

Molecular Docking Studies to Evaluate Small Molecule Inhibitors of Wnt/Betacatenin Signaling Pathway

Dantu Sai Shyama Lakshmi Sankari, Sai Sailaja Maka, Swetha Dalal , Chandrasekhar Chanda* **and Ranganadha Reddy Aluru**

*Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India – 522502.

Department of Biotechnology, Vignans foundation for science, Technology and Research, Vadlamudi,522213, India.

Abstract: Canonical Wnt pathway or β catenin dependent pathway is one of the highly conserved signalling pathway which can control gene expression and regulate cell proliferation, cell adhesion, cell migration, cell polarity and organogenesis. Abnormal regulation of β catenin in the canonical wnt signalling pathway leads to transcription of several genes involved in oncogenic programs. Aberrant signalling of the canonical wnt pathway was observed in several types of cancers including hepatocarcinoma, colorectal cancer and lung cancer. Many small molecules were observed to have the potential to block the aberrant wnt signalling pathway by allosteric binding and inhibiting β catenin molecule. The current study involves screening for ligands which can have strong allosteric binds to β catenin and inhibit wnt signalling pathway. Molecular docking studies were used to evaluate the binding capacity of the selected ligands. Curcumin, Cardamonin, FH535 and ICRT-3 were used as ligands for the molecular docking study with β catenin binding Transcription factor -4 receptor. All chosen ligands have exhibited significant binding energies with the receptor. The highest -9.518272 kcal/mol with Cardamonin followed by -9.28359 kcal/mol with FH535, -8.422604 kcal/mol with curcumin and the least -8.407231 kcal/mol with ICRT-3. All the ligands showed at least 1 hydrogen bond with the target receptor whereas Cardamonin showed 3 hydrogen bonds. Curcumin is a close second forming 2 hydrogen bonds while FH535 and ICRT-3 form only 1 hydrogen bond. The 2D interactions of the ligand and the molecule are visualised by using chimera. We observed Cardamonin to have a very strong binding affinity with the target receptor. Cardamonin can be a suitable drug candidate and might have the potential to inhibit the β catenin dependent wnt signalling pathway.

Keywords: Wnt, β catenin, Signalling pathway, Cancer, Small molecule inhibitors

***Corresponding Author**

**Chandrasekhar Chanda , Department of Biotechnology,
Koneru Lakshmaiah Education Foundation, Vaddeswaram,
Guntur, Andhra Pradesh, India – 522502**

Received On 25 June 2021

Revised On 19 August 2021

Accepted On 23 August 2021

Published On 15 September 2021

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Dantu Sai Shyama Lakshmi Sankari, Sai Sailaja Maka, Swetha Dalal , Chandrasekhar Chanda and Ranganadha Reddy Aluru , Molecular Docking Studies to Evaluate Small Molecule Inhibitors of Wnt/Betacatenin Signaling Pathway.(2021).Int. J. Life Sci. Pharma Res. 11(5), L122-128 <http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.5.L122-128>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

Int J Life Sci Pharma Res., Volume 11., No 5 (September) 2021, pp L122-128

I. INTRODUCTION

The wnt-signalling pathways are a set of signal transduction cascade which begins with transfer of signals into the cell through its cell surface receptors.¹⁻³ There are three major wnt- signalling pathways and all three pathways get activated by the binding of a wnt- protein ligand to a frizzled G protein coupled receptor, which passes the biological signal to the disordered protein inside the cell.⁴⁻⁶ The wnt/beta-catenin pathway plays a crucial role in cancer development and progression by stimulating the cytoplasmic accumulation and activating genes involved in cancer cell proliferation, anti-apoptosis, cell cycle progression, and cell invasion.⁷⁻⁹ This signalling pathways regulates the expression of a variety of tumor- related proteins, including c-myc and cyclin D1, Small molecules which can bind to β -catenin and prevent the downstream signalling cascade of Wnt/ β -catenin pathway can act as novel class of anticancer drugs.¹⁰⁻¹³ The canonical wnt signalling pathways is the best studied wnt pathway and is greatly conserved through the evolution. In this pathway, wnt signalling inhibits the degradation of beta- catenin which can regulate transcription of several genes. The wnt beta-catenin signalling pathways typically show abnormal activation in various types of cancers especially in colorectal cancer.¹⁴⁻¹⁶ Wnt signaling was identified initially for its function in carcinogenesis, then for its role in embryonic development. Wnt signalling has been involved in the development of several types of cancers.^{17,18} Abnormal changes in CTNNB1 (i.e., gene encoding β -catenin) gene expression can be measured in breast, colorectal, melanoma, prostate, lung, and several other cancers.^{19,20} The recently identified β -catenin/Tcf inhibitors also share structural resemblance to the known PPAR γ antagonists. All the compounds contain the nitro group, differing mostly in the central amide or sulfonamide groups as well as their initiation. FH535 is one of the most active compounds which can antagonize both PPAR γ and wnt signalling.^{21,22} FH535 was chosen as an ideal candidate for allosteric binding of β -catenin. Curcumin is the major yellow pigment and spice in turmeric and curry and is a powerful anti-cancer agent. Studies indicate that curcumin has anti-tumor effects on several cancers, including Colorectal cancer. The anti-tumor activity of curcumin was observed to be due to the blockade of the Wnt/ β -catenin pathway and inhibiting the proliferation of colon cancer cells. This process was regulated by repressing the expression of microRNA (miR)-130a, and overexpressing miR-130a could completely abolish the curcumin-induced anti-tumor activity in colon cancer.^{23,24} Cardamonin is a spice derived nutraceutical. Therapeutic benefits of cardamonin were observed in Azoxymethane (AOM) induced mouse model of colorectal cancer. Cardamonin treatment inhibited the tumor incidence, tumor multiplicity, Ki-67 and β -catenin positive cells.^{25,26} ICRT-3 is a small cell permeable oxazole compound. ICRT-3 was observed significantly decreasing the expression of genes involved in cell migration and found having inhibitory effect on Wnt signalling pathway.^{27,28} These four small molecule ligands i.e., ICRT-3, Cardamonin, curcumin and FH535 were chosen of the study to evaluate their allosteric binding capacity to β -catenin. In this study we have evaluated allosteric binding capacity of four potential small molecule

inhibitors (i.e., ICRT-3, Cardamonin, curcumin and FH535) of Wnt/Betacatenin signalling pathway using molecular docking studies.

2. MATERIALS AND METHODS

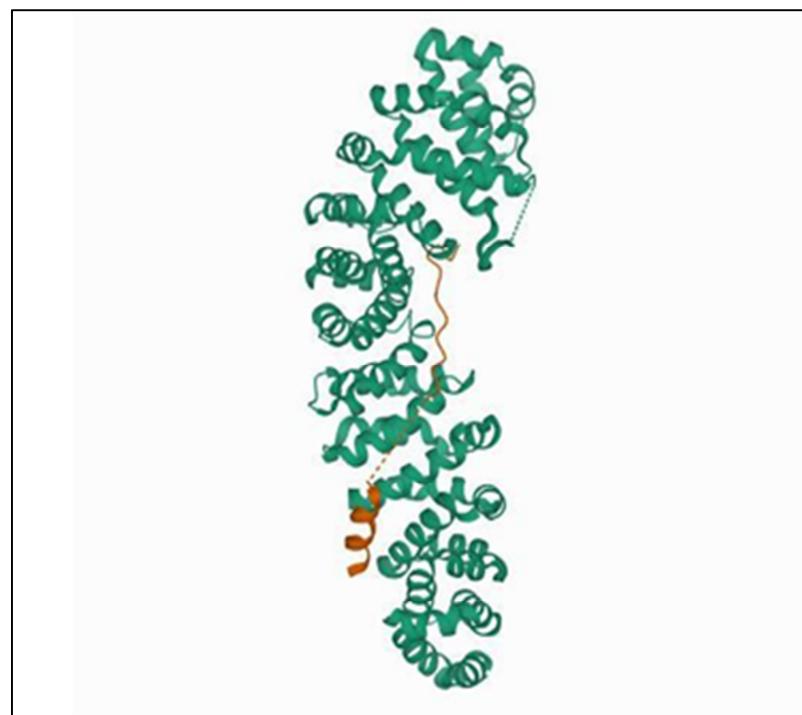
2.1 Selection and retrieval of the target protein

Beta-catenin is the target molecule for this study. It plays a crucial role in the replication process of cancer cells. The three-dimensional co-crystallized structure of Beta-catenin with Transcription factor-4 (TCF-4) was retrieved from RCSB Protein Data Bank (PDB entry: IJPW) presenting a resolution of 2.50 Å with total of 1620 residues (chains A, B and C) and approximately 150.51kDa molecular mass. The molecule is uploaded into Swiss Dock in PDB format where it is prepared for the docking by removing the water molecules, metal ions and ligands, followed by addition of polar, non-polar hydrogen atoms and adding kollman charges. Finally, rotatable bonds are assigned to the molecule making it suitable for further analysis.

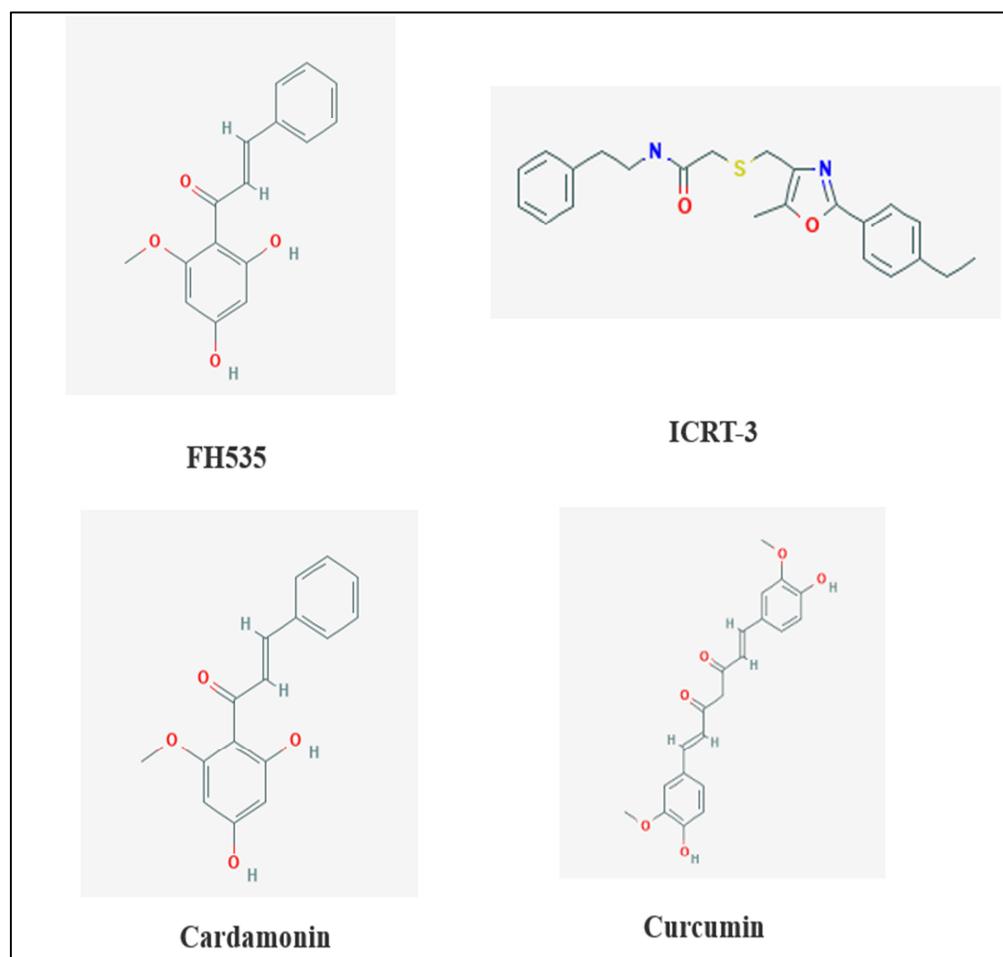
2.2 Retrieval and Preparation of ligand

The 3D structures of the ligands FH535(ZINC4662683), Curcumin (ZINC899824), ICRT-3(ZINC5057585), Cardamonin (ZINC4716487) are selected and retrieved from PubChem and ZINC database. The structures were prepared by using SwissDock by assigning flexible torsions and were allowed to rotate freely.

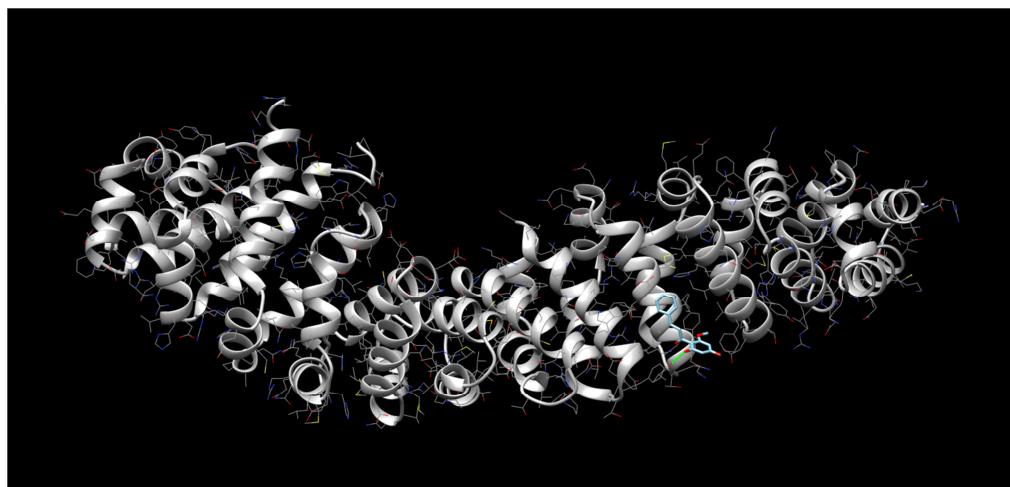
2.3 Protein ligand molecular docking

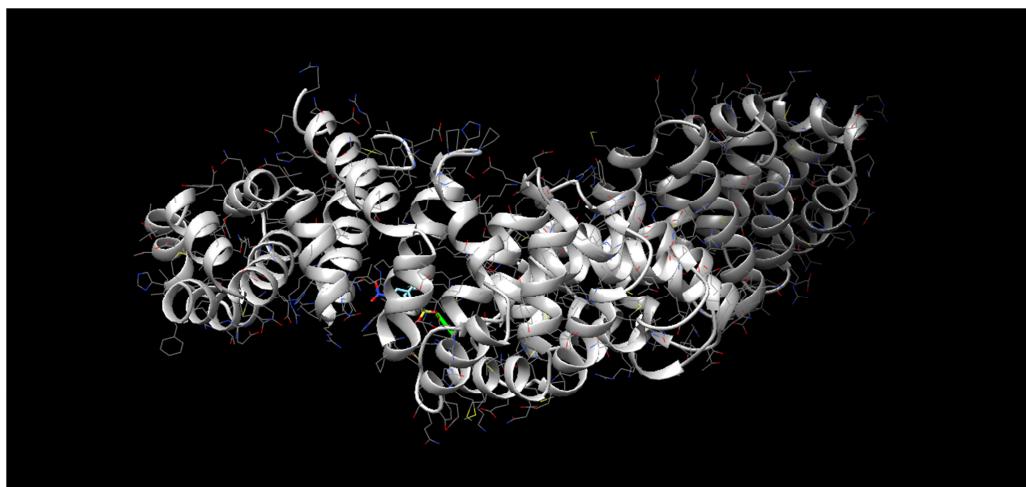

The molecular docking was done by online bioinformatic tool Swiss Dock. The target and ligands were prepared for docking as mentioned in the above two steps. Binding molecules are created in the region of the target molecules, and their CHARMM energies are estimated on the grid. The binding modes with the most favourable energies are evaluated with FACTS and assembled. The most favourable clusters are grouped, and the results are downloaded.

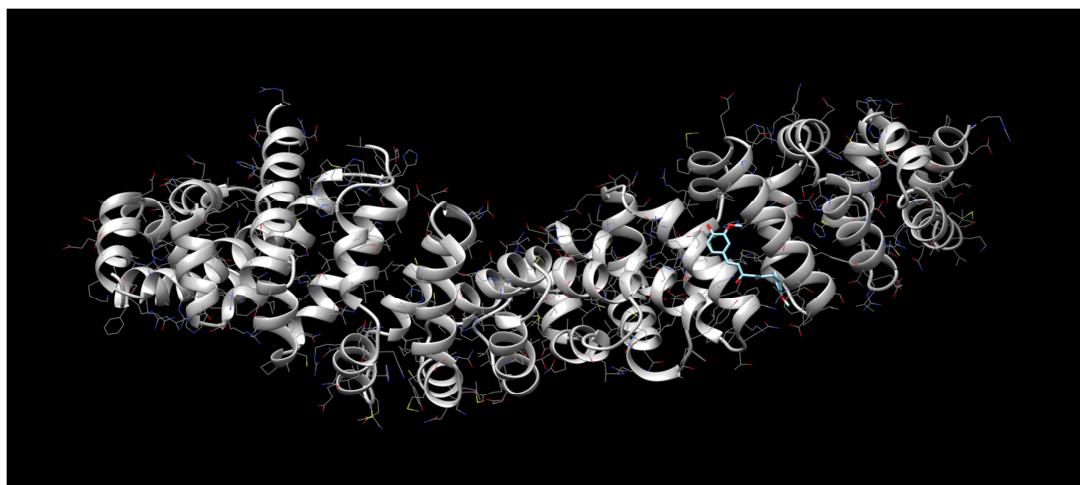
3. STATISTICAL ANALYSIS


Docking studies with all the four ligands were performed five times. The binding energies (ΔG) shown in Table I are the average of five experiments. We found all the values obtained from docking studies were statistically significant ($p < 5\%$).

4. RESULTS AND DISCUSSIONS


Molecular docking of the target receptor was done with synthetic as well as natural ligand. The 3D structure of Beta-catenin binding with Transcription factor-4 (IJPW) (Figure 1) was obtained from PDB. The ligands used for the analysis are FH535, ICRT-3, Cardamonin and Curcumin (Figure 2). The structures were downloaded from the ZINC database. These four ligands were docked on to the β catenin (IJPW) receptor.


Fig1: Crystal Structure of a Human Tcf-4 / β catenin Complex


Fig 2: Structures of small molecule inhibitors used as ligands

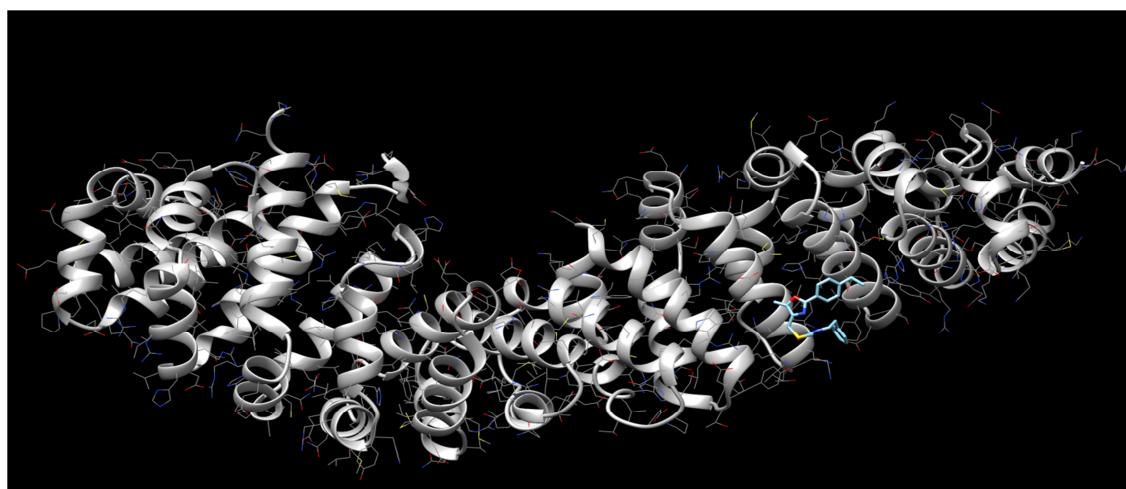

Fig 3: Interaction of ligand molecule cardamonin with β catenin

Fig 4: Interaction of ligand molecule FH535 with β catenin

Fig 5: Interaction of ligand molecule curcumin with β catenin

Fig 6: Interaction of ligand molecule ICRT-3 with β catenin

Since Swiss Dock cannot analyse large molecules, the ligands were docked on to the individual chains (Chain A, B, C) of the β catenin and the results were cumulated for the final analysis. The target receptor i.e., β catenin exhibited significant binding energies with the ligands. The highest -9.518272 kcal/mol with Cardamonin (Figure 3) followed by FH535 with -9.28359 kcal/mol (Figure 4), binding energy of -8.422604 kcal/mol was observed with curcumin (Figure 5) and the least binding energy of -8.407231 kcal/mol with ICRT-3 (Table 1) (Figure 6). All the ligands showed a minimum of one hydrogen bond with the target receptor. Cardamonin showed 3 hydrogen bonds with the target Curcumin being a close second forming 2 hydrogen bonds whereas FH535 and ICRT-3 formed only one hydrogen bond. The 2D interactions of the ligand and the molecule were

visualised using chimera. We observed Cardamonin having very strong interaction with β catenin possibly inhibiting the pathway. In a recent study cardamonin was reported inhibiting the gastric cancer cells through Wnt/ β catenin signalling pathway²⁸ also it showed strong anti-tumour activity *invitro* on breast cancer cell lines.²⁹ Cardamonin was also reported to suppress melanogenesis and proliferation of colon cancer by inhibiting Wnt/Betacatenin signalling pathway.^{30,31} Curcumin which came as a close second in our binding studies recently reported showing ovarian cancer cells and non-small-cell lung cancer inhibition also reported suppressing colon cancer and hepatocarcinoma proliferation *invitro* by modulating Wnt/ β catenin signalling pathway.³²⁻³⁵

Table I: Binding energies and hydrogen bonding of ligands with β catenin

Ligand	Delta G	Hydrogen bonds	Full fitness	Delta G VDW
FH535	-9.28359	1	-2514.6306	-91.0673
Curcumin	-8.422604	2	-2551.7612	-55.7558
ICRT-3	-8.407231	1	-2530.5212	-52.4458
Cardamonin	-9.518272	3	-2545.0784	-105.883

5. CONCLUSION

Wnt/ β - Catenin signalling is critically involved in cell proliferation and migration during embryonic development. Aberrant regulation of Wnt/ β - Catenin signalling leads to several types of cancers. Small molecule inhibitors can be novel drug candidates for allosteric binding of β - Catenin and blocking the Wnt/ β - Catenin signalling pathway. In this study we used four potential natural and synthetic small molecule inhibitors as ligands to evaluate the allosteric binding capacity to β -catenin and inhibition of Wnt/ β - Catenin signalling pathway. We observed Cardamonin to have very strong binding affinity with the β - Catenin receptor. Cardamonin can be a suitable drug candidate and might have the potential to inhibit the β catenin dependent wnt signalling pathway.

6. ACKNOWLEDGEMENT

The authors would like to thank management Koneru

Lakshmi Education Foundation Vaddeswaram, Guntur, for helping us with necessary resources.

7. AUTHOR CONTRIBUTION STATEMENT

Chandrasekhar Chanda conceived the idea and supervised the finding of this work. Dantu Sai Shyama Lakshmi Sankari and Sai Sailaja Maka analyzed the data and necessary inputs were given towards the designing of the manuscript. Swetha dalal involved in manuscript writing and statistical analysis. Chandrasekhar Chanda involved in manuscript corrections. All authors discussed the methodology, results and contributed to the final manuscript.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

9. REFERENCES

1. Oshima H, Oshima M. The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. *J Gastroenterol*. 2012 Feb;47(2):97-106. doi: [10.1007/s00535-011-0523-6](https://doi.org/10.1007/s00535-011-0523-6), PMID [22218775](https://pubmed.ncbi.nlm.nih.gov/22218775/).
2. Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. *J Biol Chem*. 1999 Apr 16;274(16):10681-4. doi: [10.1074/jbc.274.16.10681](https://doi.org/10.1074/jbc.274.16.10681), PMID [10196136](https://pubmed.ncbi.nlm.nih.gov/10196136/).
3. Lepourcelet M, Chen YNP, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivedasani RA. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. *Cancer Cell*. 2004 Jan 1;5(1):91-102. doi: [10.1016/s1535-6108\(03\)00334-9](https://doi.org/10.1016/s1535-6108(03)00334-9), PMID [14749129](https://pubmed.ncbi.nlm.nih.gov/14749129/).
4. Huang SMA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. *Nature*. 2009 Oct 1;461(7264):614-20. doi: [10.1038/nature08356](https://doi.org/10.1038/nature08356), PMID [19759537](https://pubmed.ncbi.nlm.nih.gov/19759537/).
5. Waaler J, Machon O, Von Kries JP, Wilson SR, Lundenes E, Wedlich D, Gradi D, Paulsen JE, Machonova O, Dembinski JL, Dinh H, Krauss S. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. *Cancer Res*. 2011 Jan 1;71(1):197-205. doi: [10.1158/0008-5472.CAN-10-1282](https://doi.org/10.1158/0008-5472.CAN-10-1282), PMID [21199802](https://pubmed.ncbi.nlm.nih.gov/21199802/).
6. Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, Jernigan KK, Meyers KC, Hang BI, Waterson AG, Kim K, Melancon B, Ghidu VP, Sulikowski GA, LaFleur B, Salic A, Lee LA, Miller DM, Lee E. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. *Nat Chem Biol*. 2010 Oct 3;6(11):829-36. doi: [10.1038/nchembio.453](https://doi.org/10.1038/nchembio.453), PMID [20890287](https://pubmed.ncbi.nlm.nih.gov/20890287/).
7. Choi H, Gwak J, Cho M, Ryu MJ, Lee JH, Kim SK, Kim YH, Lee GW, Yun MY, Cuong NM, Shin JG, Song GY, Oh S. Murrayafoline A attenuates the Wnt/β-catenin pathway by promoting the degradation of intracellular β-catenin proteins. *Biochem Biophys Res Commun*. 2010 Jan 1;391(1):915-20. doi: [10.1016/j.bbrc.2009.11.164](https://doi.org/10.1016/j.bbrc.2009.11.164), PMID [19962966](https://pubmed.ncbi.nlm.nih.gov/19962966/).
8. He BC, Gao JL, Zhang BQ, Luo Q, Shi Q, Kim SH, Huang E, Gao Y, Yang K, Wagner ER, Wang L, Tang N, Luo J, Liu X, Li M, Bi Y, Shen J, Luther G, Hu N, Zhou Q, Luu HH, Haydon RC, Zhao Y, He TC. Tetrandrine inhibits Wnt/β-catenin signaling and suppresses tumor growth of human colorectal cancer. *Mol Pharmacol*. 2011 Feb;79(2):211-9. doi: [10.1124/mol.110.068668](https://doi.org/10.1124/mol.110.068668), PMID [20978119](https://pubmed.ncbi.nlm.nih.gov/20978119/).
9. Jaiswal AS, Marlow BP, Gupta N, Narayan S. β-catenin-mediated transactivation and cell - cell adhesion pathways are important in curcumin (diferulylmethane)-induced growth arrest and apoptosis in colon cancer cells. *Oncogene*. 2002 Dec 5;21(55):8414-27. doi: [10.1038/sj.onc.1205947](https://doi.org/10.1038/sj.onc.1205947), PMID [12466962](https://pubmed.ncbi.nlm.nih.gov/12466962/).
10. Kim J, Zhang X, Rieger-Christ KM, Summerhayes IC, Wazer DE, Paulson KE, Yee AS. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells: requirement of the transcriptional repressor HBPI. *J Biol Chem*. 2006 Apr 21;281(16):10865-75. doi: [10.1074/jbc.M513378200](https://doi.org/10.1074/jbc.M513378200), PMID [16495219](https://pubmed.ncbi.nlm.nih.gov/16495219/).
11. Suh Y, Afaf F, Johnson JJ, Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX 2 and Wnt/EGFR/NF-κB-signaling pathways. *Carcinogenesis*. 2009;30(2):300-7. doi: [10.1093/carcin/bgn269](https://doi.org/10.1093/carcin/bgn269), PMID [19037088](https://pubmed.ncbi.nlm.nih.gov/19037088/).
12. Zhang Q, Major MB, Takanashi S, Camp ND, Nishiya N, Peters EC, Ginsberg MH, Jian X, Randazzo PA, Schultz PG, Moon RT, Ding S. Small-molecule synergist of the Wnt/β-catenin signaling pathway. *Proc Natl Acad Sci U S A*. 2007 May 1;104(18):7444-8. doi: [10.1073/pnas.0702136104](https://doi.org/10.1073/pnas.0702136104), PMID [17460038](https://pubmed.ncbi.nlm.nih.gov/17460038/).
13. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, Roth MG, Amatruda JF, Chen C, Lum L. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. *Nat Chem Biol*. 2009 Feb 6;5(2):100-7. doi: [10.1038/nchembio.137](https://doi.org/10.1038/nchembio.137), PMID [19125156](https://pubmed.ncbi.nlm.nih.gov/19125156/).
14. Chen HJ, Hsu LS, Shia YT, Lin MW, Lin CM. The β-catenin/TCF complex as a novel target of resveratrol in the Wnt/β-catenin signaling pathway. *Biochem Pharmacol*. 2012 Nov 1;84(9):143-53. doi: [10.1016/j.bcp.2012.08.011](https://doi.org/10.1016/j.bcp.2012.08.011), PMID [22935447](https://pubmed.ncbi.nlm.nih.gov/22935447/).
15. Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. *Science*. 2004;303(5663):1483-7. doi: [10.1126/science.1094291](https://doi.org/10.1126/science.1094291), PMID [15001769](https://pubmed.ncbi.nlm.nih.gov/15001769/).
16. Vleminckx K, Kemler R, Hecht A. The C-terminal transactivation domain of β-catenin is necessary and sufficient for signaling by the LEF-1/β-catenin complex in *Xenopus laevis*. *Mech Dev*. 1999 Mar 1;81(1-2):65-74. doi: [10.1016/s0925-4773\(98\)00225-1](https://doi.org/10.1016/s0925-4773(98)00225-1), PMID [10330485](https://pubmed.ncbi.nlm.nih.gov/10330485/).
17. Clevers H. Wnt/β-catenin signaling in development and disease. *Cell*. 2006;127(3):469-80. doi: [10.1016/j.cell.2006.10.018](https://doi.org/10.1016/j.cell.2006.10.018), PMID [17081971](https://pubmed.ncbi.nlm.nih.gov/17081971/).
18. Polakis P. The many ways of Wnt in cancer. *Curr Opin Genet Dev*. 2007;17(1):45-51. doi: [10.1016/j.gde.2006.12.007](https://doi.org/10.1016/j.gde.2006.12.007), PMID [17208432](https://pubmed.ncbi.nlm.nih.gov/17208432/).
19. van Schie EH, van Amerongen R. Aberrant WNT/CTNNB1 signaling as a therapeutic target in human breast cancer: weighing the evidence. *Front Cell Dev Biol*. 2020;8:25. doi: [10.3389/fcell.2020.00025](https://doi.org/10.3389/fcell.2020.00025), PMID [32083079](https://pubmed.ncbi.nlm.nih.gov/32083079/).
20. Sharma A, Yang WL, Ochani M, Wang P. Mitigation of sepsis-induced inflammatory responses and organ injury through targeting Wnt/β-catenin signaling [sci rep:9235]. *Sci Rep*. 2017;7(1):9235. doi: [10.1038/s41598-017-08711-6](https://doi.org/10.1038/s41598-017-08711-6), PMID [28835626](https://pubmed.ncbi.nlm.nih.gov/28835626/).
21. Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. FH535 suppresses the proliferation and motility of hepatocellular carcinoma cells. *Int J Oncol*. 2016 Jan 1;48(1):110-4. doi: [10.3892/ijo.2015.3220](https://doi.org/10.3892/ijo.2015.3220), PMID [26530115](https://pubmed.ncbi.nlm.nih.gov/26530115/).

22. Gustafson CT, Mamo T, Shogren KL, Maran A, Yaszemski MJ. FH535 suppresses osteosarcoma growth in vitro and inhibits wnt signaling through tankyrases. *Front Pharmacol.* 2017 May 23;8(MAY):285. doi: [10.3389/fphar.2017.00285](https://doi.org/10.3389/fphar.2017.00285), PMID: [28588489](https://pubmed.ncbi.nlm.nih.gov/28588489/).

23. Mbese Z, Khwaza V, Aderibigbe BA. Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers. *Molecules.* 2019;24(23), Molecules (Basel, Switzerland). NLM (Medline). doi: [10.3390/molecules24234386](https://doi.org/10.3390/molecules24234386), PMID: [31801262](https://pubmed.ncbi.nlm.nih.gov/31801262/).

24. Chaurasia S, Chaubey P, Patel RR, Kumar N, Mishra B. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies. *Drug Dev Ind Pharm.* 2016;42(5):694-700. doi: [10.3109/03639045.2015.1064941](https://doi.org/10.3109/03639045.2015.1064941), PMID: [26165247](https://pubmed.ncbi.nlm.nih.gov/26165247/).

25. Nawaz J, Rasul A, Shah MA, Hussain G, Riaz A, Sarfraz I, Zafar S, Adnan M, Khan AH, Selamoglu Z. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. *Life Sci.* 2020;250:117591. doi: [10.1016/j.lfs.2020.117591](https://doi.org/10.1016/j.lfs.2020.117591), PMID: [32224026](https://pubmed.ncbi.nlm.nih.gov/32224026/).

26. Ramchandani S, Naz I, Dhudha N, Garg M. An overview of the potential anticancer properties of cardamonin. *Explor Target Anti-Tumor Ther.* 2020 Dec 20;1(6):413-26.

27. Sogutlu F, Kayabasi C, Ozmen Yelken B, Asik A, Gasimli R, Dogan F, Yilmaz Süslüer S, Biray Avci C, Gunduz C. The effect of ICRT-3 on Wnt signaling pathway in head and neck cancer. *J Cell Biochem.* 2019 Jan 1;120(1):380-95. doi: [10.1002/jcb.27393](https://doi.org/10.1002/jcb.27393), PMID: [30145828](https://pubmed.ncbi.nlm.nih.gov/30145828/).

28. Hou G, Yuan X, Li Y, Hou G, Liu X. Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway. *Investig New Drugs.* 2020;38(2):329-39. doi: [10.1007/s10637-019-00781-9](https://doi.org/10.1007/s10637-019-00781-9), PMID: [31102118](https://pubmed.ncbi.nlm.nih.gov/31102118/).

29. Shrivastava S, Jeengar MK, Thummuri D, Koval A, Katanaev VL, Marepally S, Naidu VGM. Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/beta-catenin signaling cascades and reversal of epithelial-mesenchymal transition. *BioFactors.* 2017;43(2):152-69. doi: [10.1002/biof.1315](https://doi.org/10.1002/biof.1315), PMID: [27580587](https://pubmed.ncbi.nlm.nih.gov/27580587/).

30. Park S, Gwak J, Han SJ, Oh S. Cardamonin suppresses the proliferation of colon cancer cells by promoting β-catenin degradation. *Biol Pharm Bull.* 2013;36(6):1040-4. doi: [10.1248/bpb.b13-00158](https://doi.org/10.1248/bpb.b13-00158). Epub 2013 Mar 29. PMID: [23538439](https://pubmed.ncbi.nlm.nih.gov/23538439/).

31. Cho M, Ryu M, Jeong Y, Chung YH, Kim DE, Cho HS, Kang S, Han JS, Chang MY, Lee CK, Jin M, Kim HJ, Oh S. Cardamonin suppresses melanogenesis by inhibition of Wnt/beta-catenin signaling. *Biochem Biophys Res Commun.* 2009 Dec 18;390(3):500-5. doi: [10.1016/j.bbrc.2009.09.124](https://doi.org/10.1016/j.bbrc.2009.09.124). Epub 2009 Oct 1. PMID: [19800318](https://pubmed.ncbi.nlm.nih.gov/19800318/).

32. Yen HY, Tsao CW, Lin YW, Kuo CC, Tsao CH, Liu CY. Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. *Sci Rep.* 2019 Nov;9(1):17267. doi: [10.1038/s41598-019-53509-3](https://doi.org/10.1038/s41598-019-53509-3), PMID: [31754130](https://pubmed.ncbi.nlm.nih.gov/31754130/).

33. Wang JY, Wang X, Wang XJ, Zheng BZ, Wang Y, Wang X, Liang B. Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. *Eur Rev Med Pharmacol Sci.* 2018;22(21):7492-9. doi: [10.26355/eurrev_201811_16290](https://doi.org/10.26355/eurrev_201811_16290), PMID: [30468498](https://pubmed.ncbi.nlm.nih.gov/30468498/).

34. Dou H, Shen R, Tao J, Huang L, Shi H, Chen H, Wang Y, Wang T. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a. *Front Pharmacol.* 2017 Nov 24;8:877. doi: [10.3389/fphar.2017.00877](https://doi.org/10.3389/fphar.2017.00877). PMID: [29225578](https://pubmed.ncbi.nlm.nih.gov/29225578/); PMCID: [PMC5705620](https://pubmed.ncbi.nlm.nih.gov/PMC5705620/).

35. Kim HJ, Park SY, Park OJ, Kim YM. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. *Mol Med Rep.* 2013 Jul;8(1):282-6. doi: [10.3892/mmr.2013.1497](https://doi.org/10.3892/mmr.2013.1497). Epub 2013 May 29. PMID: [23723038](https://pubmed.ncbi.nlm.nih.gov/23723038/).