inflammation.62,63 Inflammatory dendritic 
cells (DCs) promote the secretion of proinflammatory, 
inflammatory chemokines and prostaglandins, IL-17 produce 
TNF-α and IL-6 leads to the Th17 cells, which caused 
inflammation and tissue destruction, which are responsible for 
various many immune-inflammatory diseases.64,65 population-
based study reveals that arsenic exposure in human placenta and 
placental blood is related to oxidative stress, inflammation, and 
immune disruption.66 Repeated exposure of arsenite to adult 
mice cause an abundance of bacteria belonging to genera 
Alistipes, Bilophila (causative agent for inflammatory bowel 
syndrome (IBD)) and Lactobacillus johnonii.67 The production of 
IL-12 was enhanced in arsenic exposed mice mediated by 
Lactococcus lactis.68 Arsenic toxicity can contribute to the 
intestinal microbiota composition and gut-associated immune 
response. Repeated arsenic exposure caused a transient 
decrease in the recovery of intestinal bacteria, a shift in the 
bacterial population with an abundance of arsenic resistance 
genes, and evidence for host metabolism of arsenite into less-
reactive trivalent methylated species. In adult CD-1 mice, 
arsenic induced a high level of CC chemokines and 
proinflammatory and anti-inflammatory cytokine secretion in the 
intestine. Arsenic exposure at PND21 resulted in the 
development of distinct bacterial populations.69 Study 
demonstrated that arsenic induced gut microbiome disturbs the 
intestinal homeostasis to regulate colon cancer genes. The data 
indicated downregulation of the Nucleotide domain containing 
protein 2 (NOD2) and anti-inflammatory cytokines and 
upregulation of dendritic cells, macrophages and inflammatory 
cytokines. β- catenin (colon cancer marker) and arrest in 
Activated inflammatory cytokines (APC) were observed. The 
results suggested that arsenic altered gut microbiome indirectly 
shifts inflammatory cytokines mediated immune system 
destruction and β- catenin.70 Therefore, the available data 

indicate that arsenic interactions with the gut microbiome and 
immune system result in the compromised health status of the 
host. 
 

3.3 Disrupting metabolic functions 
 
The microbial community mainly present on the lining of outer 
mucosa performed a crucial function in metabolic and host 
defence by supplying nutrients to regulate fat globules in the 
epithelial lining of the gut.71 Mice infected with Helicobacter 
trigonum exposed to arsenic alters gut microbiota showed 
significant changes in the number and regulatory pattern of the 
metabolites. Another major pathway perturbed due to arsenic 
exposure after gut microbiome alteration in phospholipid 
metabolism in the host, followed by sphingolipid, fatty acid 
metabolism, cholesterol biosynthesis and metabolism, and 
tryptophan metabolism. This indicates that changes in the gut 
microbiome exacerbate arsenic toxicity.41, 72 

 

4. CONCLUSION 
 
The present review focus on the influence of arsenic toxicity 
on the gut microbiome. Disturbance in the gut microbiome 
leads to a variety of challenges to human health. Under the 
arsenic microenvironment, the cell membrane of intestinal 
bacteria may absorb the arsenic via ion channels thus, making 
it less available to the host, and it may lead to perturbations 
of gut microbiomes. Further, exposure to arsenic also leads 
to epigenetic changes in the host, deleterious effects on gut 
microbiota, endocrine disruption, inhibition of DNA repair, 
and also affect embryonic development and modification of 
cellular signalling via altered activation of transcription 
factors. It acts as an indicator of microbial perturbation and 
infection. The available data on arsenic microbe interaction 
suggests that gastrointestinal tract disorder, disruption of 
metabolic function, and immunological disturbances 
collectively provide mechanistic insight suggesting that the 
disturbance in the composition of the microbial profile of gut 
microbiota directly impacts the host health. However, the 
precise molecular mechanism of arsenic-induced toxicity on 
human health is still under investigation. Therefore, more 
focus will be required to understand the interactions among 
arsenic toxicity, gut microbiome and host health. 
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