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Abstract: Radiation is a common occurrence in our daily lives that comes from both natural and man-made sources. Ionizing 
Radiation (IR) causes damage either directly or indirectly through the generation of reactive oxygen species (ROS). Oxidative
damage to DNA, lipids, proteins, and many metabolites occurs through a complex series of processes that are enhanced by 
endogenous signalling which is activated by free radicals. Though literature is abundant on ROS and antioxidants at high doses, 
no study to the best of our knowledge has assessed the ROS levels after Multi Detector Computed Tomography (MDCT) 
examination (i.e. in diagnostic range radiation). The aim of the present study was to assess the production of ROS after 
diagnostic level radiation by MDCT examination and at 24 hour follow up. The study involved fifty patients posted for clinically 
indicated MDCT which were recruited. The average radiation dose was 2-9 mGy. Three blood samples were drawn, one prior 
to CT (control sample), within half an hour of CT (post CT) and 24 hrs after CT. 3 ml venous blood was withdrawn in aseptic 
conditions and immediately serum was isolated for ROS assessment. The blood examination results were compared in 
immediate and post 24 hour after MDCT and both were compared with control values and correlated with radiation
parameters. Our results have shown a significant increase in ROS level in immediate post CT samples compared to prior CT 
scan samples (control) (p value <0.0001). The ROS levels reduced at 24 hours compared to immediate post CT, however they 
were still higher than control values. Our findings reflect that there is a rapid increase in free radicals production in the 
mitochondria after diagnostic level radiation. Detection of higher ROS levels at 24 hours suggests incomplete repair with the
presence of some residual oxidative species at 24 hours.  
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1. INTRODUCTION 
 
In recent years, faster and higher resolution studies with 
dynamic contrast, like CT angiography, cardiac CT, and 
virtual CT colonoscopy have become available in parallel to 
the development of high technology devices like the 
multidetector CT (MDCT) 1. This has led to a crescendo in 
the demands for radiological studies for clinicians in an effort 
to redesign their diagnostic approaches and treatment plans, 
which has also given rise to an increase in the exposure of 
patients to ionizing radiation 2, 5, 6, 7. In England, CT formed 4% 
of the radiological applications in 1990, compared to the USA 
for which CT made up 10% of the radiological applications in 
2000. However, these procedures were found to be 
responsible for the large majority of ionizing radiation 
exposure to patients (40% in England; 65% in the USA) 3. The 
increasing amount of ionizing radiation that is received from 
controllable artificial radiation resources gives rise to 
possible risks of developing cancer over the course of a 
lifetime and hence constitutes a threat to public health 8. 
Exposure to ionizing radiation (IR) induces various types of 
DNA damage, of which DNA double-strand breaks are the 
most severe, leading to genomic instability, tumorigenesis, 
and cell death. Hence, cells have developed DNA damage 
responses and repair mechanisms. IR also causes the 
accumulation of endogenous reactive oxidative species (ROS) 
in the irradiated cells. The reactive oxygen species (ROS) i.e. 
hydroxyl radical (˙OH), ionized water (H2O

+), hydrogen 
radical (.H) and hydrated electrons (eaq

-) are rapidly 
generated by ionizing radiation of cellular water 9-12. 
Approximately, ten thousand oxidation reactions harm DNA 
per human cell per day, which eventually produce single-
strand breaks (SSB), and double-strand breaks (DSB). These 
lesions if not repaired, can interact with essential DNA 
metabolism, including transcription, translation, 
recombination, and replication, which ultimately give rise to 
undesirable outcomes and there are chances of three 
possible responses: 1) The cell may become senescent, 2) 
The cell may become apoptotic and, 3) The cell may become 
malignant5. Accumulating evidence indicates that exposure to 
a high dose of acute IR causes a sustained increase in the 
production of endogenous ROS over a few hours. Though 
these bio-effects of radiation particularly ROS production 
have been researched at high doses of radiation, but how 
low-level radiation in the diagnostic range stimulates these 
cellular changes remains largely unexplored and is still 
considered controversial 13-14. The aim of the present study is 
to assess the production of ROS immediately after diagnostic 
level radiation by MDCT examination at 24 hours follow up. 
 
2. MATERIALS AND METHODS 
 
2.1 Inclusion Criteria 
 
After obtaining institutional ethical committee approval 
Reference number IEC-HR/2019/38/1R and written informed 
consent of each subject, fifty adult patients who were posted 
for clinically indicated MDCT abdomen/ chest plus abdomen/ 
whole body were enrolled for the study. 
 
2.2 Exclusion Criteria 
 
The patients who had undergone radiotherapy treatment or 
recent radiation-based study were excluded from the study. 
 
 

2.3 Sample Collection 
 
The samples were collected in the plain vial (BD vacutainer 
tubes) under aseptic conditions. Approximately 2 ml of 
venous blood samples were collected three times from each 
patient 
 

1. Prior to CT examination (Control sample- Group 1). 
2. Within 30 minutes of CT scan (Post CT-Group II). 
3. After 24 hours of CT scan (24 hrs- Group III). 
 
All samples were handled in the same conditions. After blood 
withdrawal, the samples were transported to the laboratory 
at room temperature. The samples were centrifuged for 20 
minutes at 3000 rpm to separate serum from blood. The 
serum was separated and taken in Eppendorf from the blood. 
Samples were then analysed immediately after the arrival 
using a commercially available ELISA kit (Bioassay 
Technology) according to the manufacturer’s instructions 
 
2.4 MDCT Examination  
 
The MDCT examinations of patients were carried out on 
Siemens (Elargen Germany) Model Definition AS 64 slice CT 
scanner at GTB Hospital, Delhi. The conditions of exposure 
were normal for routine diagnostic procedures. The 
following imaging parameters were used: 120 kV, 35 mA, 
rotation time of 0.5 second, 0.6 and 1.2 pitch for abdomen 
and chest respectively. The radiation dose that has been 
delivered to the patient was calculated from the DLP and 
CTDI value using Monte Carlo simulation software. 
 
2.5 ROS Technique15  

 

The reagents and samples were brought to room temperature. 
Standards were prepared as instructed. 50 μl of standard 
solution and 40 μl samples were added in triplicates to wells of 
pre-coated with human ROS antibody. The anti-ROS antibody 
was added to the Plate followed by 50 μl of streptavidin-HRP to 
sample and standard wells and incubated for 60 minutes at 37°C. 
Plates were washed 5 times with a wash buffer. 50 μl of 
substrate solution A and B were added to each well and then 
the plate was incubated for 10 minutes at 37°C in the dark. The 
stop solution (50 μl) was added and the blue colour changed to 
yellow sample concentrations were calculated based on the 
standard curve. 

 
3. STATISTICAL ANALYSIS 
 
The presentation of the categorical variables was done in the 
form of numbers and percentages (%). On the other hand, 
the quantitative data were presented as the means ± SD and 
as median with 25th and 75th percentiles (interquartile 
range). The comparison of the variables which were 
quantitative in nature was analysed using an independent t 
test (for two groups) and Paired t-test was used for 
comparison across follow up. 
 
4. RESULTS  
 
The CT scan radiation exposures measured by Monte Carlo 
simulation software varied from 2 to 9 mSv in our study 
group. The mean, median, range and comparisons of the 
measured ROS levels in the three study groups are listed in 
Table 1. Mean group values ± standard error of group 1  
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were 371.16 ± 245.52 and 638.8 ± 261.03 in group 2. Mean 
group values ± standard error of group 3 was 431.98 ± 
268.92.  There was a highly significant rise in ROS levels in 

post CT scan samples (p-value < 0.001). The levels remained 
high even at 24 hours after the CT scan, though they were 
less than immediate post CT values. (Table 1)(Figure 1).

 

Table 1:-Comparison of ROS across follow up of study subjects 

ROS Mean ± SD 
Median(25th-

75th percentile) 
Range 

Control 
vs Post 

CT 

Control vs 
24 hours 
after CT 

Post CT vs 
24 hours 
after CT 

Group 1 371.16 ± 245.52 287.6(185.6-518.6) 88.6-1038.6 
<.0001† 0.068† <.0001† Group 2 638.8 ± 261.03 689.6(398.6-828.6) 158.6-1174.6 

Group 3 431.98 ± 268.92 370.6(210.6-574.6) 46.6-1038.6 
 

† Paired t-test 
 

 
Fig 1:-Comparison of ROS across follow up of study subjects 

 

Table 2:- Correlation of DLP, effective mAs and total 
Effective dose (mSv) (NRPB) with change in ROS. 

Variables DLP Effective mAs 
Total effective 

dose (mSv) 
(NRPB) 

Change in ROS (Post CT) 

Correlation coefficient 0.305 0.199 0.190 

P value 0.032 0.166 0.186 

Change in ROS (24 hours after CT) 

Correlation coefficient 0.114 0.001 0.050 

P value 0.429 0.994 0.731 
 

Pearson correlation coefficient 
 

Further, the ROS concentration was correlated with Dose 
length product and effective dose (mSv) levels as measured 
on CT scan. A positive significant correlation was seen with a 

p-value of 0.032 in group II i.e. immediate post CT scan 
(Table 2, Fig 2, 3). A weak positive correlation was seen with 
effective dose (mSv) also but it was not statistically significant. 

 

 
 

Fig 2:- Correlation of change in ROS (Post CT) with DLP. 
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Fig 3:- Correlation of change in ROS (24 hours after CT) with DLP. 
 

 
 

Fig 4:- Correlation of change in ROS (Post CT) with total effective dose (mSv). 
 

 
 

Fig 5:- Correlation of change in ROS (24 hours after CT) with total effective dose (mSv). 
 
Correlation of DLP and total effective dose (mSv) has also 
been found in both between CT examinations within 30 
minute and after 24 hours. 
 
5. DISCUSSION 
 
Ionizing radiation has been categorized into high dose 
(>100mSv) and low dose (<100mSv). So far, several studies 
have reported that exposure of mammalian cells to radiation 
increased the production of ROS in the irradiated cells. It is 

well established that there are reactive oxygen species at 
high radiation doses 16-19. There are two mechanisms by 
which radiation affects the cells, direct ionization and indirect 
ionization20. 
 
5.2 Direct Ionization 
 
it occurs when charged particles e.g. Electrons with enough 
kinetic energy interact with cellular atoms to create free 
radicals. This phenomenon is called direct because the 
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interaction occurs directly between a particle and a cellular 
component without any in-between step20.  
 
5.3 Indirect Ionization 
 
It occurs when non-charged particles, for example, Photons, 
interact with cellular water. The energy absorbed by the 
water molecule results in ion pairs and reactive oxygen 
metabolites such as hydroxyl radicals. These free radicals 
interact with cellular atoms and molecules damaging cellular 
proteins and may form additional free radicals. The process is 
called indirect because there is an in-between step of H2O-
based free radical formation20. The production of ROS after 
IR exposure is caused by water radiolysis 8, 9, 10. The human 
body is constituted of 70% water, the chances of radiolysis 
are quite high under the presence of ionizing radiation. In the 
process, water loses an electron and becomes highly 
reactive. Then water is sequentially converted to hydroxyl 
radical (•OH), hydrogen peroxide (H2O2), superoxide 
radical (•O

−
2), and ultimately oxygen (O2). The biological 

reactivity of superoxide, hydrogen peroxide or hydroxyl 
radical produced by dissociated H2O is high, resulting in 
oxidative damage, and a cascade amplification of biological 
effects. ROS are formed in organelles such as mitochondria 
and the endoplasmic reticulum even when they are not 
exposed to IR19. When free radicals come in contact with 
cellular macromolecules, for example, protein, alter their 
chemical structures and may cause repairable or non-
repairable damage with crucial downstream effects. These 
lesions if not repaired, can interact with essential DNA 
metabolism, including transcription, translation, 
recombination, and replication, which ultimately give rise to 
undesirable outcomes and there are chances of three 
possible responses: 
 
1. The cell may become senescent 
2. The cell may become apoptotic 
3. The cell may become malignant. 
 
To protect the genome integrity, cells possess a sophisticated 
mechanism of DNA lesions detection and repair, the DNA 
damage response. Endogenous or exogenous stress can 
induce several different DNA repair systems, including 
mismatch repair, base excision repair, nucleotide excision 
repair, homologous repair, and non-homologous end-joining 
repair systems. Because of the high reactivity of ROS, the life 
span of ROS is very short with the surrounding molecules. 
Accumulating evidence indicates that exposure to a high dose 
of acute IR causes a sustained increase in the production of 
endogenous ROS over a few hours. The accumulation of 
oxidative injuries due to excessive radicals cause cell and 
tissue injuries, which may cause carcinogenesis. While there 
are chemical defence mechanisms in the body that eliminates 
ROS and repair the damaged molecules. The generation of 
ROS in cells exists in equilibrium with a wide variety of 
antioxidant defences. These include enzymatic scavengers 
such as superoxide dismutases (SOD), catalase, and, 
glutathione peroxidase, as well as non-enzymatic scavengers 
such as vitamins C and E, glutathione (GSH), lipoic acid, 
carotenoids and iron chelators. ROS is very unstable in 
nature, therefore, most of the studies were based on its 
antioxidants. The antioxidants like SOD, GSH etc. were 
estimated in reference to ROS. Russo et al21 reported an 
increase in GSH level in the exposed group from 12.37+1.22 

to 20.61+2.16 as compared to control samples at an effective 
annual dose ranging from 1.5 to 8.4 mSv. The exposed 
subjects showed a three-fold increase in hydrogen peroxide 
as compared with the unexposed subjects (2.21+1.03 to 
6.51+1.55). As a result of the increase in hydroxyl radical 
species, it would be expected to observe a different 
antioxidant level in the serum of the exposed subjects vs. the 
controls. In the rat model, Yamaoka22 studied that at 0.25-0.5 
Gy for 4 hours, the SOD activity was significantly increased 
and persisted in the spleen for at least 12 weeks, liver for 8 
weeks, brains and thymuses for 4 weeks and bone marrow 
for about 1 week.  No study was found which directly relates 
the low dose radiation correlation with ROS at 2-9 mSv 
radiation doses. In our results, the genetic damage may be 
induced by the radiation from an MDCT examination as the 
ROS level significantly increased i.e. from 371.16 ± 245.52 to 
638.8 ± 261.03 after immediate radiation and persisted after 
24 hours i.e. 431.98 ± 268.92 (Table 1). To better 
understand the relationship between ROS and CT scan 
parameters i.e. Dose length product (DLP) and effective 
doses (mSv) we construct scatter plots. There is a positive 
correlation that can be seen when comparing ROS with 
Dose length product and effective dose levels as measured 
on CT scan (Figure 2, 3, 4 and, 5). A positive significant 
correlation was seen with a p-value of 0.032 in the immediate 
post CT scan (Table 2). A weak positive correlation was seen 
with effective dose (mSv) also but it was not statistically 
significant (Table 2). More research needs to be done in 
order to increase radiation protection. Our research will 
continue in this area to learn more about genome damage 
and subsequent DNA repair after low dosage exposure. All 
health workers must do their part to perform diagnostic 
procedures with the highest level of safety and quality. 
 
6. CONCLUSION 
 
The results of our study indicate that there is an increased 
production of ROS/free radicals at the cellular level after 
exposure to diagnostic range radiation by MDCT 
examination which remains high even after 24 hours. This 
highly sensitive response to diagnostic range radiation has 
important implications in understanding and assessing the 
health risks of radiation exposure and it also provides novel 
insights into the low-dose radiation-induced adaptive 
response. 
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