

International Journal of Life science and Pharma Research ISSN 2250-0480

Research Article

Monocrotophos Toxicity

Toxic Effect Of Monocrotophos On Various Blood Parameters In Edible Freshwater Fish Oreochromis mossambicus (Tilapia)

A.Solaiappan ¹* and J.Prakash Sahaya Leon (D²)

Department of Zoology, Government Arts College for Men, Krishnagiri-I, Tamilnadu, India, Affiliated to Periyar University, Salem

²Department of Zoology, Government Arts College for Men, Krishnagiri-I, and Tamilnadu, India, Affiliated to Periyar University, Salem

Abstract: In modern agriculture, farmers are using the authenticity of pesticides for agricultural activities. Water bodies are often polluted with various harmfull chemical substances. Fishes are very important for human nourishment. In this study, the effect of Pesticide monocrotophos on various hematological parameters such as RBC, WBC, and Hemoglobin was observed in freshwater fish Oreochromis mossambicus. The fish were exposed to various sub-lethal concentrations (1/10, 1/20, and 1/30) of Monocrotophos for 10, 20, and 30 days. The blood samples were analyzed at the end of every exposure period. Increased count of WBC observed in Lower Sub lethal concentration (21.25, 21.76, 22.01), Medium Sub-lethal concentration (21.69, 22.48, 22.89), and Higher Sub lethal concentration (22.47, 23.54, 23.69) of monocrotophos at various monocrotophos exposure periods on experimental fish Oreochromis mossambicus. Decreased count of RBC observed in Lower Sub-lethal concentration (3.58,3.21,3.08), Medium Sub-lethal concentration (2.97,2.35,2.19) and Higher Sub-lethal concentration (2.41,2.16,2.02) and decreased level of Hemoglobin were observed in Lower Sub-lethal concentration (21.25,21.76,22.01), Medium Sub-lethal concentration (21.69,22.48,22.89) and Higher Sub-lethal concentration (22.47,23.54,23.69) of monocrotophos at various exposure period on fish Oreochromis mossambicus. The 1/10 sub-lethal concentration of monocrotophos showed a high level of variation on 30th-day exposure. Reduction of RBC indicates hemolysis in fish and increased WBC count has been considered to be an adaptation of animals to meet stressful conditions. In the present study, it was found that the effect of monocrotophos alters the activity of various blood parameters in freshwater fish Oreochromis mossambicus. Therefore, the experiment is an attempt to study the toxicity of the pesticide Monocrotophos concerning blood parameters of freshwater fish Oreochromis mossambicus. It is concluded from this study that exposure to Monocrotophos affects the hematological parameters of fish.

Keywords: Oreochromis mossambicus, Hemoglobin, White Blood Cells (WBC), Red Blood Cells (RBC), Monocrotophos, edible fish

*Corresponding Author

Citation

A.Solaiappan , Department of Zoology, Government Arts College for Men, Krishnagiri-I, Tamilnadu, India, Affiliated to Periyar University, Salem

Received On 24 June, 2021

Revised On 22 November, 2021

Accepted On 27 November, 2021

Published On 30 November, 2021

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

A. Solaiappan and J.Prakash Sahaya Leon, Toxic Effect of Monocrotophos on Various Blood Parameters in Edible Freshwater Fish Oreochromis Mossambicus (Tilapia).(2021).Int. J. Life Sci. Pharma Res. I I (6), L130-136

http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.6.L130-136

This article is under the CC BY- NC-ND Licence (https://creativecommons.org/licenses/by-nc-nd/4.0)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

Int J Life Sci Pharma Res., Volume II., No 6 (NOVEMBER) 2021, pp L130-136

I. INTRODUCTION

Insect repellent like pyrethroids are considered the most harmful for aquatic life¹. Pesticides, applied in some restricted areas also were carried away by rains to water bodies like rivers, ponds and alters the physicochemical properties of water. Pesticides chemical properties remain unchanged or active for longer days in the environment, concentrating in the bodies of animals and threatening aquatic life³. Currently, pesticides are widely used in modern agriculture to aid in the production of pest-free food. However, some pesticides have the potential to cause serious health and environmental damage. The pesticide residues reach the environment by the runoff from agricultural fields and affect the biotic life4. Pyrethroid Pesticides are used mainly to control the pest ⁵. The increasing use of pesticides mostly affects live organisms causing chemical pollution⁶. Farmers use monocrotophos in their fields for controlling insect pests. Residual of these pesticides create alteration into the ecosystem and disturb the healthy environment and aquatic forms. Monocrotophos is mainly used in agriculture and animal husbandry⁷. Nontargeted organisms like fish are mainly affected by those pesticides poisoning, which is also harmful for human consumption. Many harmful pesticides have been studied to produce several biochemical and hematological changes in freshwater fish at sub-lethal levels. Monocrotophos is one of the most preferable organophosphate pesticides, used by farmers. Pesticides change the blood parameters like RBC and WBC count and also change the level of Hb. Blood is the most important body fluid, acting as a vehicle for mobilizing defense mechanisms against diseases. Its composition reflects the physiological condition of the fish . Various tissues and organs of the body directly come in contact with blood. The physiological status of an organism is reflected in its blood parameters. Pesticides bind with blood proteins and induce changes in blood hematology like blood glucose level, serum protein levels, count of RBC, and WBC. The hematological study is an easy tool to determine the health of fishes⁸. Pathophysiological changes in animals were determined by Haematological parameters. Blood indices vary with different environmental conditions and chemicals9. Undesirable changes in the aquatic media reflect in the blood parameters through gills¹⁰. Blood components like RBC, WBC, and Hb are important diagnosing factors for identifying the functional status of the fish exposed to monocrotophos toxicants. Blood parameters can serve as a valuable tool in detecting biological and physiological changes taking place in aquatic animals¹¹. Hematological parameters are used as an index to protect the fish species during stress conditions¹². Hematological studies are frequently applied for the diagnosis of diseases in aquatic organisms like fish in the field of aquaculture¹³. The present study aims to analyze the effect of Monocrotophos with different sub-lethal (1/10, 1/20, 1/30) concentration on Hematological parameters (RBC, WBC, and Hb) of freshwater fish Oreochromis mossambicus exposed on different exposure periods (10, 20 and 30 days). The present study is vital because it analyses the health of fish, and also it monitors the long effects of pesticides on aquatic life.

2. MATERIALS AND METHODS

The freshwater fish *O.mossambicus* was procured from the KRP dam located in the Krishnagiri district, Tamil nadu, India. The fishes was authenticated by a zoologist at the department of Zoology, Government Arts College for Men, Krishnagiri-I, and Tamilnadu, India. The collected fishes

were aggregated in a large cement tank for 4 weeks which was cleaned with 0.1% of the Potassium Permanganate solution. The fish were fed with a mixture of rice bran and groundnut oil cake. The average length of fish was 15-17 cm and weight of 18 to 20 grams were selected for the study. Pesticide, Monocrotophos (25% EC) was used for the experiment. Finney's probit analysis method was used for finding the sub-lethal conc. of Monocrotophos¹⁴. The 96hr LC₅₀ value of Monocrotophos was found as 4.9 mg/l. The experimental setup was made into four groups, Group-I consist of 10 fish with pesticide-free water, Group-2 consist of 10 fishes with 1/10th sub-lethal of cypermethrin treated water, Group-3 consisted of 10 Fishes with 1/20th sub lethal of cypermethrin treated water, and Group-4 consist of 10 fish with 1/30th sub lethal of cypermethrin treated water. At the end of every experimental period (10, 20, and 30 days) the Blood samples were collected from fishes of each experimental group (Eppendroff tubes with EDTA anticoagulant) 15. Neubauer hemocytometer is used for the total count of RBC, WBC, and Sahli's method used for Hb Estimation¹⁶.

3. STATISTICAL ANALYSIS

The values are expressed as mean ± SD. Data were statistically analyzed using SPSS 20.0 software by Analysis of Variance (ANOVA) along with Duncan's Multiple Range Test (DMRT)¹⁷, which was applied to find out the significant difference between various treatment means and control means for the observed parameters. A probability value (P) of less than 0.05 was considered statistically significant.

4. RESULT

Fish, treated to various sub-lethal concentrations (1/10th, 1/20th, and 1/30th) of Monocrotophos, showed a decreased level of RBC, WBC, and increased level of hemoglobin at the end of the 30th day of the exposure period compared with the control group.

4.1 RBC COUNT

Fish, exposed at I/10th, I/20th, and I/30th sub-lethal concentration levels of Monocrotophos for 10, 20, and 30 days, showed decreased levels of RBC count compared with control. Maximum decreased level of RBC count observed in 30 days at I/10th of sub-lethal concentration of Monocrotophos treated experiment. The low value of RBC was observed at 10 days of exposure in I/30th level of sub-lethal concentration. (Table-1).

4.2 WBC COUNT

The total count of WBC was increased in Monocrotophos treated fish in all the exposure periods of 10, 20, and 30 days in various sub-lethal concentrations (1/10, 1/20, 1/30) compared to the control group. On the 30th day, Monocrotophos exposed fish showed a maximum increased level of WBC count at 1/10th sub-lethal concentration. The 10th and 20th day exposed fishes at 1/10, 1/20 and 1/30 sub-lethal concentration also showed increased levels of WBC count compared with the control group. (Table-2).

4.3 HAEMOGLOBIN PERCENTAGE

Decreased content of Hemoglobin was observed in all three exposure periods (10, 20, and 30 days) at various sub-lethal concentrations of (1/10, 1/20, and 1/30) monocrotophos compared with the control group. A highly decreased level of

Hb was observed in the 30 $^{\rm th}$ day exposure period at $1/10^{\rm th}$ sub-lethal concentration of cypermethrin exposure. The $10^{\rm th}$ and $20^{\rm th}$ day exposed fishes at 1/10, 1/20 and 1/30 sub-lethal

concentrations of cypermethrin also showed decreased levels of Hemoglobin compared with the control group. (Table-3).

Table 1. RBC count (cu.mm) in the blood sample of *O.mossambicus* exposed to various sublethal concentration of Monocrotophos at various days of exposure.

GROUP	10 DAYS	20 DAYS	30 DAYS
	Exposure	Exposure	Exposure
Control	4.64±0.62 ^a	4.86±0.52 ^a	4.95±0.42 ^a
Lower Sublethal concentration (1/30)	$3.58\pm0.25^{\rm b}$	3.21 ± 0.35^{b}	3.08 ± 0.56^{b}
Medium Sublethal concentration (1/20)	2.97±0.15°	2.35±0.41°	2.19±0.23°
Higher Sublethal concentration (1/10)	2.41 ± 0.52^{d}	2.16 ± 0.57^{d}	2.02 ± 0.71^{d}

Values are mean \pm S.D., Sample Size (N) = 6. Values that do not share common superscript within row and column with superscripts a,b,c,d differ significantly at 5% (P<0.05) level between exposure and control groups.

Decreased level of RBC count was observed in a blood sample of experimental fish *Oreochromis mossambicus* in the various sublethal concentration of cypermethrin (1/10, 1/20, and 1/30) for 30 days when it is compared with a control group. A low count of RBC was observed in the higher sub lethal concentration at 30 days of exposure.

Table 2. WBC count (cu.mm) in the blood sample of *O.mossambicus* exposed to various sublethal concentration of Monocrotophos at various days (10.20 and 30) of exposure.

GROUP	10 DAYS	20 DAYS	30 DAYS
	Exposure	Exposure	Exposure
Control	20.29±0.05 ^a	20.26±0.03°	20.27 ± 0.07^{a}
Lower Sublethal concentration (1/30)	21.25±0.32 ^b	21.76±0.13 ^b	22.01±0.11 ^b
Medium Sublethal concentration (1/20)	21.69±0.25°	22.48±0.32°	22.89±0.36°
Higher Sublethal concentration (1/10)	22.47 ± 0.32^{d}	23.54±0.71 ^d	23.69 ± 0.29^{d}

Values are mean \pm S.D., Sample Size (N) = 6. Values that do not share common superscript within row and column with superscripts a,b,c,d differ significantly at 5% (P<0.05) level between exposure and control groups.

Increased level of WBC count was observed in a blood sample of experimental fish *Oreochromis mossambicus* in the various sublethal concentration of cypermethrin (1/10, 1/20, and 1/30) for 30 days when it is compared with a control group. A high count of WBC was observed in the higher sub-lethal concentration at 30 days of exposure.

Table 3. Hemoglobin (%) level in the blood sample of *O.mossambicus* exposed to various sublethal concentration of Monocrotophos at various days (10.20 and 30) of exposure.

GROUP	10 DAYS	20 DAYS	30 DAYS
	Exposure	Exposure	Exposure
Control	10.95±0.27 ^a	10.91±0.13 ^a	10.89 ± 0.18^{a}
Lower Sublethal concentration (1/30)	9.86±0.15 ^b	9.52 ± 0.34^{b}	9.13 ± 0.32^{b}
Medium Sublethal concentration (1/20)	9.12±0.42°	9.01±0.19°	8.72±0.41°
Higher Sublethal concentration (1/10)	8.72 ± 0.58^{d}	8.21±0.35 ^d	8.02 ± 0.56^{d}

Values are mean \pm S.D., Sample Size (N) = 6. Values that do not share common superscript within row and column with superscripts a,b,c,d differ significantly at 5% (P<0.05) level between exposure and control groups.

Decreased content of Hb was observed in a blood sample of experimental fish *Oreochromis mossambicus* in the various sub-lethal concentration of cypermethrin (1/10, 1/20, and 1/30) for 30 days when it is compared with a control group. Low content of Hb was observed in the higher sub lethal concentration at 30 days of exposure.

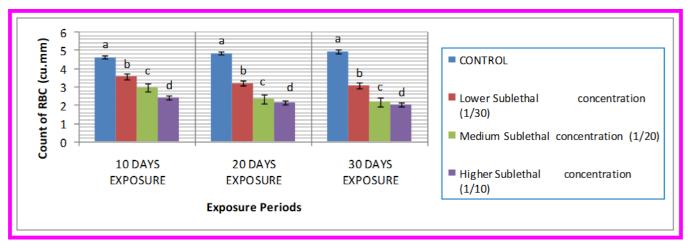


Fig. I.RBC count (cu. mm) of blood sample in freshwater fish *O. mossambicus* exposed to various sub lethal concentrations of Monocrotophos at various days of exposure.

Fig. I shows decreased count of RBC in a blood sample of experimental fish *Oreochromis mossambicus* treated with various sublethal concentrations of cypermethrin (1/10, 1/20, and 1/30) for 30 days when it is compared with the control group. A highly decreased level of RBC count was observed in the higher sub lethal concentration at 30 days of exposure.

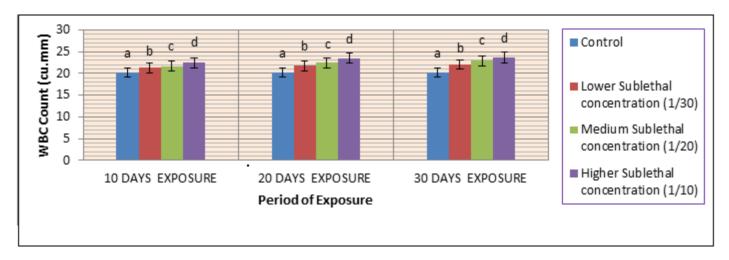


Fig.2.WBC count (cu. mm) of blood sample in freshwater fish *O. mossambicus* exposed to various sub lethal concentrations of Monocrotophos at various days of exposure.

Fig.2 shows an increased count of WBC in a blood sample of experimental fish *Oreochromis mossambicus* treated with various sub-lethal concentrations of cypermethrin (1/10, 1/20, and 1/30) for 30 days when it is compared with a control group. A highly increased level of WBC count was observed in the higher sub lethal concentration at 30 days of exposure.

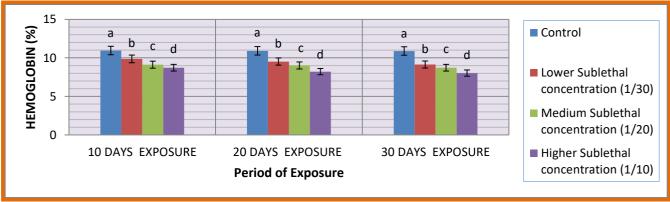


Fig.3.Hemoglobin (%) level of blood sample in freshwater fish *O. mossambicus* exposed to various sub lethal concentrations of Monocrotophos at various days of exposure.

Fig.3 shows decreased level of Hb in a blood sample of experimental fish *Oreochromis mossambicus* treated with various sub-lethal concentrations of cypermethrin (1/10,

1/20, and 1/30) for 30 days when it is compared with a control group. A highly decreased level of Hb was observed in the higher sub lethal concentration at 30 days of exposure.

5. DISCUSSION

Hematological tests have become one of the important diagnostic tools. Changes in the conditions of water quality and environment vary the blood composition of fish. In this study, a drastic reduction of RBC was observed in Monocrotophos treated fish O. Mossambicus at various sub lethal concentrations (1/10th, 1/20th, and 1/30th). Decreased level of RBC, noted in pesticide-treated fish, is due to the damage of Erythropoietic tissue 18. Reddy and Bashmohideen 19 reported a reduced value of RBC after 48 hours of treatment to cypermethrin in fish Cyprinuscarpio. Similar results have been reported by Cazenave et al.20 Reduction in RBC was reported for Cypermethrin treated Labeorohita and African catfish (C.gariepinus) treated with diazinon by Adedejiet al.21 Reduction of RBC indicates hemorrhage and hemolysis in fishes on exposure to insecticide. Pesticide monocrotophos extend the toxic effect on fishes, the reduction in RBC count is observed in treated fishes, and similar reports were observed by Panigrahi et al.²² and Agarwal et al.²³. In earlier studies after exposure to sub-lethal doses of lead, the freshwater fish showed anaemia²⁴. The decreased level of Hb observed in Monocrotophos treated fish, O. Mossambicus at various sub-lethal (1/10th, 1/20th, and 1/30th) conc. for the different duration (10,20 and 30 days) in the present study, may be due to increased destruction and lesser synthesis of hemoglobin due to the toxic effect of Monocrotophos. A significant reduction in Hb and RBC levels was observed by Adhikari et al., 25. Reduction in hemoglobin content of treated fish may be an indication of a decline in Hb synthesis and also reduction in oxygen-carrying capacity. Significant haemoglobin reduction and reduced RBC count in the blood observed in freshwater fish O.mossambicus exposed to Ramaswamy et al., 26 pesticides were studied by WBC level increased in Monocrotophos treated fish, O. Mossambicus for 30 days duration. Leucocytes value increased due to stimulation of the hemopoietic tissues. Declined level of hemoglobin and RBC count observed by an organophosphorus insecticide in Japanese quail was reported by Germanys-Katha waka et al.²⁷ A reduction in haemoglobin level was also observed in the Coho salmon exposed to pulp mill effluent²⁸. The reduction of hemoglobin in the present experiment was supported by the toxic studyon Cyprinus carpio²⁹. In the present study, the total WBC count of the Monocrotophos treated fish, O. Mossambicus, has remarkably increased at various sub lethal concentrations (1/10,1/20 and 1/30) and different exposure periods. The same results were observed by Venkataraman et al. 30 Increasing WBC count has

been considered to be an adaptation method of animals to meet stressful conditions. A significant decrease was observed in the WBC count of *Channapunctatus* after exposure to various sub lethal concentrations of ammonia³¹. Dabrowaska& Wlasow³² have also observed a decrease in WBC counts in *Cyprinuscarpio*. Hickely³³ observed that Leucopenia has a specific response of toxic stress related to the activities on fishes. The present experiment indicates that the pesticide stress stimulates the white blood cells to produce more at the time of exposure period. The present study concludes that Hematological changes are observed in the blood RBC, WBC, Hemoglobin of freshwater fish *Oreochromis mossambicus* by Monocrotophos depending upon the pesticide toxicity, dose-response, an exposure period of the fish.

6. CONCLUSION

Fish Oreochromis mossambicus treated to various sub-lethal concentrations of monocrotophos showed a decreased level of RBC, WBC, and increased level of hemoglobin at the end of the exposure period compared to a control group. The present experiment concluded that above the safe level uses of monocrotophos disturbs Hematological parameters like RBC, WBC, and Hemoglobin, and it may reduce the survival ability of the fish Oreochromis mossambicus. The experiment results provide awareness on safe level usage of Monocrotophos and it is recommended that the unsafe uses of monocrotophos should be restricted.

7. ACKNOWLEDGEMENT

The authors of the present work wish to thank the authorities and supporters of Government Arts College for Men, Krishnagiri, Tamilnadu for their help.

8. AUTHOR CONTRIBUTION STATEMENT

Mr.Solaiappan.A conceptualized and gathered the data about this work. Dr Prakash Sahaya Leon. J analyzed these data and necessary inputs were given towards the designing of the manuscript. All authors discussed the methodology, results and contributed to the final manuscript.

9. CONFLICT OF INTEREST

There is no conflict of interest.

10. REFERENCES

- Benarji G, Rajehdranath T. Haematological changes induced by an organophosphorus insecticide in a freshwater fish
- 2. Clariasbatrachus(Linnaeus), Trop. Fresh wat. Bio.1990;2:197-202.
- 3. Sitaramaraju S, Prasad SD, Chengareddy U, Narayana E. Impact of pesticides used for crop production on the environment. J Chem Pharm Sci.2014; 3-75-9.
- 4. Hill IR. Aquatic organisms and pyrethroids. Pestic Sci. 1989; 27(4):429-57. DOI: 10.1002/ps.2780270408.
- Thangnipon W, Luangpaiboon P, Thangnipon W, Chinobul S. Effects of the organophosphate insecticide, monocrotophos. On acetylcholinesterase activity and histology of gill and brain in the tilapia fish

- (Oreochromis*niloticus*) brain. Neurochem Res. 1995; 20(5):515-9.
- b. Bradbury SP, Coats JR. Comparative toxicology of the pyrethroid insecticides. Rev Environ Contam Toxicol. 1989a;108:133-77. doi: 10.1007/978-1-4613-8850-0_4, PMID 2646661.
- Nagaraju B, VenkataRathnammaV. Effect of profenofosan organophosphate on protein level in some tissues of freshwater fish *Labeorohita* (Hamilton). Int J Pharm Sci. 2013; 5(1):276-9.
- 8. Rao JV. Effects of monocrotophos and its analogs in acetylcholinesterase activity's inhibition and its pattern of recovery on euryhaline fish, *Oreochromis mossambicus*. Ecotoxicol Environ Saf.2004; 59:217-22.

- 9. Haya K. Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem. 1989; 8(5):381-91. Doi: 10.1002/etc.5620080504.
- Prakash Sahaya Leon J, Muthulingam M. Impact of endosulfan on phosphatase Activity in Brain and Muscle of Freshwater fish *ChannaStriatus* (Bloch). Int J Dev Research. 2013; 3(02):001-4.
- 11. Rajesh V, Prakash Sahaya Leon J, Mariappan M, Balakrishnan K. Histopathological effect of pesticide quinalphos toxicity on gill and liver of freshwater fish, *CatlaCatla*. Int J Mod Res Rev. 2017; 5(11):1654-7.
- Tilak KS, Veeraiah K, Rao DK. Biochemical changes induced by chlorpyrifos, an organophosphate compound in sub lethal concentrations to the freshwater fish Catlacatla, Labeo rohita, and Cirrhinusmrigala. J Environ Biol. 2005; 26(2); Suppl: 341- 7. PMID 16334264.
- Adhikari S, Sarkar B, Chatterjee A, Mahapatra CT, Ayyappan S. Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicol Environ Saf. 2004; 58(2):220-6. DOI: 10.1016/j.ecoenv.2003.12.003, PMID 15157576.
- 14. Ranzani-Paiva MJT, Ishikawa CM, Campos BES, Eiras AC. Hematological characteristics associated with parasitism in mullets. Mugilplatanus Günther, from the estuarine region of Cananéia, São Paulo, Brasil. Revta Bras. Zool.1997; 14(2):329-39.Finney DJ. Probit analysis. 3rd ed. Cambridge: Cambridge University Press; 1971.
- 15. Roberts RJ.Patologia de los peces (Edn.Mundi-prensa) Espana. 1981; pp370.
- Mishra N, Pandey PK, Datta Munshi JS, Singh BR. Hematological parameters of an air-breathing mud eel, Amphipnouscuchia (Ham.) (Amphipnoidae; Pisces). J Fish Biology.1977; 10(6):567-73. doi:10.1111/j.1095-8649.1977. Tb 04089. X.
- Duncan DB. Multiple range tests for correlated and heteroscedastic means. Biometrics. 1957;13(2):359-64.
 DOI: 10.2307/2527799.
- Chen X, Yin D, Hu S, Hou Y. Immunotoxicity of pentachlorophenol on macrophage immunity and IgM secretion of the crucian carp (Carassius auratus). Bull Environ ContamToxicol. 2004; 73(1):153-60. DOI: 10.1007/s00128-004-0407-z, PMID 15386086.
- Reddy PM, Bashamohideen M. Fenvalerate and Cypermethrin Induced Changes in the Haematological Parameters of Cyprinus Carpio. Acta HydrochimHydrobiol. 1989; 17(1):101-7. DOI: 10.1002/aheh.19890170116.
- Cazenave J, Wunderlin DA, Hued AC, BistoniMdlA. Hematological parameters in a Neotropical fish, Corydoras paleatus (Jenyns, 1842) (Pisces, Callichthyidae), captured from pristine and polluted water. Hydrobiologia. 2005; 537(1-3):25-33. DOI:

- 10.1007/s10750-004-1638-z.
- 21. Adedeji O, Adedeji O, Adeyemo O, Agbede S. Acute effects of diazinon On Blood Parameters. In the African catfish (*Clariasgariepinus*). Int J Hematol. 2009; 5(2).
- Panigrahi AK, Misra BN. Effect of mercury on the morphology of erythrocytes in Anabas scandens. Bull Environ ContamToxicol. 1979; 23(6):784-7. DOI: 10.1007/BF01770042, PMID 519061.
- 23. Agarwal VP, Sandhya K, Goel KA. Lithium induced hematological changes in snake-headed fish, *Channa punctatus*. Ind. J. Zootomy.1983; 10:97-100.
- Srivastava AK, Mishra S. Blood dyscrasia in a teleost, Colisa fasdatus after acute exposure to sub lethal concentrations of lead. J Fish Biology. 1979; 14(2):199-203. DOI: 10.1111/j.1095-8649, 1979.Tb03511.x.
- Adhikari S, Sarkar B, Chatterjee A, Mahapatra CT, Ayyappan S. Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicol Environ Saf. 2004; 58(2):220-6. DOI: 10.1016/j.ecoenv.2003.12.003. PMID 15157576.
- Ramaswamy M, Thangavel P, Dhanalakshmi S, 26. Govindaraj P, Karuppiah D. Comparative study on the synergistic and individual effects of Dimecron and Cuman L on oxygen uptake and hematological edible freshwater parameters of a fish, Sarotherodonmossambicus(Peters). Bull Environ ContamToxicol. 1996; 56(5):796-802. DOI: 10.1007/s001289900116, PMID 8661864.
- Gromysz-Kalkowaka K, Szubartowska E, Kcezanowska E. Peripheral blood in the Japanese quail (CoturnixcoturnixJaponico) in acute poisoning by different insecticides. Comp. Biochem Physiol. 1985; 81C (1):209-12.
- 28. McLean. Effects of a 124 and 25days exposure to kraft pulp mill effluent on the blood and tissue of juvenile Coho salmon. J Fish Res Bd Can. 1973; 30.
- 29. Paul Raj S. Studies on the effect of paper factory effluent on the hydrography of the river Cauvery and its toxicity to common carp, *Cyprinus carpio* var. communis (Linnaeus) [Ph.D. thesis]. Coimbatore: Tamil Nadu Agricultural University; 1982.
- Venkataramana GV, Rani PN, Murthy PS. Impact of Malathion on the biochemical parameters of gobiid fish, Glossogobiusgiuris (Ham). J Environ Biol. 2006; 27(1):119-22. PMID 16850888.
- 31. Kumar R, Muni A. Effect of ammonia on hematological parameters of Indian Murrell, *Channa punctatus* (Bloch). | Ecobiol. 1997; 9(2):93-6.
- 32. Dabrowska H, Wlasow T. Sublethal effects of ammonia on certain biochemical and hematological indicators in common carp (*Cyprinus carpio L.*). Comp. Biochem Physiol. 1986; 83C:179-84.
- 33. Hickey CR. Fish hematology, its use, and significance.N Y Fish Game J.1976; 23:170-5.