

Treatment of Unruptured Cerebral Artery Aneurysm: A Meta-Analysis

Fatema Turkistani¹ and **Aseel Bin Sawad^{2*}**

¹Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia

²Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract: Unruptured middle cerebral artery (MCA) aneurysms can be treated using two techniques or procedures, microsurgical clipping and endovascular coiling. The aim of this meta-analysis study is to compare the safety and efficacy of microsurgical clipping with the endovascular coiling in the treatment of unruptured MCA aneurysms. We searched electronic databases (PubMed, EMBASE and the Cochrane library) to identify studies published between 1991 and 2019. For clipping and coiling techniques, separate meta-analyses were conducted on efficacy and safety after the intervention and at follow-up by using random- and fixed-effects models. Forty-one articles were included in our meta-analyses: 23 case series using clipping and 25 case series using coiling procedures. The complete aneurysm occlusion rate was higher in the clipping procedure (96.1%, 95% CI: 92.8%-97.9%) as compared to the coiling procedure (57.6%, 95% CI: 49.4 – 65.4%). Clipping procedure has a slightly higher rate of favorable functional outcomes (96.4%, 95% CI: 94.8 – 97.5%) compared to coiling procedure (94.8%, 95% CI: 93.1 – 96%). Interestingly, the rate of occlusion appears to decrease with time in the clipping group and increase with time in the coiling group, while the rate of favorable functional outcomes appears to increase with time in the clipping group and decrease with time in the coiling group. Publication bias was unlikely in all our analysis for studies assessing: coiling and occlusion rate, clipping and occlusion rate, coiling and functional outcomes, and clipping and functional outcomes. Microsurgical clipping yields a higher aneurysm occlusion rate, with slightly higher favorable functional outcomes in the treatment of unruptured MCA aneurysms than the endovascular coiling.

Keywords: Brain aneurysm; Middle cerebral artery; Endovascular coiling; Neurosurgical clipping; meta-analysis.

***Corresponding Author**

Aseel Bin Sawad , Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia

Received On 1 June, 2021

Revised On 7 August, 2021

Accepted On 14 August, 2021

Published On 1 September, 2021

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Fatema Turkistani, Aseel Bin Sawad , Treatment of Unruptured Cerebral Artery Aneurysm: A Meta-Analysis.(2021).Int. J. Life Sci. Pharma Res. 11(5), 61-80 <http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.5.L61-80>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Intracranial aneurysm is a cerebral or brain weakening and bulging of an artery wall that results in a balloon or bulges out and fills with blood. The swelling outward can place pressure on the nerves or cerebral tissues. If intracranial aneurysm is ruptured, hemorrhage occurred in which blood spreads over the cerebral tissues. Unruptured middle cerebral artery (MCA) aneurysms can be treated using two techniques or procedures, microsurgical clipping and endovascular coiling. Microsurgical clipping is a surgery in which a small metal clip is used to obstruct the flow of blood into the aneurysm. While craniotomy is needed for microsurgical clipping, it is not the case with the endovascular coiling. Endovascular coiling is a minimally invasive technique in which a catheter is used to reach the intracranial aneurysm. Before 1991, clipping was the only treatment option for intracranial aneurysms. Microsurgical techniques have declined over the past 20 years. Aneurysm treatment strategy has changed since the development of the endovascular coiling technique. There is no clear scientific evidence supporting that endovascular coiling outcomes are superior to the microsurgical clipping.¹ Recently, unruptured intracranial aneurysms (UIAs) have become easily recognized with the development of advanced cerebral imaging techniques. Different treatment options to treat patients with unruptured cerebral aneurysm include surgery, endovascular coiling, or no treatment. Previous studies reported that observation is a reasonable approach only in some patients with small UIAs that do not need treatment.^{2,3} Because the risk of subarachnoid hemorrhage of untreated unruptured aneurysm is low, the risk of treatment either by surgical clipping or endovascular coiling should be low.^{2,3} Recently, the management of UIAs with endovascular coiling has continuously increased in the United States. The advantages of endovascular coiling as compared to microsurgical clipping are the minimal invasion and the multiple, simultaneous treatments at disparate sites.^{4,5} However, previously published articles that compared the two treatment options (clipping and coiling) demonstrated low complication rates, durable treatment, and better outcomes with surgical treatment.^{6,7} Brinjikji et al. (2011) used the electronic medical records to investigate the outcomes with treatment by coiling relative to clipping of unruptured intracranial aneurysms in the US (2001-2008). The previous study reported that patients treated by clipping have a significantly higher percentage (14%) of discharge to long-term facilities compared to patients treated by coiling (4.9%) ($P < .0001$).⁶ Since endovascular coiling is characterized by its inferior durability, it requires more follow-up imaging.^{4,8} The recurrence rates and the need for re-treatment are higher for endovascular therapy as compared to microsurgical.^{9,10} Surgical clipping was favorable for treating unruptured MCA aneurysms because it has unique characteristics such as the superficial location, the easy proximal control at the supraclinoid carotid, the familiar surgical approach, and the minimal perforator vessels. On the other hand, endovascular coiling is more difficult in MCA aneurysms due to difficulty in obtaining adequate working projection views, small parent vessels, and incorporation of branch vessels in the aneurysm.¹¹ Advances in endovascular techniques such as three-dimensional (3D) angiography makes the endovascular coiling a more favorable option than the microsurgical clipping.^{12,13} There is an increase in using the endovascular treatment for unruptured MCA aneurysms without any significant evidence for superiority. Therefore,

the aim of this meta-analysis study is to compare the safety and efficacy of surgical clipping and endovascular coiling in the treatment of unruptured MCA aneurysms.

2. MATERIALS AND METHODS

2.1 Literature Search

PubMed, EMBASE, and Cochrane databases were searched for relevant English studies published between 1991 and 2019 and evaluated the safety and/or efficacy of coiling or/and clipping for patients with unruptured MCA aneurysms. Our search strategy combined various terms for aneurysm (Intracranial Aneurysm, Middle Cerebral Artery Aneurysm, MCA, Unruptured Aneurysm, Brain Aneurysm, Cerebral Aneurysm), coil (Endovascular Procedures, Cerebral Angiography, Endovascular Coil, Coil, Endovascular Procedure, Intravascular Procedure, Intravascular Technique, Endovascular Technique, Cerebral Angiography), and clip (Microsurgery, Surgical Instruments, Neurosurgery, Surgical Clip, Clip, Tantalum Clip, Neurosurgical Procedure, Neurologic Surgical Procedure, Intracranial Pressure, Brain/surgery) by using exploded versions of medical subject headings terms and corresponding key words in titles and abstracts. Experts in the field were consulted to verify the search strategy and retrieve relevant articles. Literature was reviewed for all retrospective and prospective cohorts reporting angiographic occlusion and/or functional outcomes in adults with unruptured MCA aneurysm(s). All studies reporting either surgical clip or endovascular coil of unruptured intracranial aneurysms were considered for inclusion. Studies that were non-English, included only pediatric patients or ruptured intracranial aneurysms were excluded. The existing reviews were used for the snowballing process and to supplement the collection of articles retrieved from references of the most relevant studies. Full details on our search terms and strategy are shown in Appendix 1. Efficacy and safeties are the two types of outcomes that were used in this systematic review and meta-analysis. Post-operative complete angiographic aneurysm occlusion was used to measure efficacy outcomes. Functional status was used to evaluate the safety outcomes. There are two techniques used to evaluate postoperative functional status, the modified Rankin Scale (mRS) and the Glasgow Outcome Score (GOS). There are two versions of GOS either Glasgow Outcome Score (GOS) or extended Glasgow Outcome Scale (e-GOS) (Table 1).

2.2 Study Inclusion/Exclusion Criteria

Studies were considered for inclusion in our research if they met the following criteria: studies that treated adults with intracranial aneurysms, included separate data for unruptured MCA aneurysm(s), used either clipping or coiling, and reported on occlusion rates, patients' functional status, or both. We excluded case reports or studies that include unruptured MCA aneurysm(s) result for a fewer than 3 patients. Also, review articles, systematic reviews, and meta-analyses were excluded. In addition, studies that focused only on ruptured aneurysms were excluded. Reasons for exclusion are: ruptured aneurysms, no MCA aneurysm data, pediatric data only, and an inability to extract unruptured MCA aneurysm specific data (Figure 1). Titles and abstracts of identified studies were screened, and potentially relevant articles were selected for full-text review.

2.3 Data Extraction

Two independent researchers extracted and tabulated all data from eligible studies. Discrepancies were resolved by consensus. A standardized data extraction form was designed, piloted, and modified accordingly prior to commencement of the formal extraction process. Information extracted included: study characteristics (first author, publication year, country of origin, trial duration, and study design), clipping or coiling assessment method (type of intervention, number of patients with unruptured MCA aneurysm who had the intervention, number of patient who had a complete angiographic occlusion, the time of assessment, number of patients who had a favorable outcome (mRS 0-3 or GOS 4-5 or e-GOS 6-8), and study quality. The Newcastle-Ottawa Scale was performed for all studies to assess the quality of the studies. Newcastle-Ottawa Scale is a tool used to assess the quality of cohort studies. The selection of exposed and unexposed participants, the assessment of the outcome, and the comparability of the groups are the three broad areas assessed by Newcastle-Ottawa Scale. Stars were awarded for high quality in each area. A maximum of four stars for the “selection category”, three stars for “Outcome”, and two stars for “comparability”. Studies with a score ≥ 7 were considered as high quality and those with a score < 5 were considered as low quality. Since all studies included in this meta-analysis are case-series (there is no comparator group), we modified the Newcastle-Ottawa Scale to assess the quality of studies.

2.4 Outcome measurement

First, Immediate Angiographic Outcome: angiographic results directly at the end of the procedure and during the first one month after the procedure. Second, Late Angiographic Follow-Up: angiographic follow-up results after one month from the procedure. Third, Immediate Functional Outcome: modified Rankin or Glasgow outcome scale result at the end of the procedure and during the first one month after the procedure. Finally, Late Functional Outcome: modified Rankin or Glasgow outcome scale follow-up result after one month from the procedure.

3. STATISTICAL ANALYSIS

All statistical analyses were conducted using Comprehensive Meta-Analysis (CAM) version 3. A total of four overall statistical analyses were conducted. They included: coil occlusion rate, clip occlusion rate, coil neurological outcomes, and clip neurological outcomes. Summary estimates were calculated by combining inverse variance-weighted study-specific estimates using random effects models. Fixed-effects models were also evaluated for comparison. Cochran's Q statistic and the I^2 statistic were reported for each forest plot to evaluate between-study heterogeneity. More than 50% I^2 is considered to be high heterogeneity. Potential sources of heterogeneity (including duration of follow up, location of the study, and study design) were explored by subgroup analysis. Meta-regression by quality of study was performed to assess the effect of quality on the results. To assess publication bias, we used a standard funnel plot as well as random effects Duval and Tweedie's trim and fill. Both the Egger's test and Begg's test were used for assessment of potential publication bias. A cumulative

meta-analysis and analysis after removing one study (outlier) was performed.

4. RESULTS AND DISCUSSION

4.1 Study Selection

After removing all duplicate studies, we ended up with 7,934 studies for selection at stage 1, which included title and abstract review. In stage 1, two independent reviewers reviewed all title and abstract and they ended up with only 259 studies for full-manuscript review. At this stage, we reapplied the “snowballing” technique that added an additional 22 full-text articles. Forty-one studies were passed from the full-manuscript selection stage.^{2, 12-51} Only a single reviewer extracted the data using our data collection sheet, and all 41 studies were included in the final analysis (Table 2). Figure 1 shows the number of studies that were excluded in each stage.

4.2 Study Design and Characteristics

Forty-one studies were included in the final analysis (Table 2). All studies were observational cohort studies investigated coiling or clipping for treatment of unruptured MCA aneurysms. Nine studies were conducted prospectively.^{14,21,26,27,35,36,38,42,47} There were only five studies conducted in patients with unruptured MCA aneurysms.^{17,18,21,29,36} Thirty-five studies conducted in either ruptured or intracranial aneurysms, but they reported result for unruptured MCA aneurysms. Seven studies include result for both groups; clipping and coiling.^{15,21,23,25,26,28,29} Thirty-four studies include results for either coiling or clipping alone.^{6,12-14,16-20,22,24,27,30-51} There were 18 studies investigated coiling and 16 studies investigated the clipping procedure. There were 25 studies^{6,12-35} included in the final analysis for the coiling group (Table 3) and 23 studies^{15,21,23,25,26,28,29,36-51} included in the final analysis for the clipping group (Table 4). Amongst the 25 studies investigated coiling, 5 were prospective.^{14,21,26,27,35} There were 8 studies performed in North America, 13 performed in Europe and 4 in Asia. The quality scores range from 3 to 9 (Table 3). The number of aneurysms in each study ranged from 4 to 218 with duration of follow-up range from post-operative to 62 months (Table 3). Amongst the 23 studies investigated clipping, 6 were prospective.^{21,26,36,38,42,47} There were 2 studies that were performed in North America, 15 in Europe and 6 in Asia. The quality scores range from 4 to 8 (Table 4). The number of aneurysms in each study ranged from 4 to 360 with duration of follow-up range from post-operative to 28 months (Table 4).

4.3 Outcomes

Characteristics of the studies included in the meta-analyses are shown in Table 3 and Table 4. A total of twenty-four studies analyzed complete aneurysmal occlusion. Occlusion was assessed in 8 studies investigated clipping and 20 studies investigated coiling. In all studies, evaluation of aneurysmal occlusion was performed post-operatively. There were 20 studies analyzing complete aneurysmal occlusion in the coil group. Three studies assessed the occlusion rate post-operative and at follow-up, more than 1 month post-operative. There were 19 studies investigated coiling occlusion post-operative and 4 studies investigated coiling occlusion at follow-up (Table 3). Eight studies analyzed

complete aneurysmal occlusion in the clipping group. Only one study assessed the occlusion rate post-operative and at follow-up. There were 8 studies investigated clipping occlusion post-operative and 1 study examined coiling occlusion at follow-up (Table 4). There were 40 studies that assessed neurological outcomes after clipping and coiling. Neurological outcomes were assessed in 23 studies investigated clipping and 24 studies investigated coiling. There were 24 of 25 studies that reported neurological status after coiling. Nine studies used mRS, while 8 used GOS. There were 6 studies that reported neither, but provided sufficient information whereby a favorable or unfavorable outcome could be determined. Only one study reported the two techniques (clipping and coiling). Three studies assessed the clipping neurological outcomes rate post-operative and at follow-up. There were 20 studies investigated coiling neurological outcomes post-operative and 7 studies examining coiling neurological outcomes at follow-up (Table 3). Twenty-three studies assessed neurological status in the clipping group. mRS was used to assess the neurological outcomes in 12 studies while GOS was used in 7 studies. There were four studies that reported their results without mentioning the technique that they used. There were 13 studies examining clipping neurological outcomes post-operative and 10 studies examining clipping neurological outcomes at follow-up (Table 4).

4.3.1 CLIP Aneurysmal Occlusion

On the basis of data from eight studies, we found a positive association between clipping and complete aneurysm occlusion rate. The pooled estimate for complete aneurysm occlusion rate was 96.1% (95% CI: 92.8-97.9%) of clipped cases (Appendix 2). There was no different result from both the random-effects model and the fixed-effects model. There was no between-study heterogeneity ($Q\text{-value} = 6.026$, $I^2 = 0\%$, $P\text{-heterogeneity} = 0.644$). Cumulative meta-analysis shows the initial occlusion rates with clipping of 98.5%, which decreased to 96.1% with time. Many experts favor surgical clipping for treating unruptured MCA aneurysm.^{28, 46, 50} Our meta-analysis results show high percentages (96.1%-98.5%) for complete aneurysm occlusion rate of clipped cases. The high percentages in our study results are similar to that in previous studies. These studies reported aneurysm occlusion rates equal to 92%-100%.^{42, 46, 50, 53, 54} The analyses were divided by duration of follow-up, post-operative and at follow-up, the occlusion rate for post-operative was 96.6% (95% CI: 93.4 – 98.2%) while the occlusion rate at follow-up was 87.5% (95% CI: 46.3 - 98.3%). Kadkhodayan et al. reported a 16-year single-center experience with 292 patients and 346 MCA aneurysms.⁵² This previous study results show a similar complete occlusion rate (91.8 %) to the one presented in our meta-analysis (87.5%). Since there was only one study reported the result at follow-up, there was no between-study heterogeneity ($Q\text{-value} = 0$, $I^2 = 0$, $P\text{-heterogeneity} = 1$) and there was no between-study heterogeneity for post-operative studies ($Q\text{-value} = 4.495$, $I^2 = 0$, $P\text{-heterogeneity} = 0.721$; $n = 8$). Subgroup analysis was done. We divided the analysis by continent that hold the study, North America and Europe, and we found the occlusion rates of 93.3% ($Q\text{-value} = 0.897$, $I^2 = 0$, $P\text{-heterogeneity} = 0.639$; $n = 3$) in North America and 96.8% ($Q\text{-value} = 4.134$, $I^2 = 0$, $P\text{-heterogeneity} = 0.530$; $n = 6$) in Europe. Comparing the studies conducted in North America and studies in Europe, similar occlusion rates could be due to similar practices managing unruptured MCA aneurysms in

both continents. Subgroup analysis by study design was done and we found that the occlusion rate was 96.4% ($Q\text{-value} = 1.325$, $I^2 = 0$, $P\text{-heterogeneity} = 0.515$; $n = 3$) for prospective studies and 95.9% ($Q\text{-value} = 4.666$, $I^2 = 0$, $P\text{-heterogeneity} = 0.458$; $n = 6$) for retrospective studies. Having similar occlusion rates regardless of the study design (prospective or retrospective) suggested that study design is not a significant factor. All these factors (study location and study design) were not significant and suggested that they may not be sources of heterogeneity. Visual inspection of funnel plots along with Begg's test ($P\text{-value} = 0.5$) suggested that publication bias was unlikely in our analysis for studies assessing clipping and occlusion rate. The data was collected from many databases (PubMed, EMBASE and Cochrane databases) to identify studies published between 1991 and 2019. Meta-regression for quality of studies was not significant ($P\text{-value} = 0.7851$). Meta-regression suggested no change in occlusion rates with different scores of quality studies.

4.3.2 COIL Aneurysmal Occlusion

The association between the coiling and complete occlusion rates was positive. The pooled estimate for complete aneurysm occlusion rate was 57.6% (95% CI: 49.4 – 65.4%; random-effects model). Cumulative meta-analysis shows the initial occlusion rates with coiling of 15.4%, which increased to 57.6% with time. The results from the fixed-effects model 55.4% (95% CI: 51.7 – 58.9%) are different compared to the random-effects model due to high degree of heterogeneity between-study ($Q\text{-value} = 95.125$, $I^2 = 76.873$, $P\text{-heterogeneity} < 0.000$) (Appendix 2). This meta-analysis has similar results to the ATENA study that reported coil complete occlusion rate of 63%.⁵⁵ Other previous studies reported lower coil complete occlusion rate.^{21, 28} For example, Regli et al. reported coil complete occlusion rate of only 15% (2 out of 13 patients).²¹ However, the sample size (number of the patients) is only 13. In addition, the patients in Regli et al. study were selected in the period from 1993 to 1997 suggesting that the study included outdated endovascular techniques. Stratifying the analysis by duration of follow-up, the estimation was greater in studies that report results at follow-up 56.7% ($Q\text{-value} = 12.919$, $I^2 = 76.778$, $P\text{-heterogeneity} < 0.005$; $n = 4$) compared with those that reported the results for post-operative 55.1% ($Q\text{-value} = 82.114$, $I^2 = 78.079$, $P\text{-heterogeneity} < 0.000$; $n = 19$). The significant results suggest that duration of follow up may be a substantial source of heterogeneity. Subgroup analysis by continent was done; the estimation was greater in Asian studies 61% ($Q\text{-value} = 6.465$, $I^2 = 69.062$, $P\text{-heterogeneity} < 0.039$; $n = 3$) compared to European studies 56.2% ($Q\text{-value} = 52.859$, $I^2 = 79.19$, $P\text{-heterogeneity} < 0.000$; $n = 12$) and North American studies 50.3% ($Q\text{-value} = 31.233$, $I^2 = 77.588$, $P\text{-heterogeneity} < 0.000$; $n = 8$). Also, we stratified the analysis by study design and we found that the estimation was greater in prospective studies 56.4% ($Q\text{-value} = 11.79$, $I^2 = 83.036$, $P\text{-heterogeneity} < 0.003$; $n = 3$) compared to retrospective studies 55.3% ($Q\text{-value} = 83.315$, $I^2 = 77.195$, $P\text{-heterogeneity} < 0.000$; $n = 20$). The significant results suggest that location of study may be a substantial source of heterogeneity. Visual inspection of funnel plots along with Begg's test ($P\text{-value} = 0.11732$) suggested that publication bias was unlikely in our analysis for studies assessing coiling and occlusion rate. Meta-regression for quality of studies was not significant ($P\text{-value} = 0.0758$). Meta-regression suggested

no change in occlusion rates with different scores of quality studies.

4.3.3 CLIP Neurological Outcomes

The analysis suggested that clipping is associated with favorable postoperative neurological outcomes. The pooled estimate for post-operative neurological outcome was 96.4% (95% CI: 94.8 – 97.5%; random-effects model) of clipped cases (Appendix 3). Result from the fixed-effects model 96% (95% CI: 94.9 – 96.9%) different from the random-effects model and it was not significant (Q -value =37.307, I^2 =38.349, P -heterogeneity < 0.030) suggested that there was a slight heterogeneity between-study. Cumulative meta-analysis shows the initial favorable postoperative neurological outcome with clipping was 95.7%, which increased to 96% with time. Our meta-analysis results show a high percentage for favorable postoperative neurological outcome of clipped cases. This high percentage in our study results are similar and support the results of previous studies.^{42,46,50,53,54} For example, Rodriguez-Hernandez et al. investigated 631 MCA aneurysms and reported 93% favorable neurological outcome of clipped cases.⁴⁶ However, even previous studies^{42,46,50,53,54} reported high percentages for favorable neurological outcome of clipped cases, there was low long-term complications and low retreatment rates in clipping.^{46,50} When we stratified the analysis by duration of follow-up, post-operative and at follow-up, the favorable postoperative neurological outcome was 95.2% (95% CI: 93.4 – 96.5%; Q -value =23.453, I^2 = 44.569, P -heterogeneity < 0.037; n = 14) while the favorable neurological outcome at follow-up was 97.1% (95% CI: 95.5 – 98.1%; Q -value =10.516, I^2 = 14.414, P -heterogeneity < 0.310; n = 10). This result suggested that there was significant between-study heterogeneity for studies that reported the result at follow-up. We divided the analysis by continent and we found that the favorable postoperative neurological outcome was 98.6% (95% CI: 97.1 – 99.3%; Q -value =1.269, I^2 = 21.191, P -heterogeneity < 0.26; n = 2) in Asian studies, 95.6% (95% CI: 93.6 – 97%; Q -value =21.094, I^2 = 33.63, P -heterogeneity < 0.099; n = 15) in European studies and 95.1% (95% CI: 92.8 – 96.7%; Q -value =5.676, I^2 =0, P -heterogeneity < 0.46; n = 7) in North America. Since the result was not significant, this factor (study location) may not be a substantial source of heterogeneity. Subgroup analysis by study design was done and we found that the favorable postoperative neurological outcome was 97.7% (95% CI: 95.6 – 98.8%; Q -value =3.808, I^2 =0, P -heterogeneity < 0.577; n = 6) for prospective studies and 95.6% (95% CI: 94.2 – 96.7%; Q -value =30.300, I^2 =43.894, P -heterogeneity < 0.024; n = 18) for retrospective studies. This result suggested that there was significant between-study heterogeneity for studies that were conducted retrospectively. Visual inspection of funnel plots along with Begg's test (P -value = 0.47034) suggested that publication

bias was unlikely in our analysis for studies assessing clipping and neurological outcome. Meta-regression for quality of studies was not significant (P -value = 0.4955). Meta-regression suggested no change in good neurologic outcomes with different scores of quality studies.

4.3.4 COIL Neurological Outcomes

On the basis of data from twenty-eight studies, we found a positive association between coiling and neurological outcome. The pooled estimate for favorable postoperative neurological outcome was 94.8% (95% CI: 93.1 – 96%) of coiled cases (Appendix 3). There was no different result from both the random-effects model and the fixed-effects model. There was no between-study heterogeneity (Q -value = 26.384, I^2 = 0%, P -heterogeneity = 0.497). Cumulative meta-analysis shows the initial favorable postoperative neurological outcome with coiling was 96.4%, which decreased to 94.8% with time. Multiple previous studies reported similar results.^{12,30,33} Iijima et al. evaluated coiling neurological outcomes in 77 unruptured MCA aneurysms and reported that coiling can be successfully done without neurologic deficit outcomes.³⁰ In addition, Mortimer et al. and Doerfler et al. stated that coiling has an acceptable safety profile with low rates of negative neurological outcomes.^{12,33} Stratifying the analysis by duration of follow-up suggested that the estimation was greater in studies that report results at follow-up 96% (95% CI: 91.8 – 98.1%; Q -value =2.554, I^2 = 0, P -heterogeneity < 0.862; n = 7) compared with those that reported the results for post-operative 94.5% (95% CI: 92.7 – 96%; Q -value =23.233, I^2 = 13.917, P -heterogeneity < 0.277; n = 21). Subgroup analysis by continent was done; the estimation was greater in Asian studies 98.2% (95% CI: 95.3 – 99.3%; Q -value =0.889, I^2 =0, P -heterogeneity < 0.828; n = 4) compared to North American studies 96.5% (95% CI: 93.5 – 98.1%; Q -value =8.197, I^2 =2.4, P -heterogeneity < 0.414; n = 9) and European studies 93.4% (95% CI: 90.8 – 95.2%; Q -value =8.866, I^2 =0, P -heterogeneity < 0.84; n = 15). We stratified the analysis by study design and we found that the estimation was greater in retrospective studies 95.9% (95% CI: 94.1 – 97.1%; Q -value =18.827, I^2 =0, P -heterogeneity < 0.656; n = 23) compared to prospective studies 92.6% (95% CI: 88.7 – 95.2%; Q -value =3.344, I^2 =0, P -heterogeneity < 0.502; n = 5). All factors (duration of follow-up, study location, and study design) were not significant and suggested that they may not be sources of heterogeneity. Visual inspection of funnel plots along with Begg's test (P -value = 0.42944) suggested that publication bias was unlikely in our analysis for studies assessing coiling and neurological outcome. Meta-regression for quality of studies was not significant (P -value = 0.2981). Meta-regression suggested no change in favorable postoperative neurological outcome with different scores of quality studies.

Table 1. Modified Rankin Score and Glasgow Outcome Score

Modified Rankin Scale (mRS)*		Glasgow Outcome Scale (GOS)*	Extended Glasgow Outcome Scale (GOSE)*	
0. No symptoms at all	1. Dead	1. Death	D	
1. No significant disability despite symptoms; able to carry out all usual duties and activities	2. Vegetative State (meaning the patient is unresponsive, but alive; a "vegetable" in lay language)	2. Vegetative state	VS	
2. Slight disability; unable to carry out all previous activities, but able to look after own affairs without assistance	3. Severely Disabled (conscious but the patient requires others for daily support due to disability)	3. Lower severe disability	SD -	
3. Moderate disability; requiring some help, but able to walk without assistance		4. Upper severe disability	SD +	
4. Moderately severe disability; unable to walk without assistance and unable to attend to own bodily needs without assistance	4. Moderately Disabled (the patient is independent but disabled)	5. Good Recovery (the patient has resumed most normal activities but may have minor residual problems)	6. Upper moderate disability	MD +
5. Severe disability; bedridden, incontinent and requiring constant nursing care and attention			7. Lower good recovery	GR -
6. Dead			8. Upper good recovery	GR +

*GOS 4-5 ~ mRS 0-3 ~ GOS-E 6-8

Table 2. All studies included in the meta-analysis

Author Year Country	Type of Cohort Study	Intervention (Clip or Coil)	Number of Patients with Unruptured MCA and COIL	Number of Patients with Unruptured MCA and CLIP	Enrollment period	North American (N), Europe (E), Asia (A)	Study includes data on Coil and Clip Patients	Newcastle-Ottawa Quality Scale # of stars
Raftopoulos, 2003 ¹⁴ Belgium	Prosp	Coil	12	N	1996-2001	E	N	4
Doerfle, 2006 ¹² Germany	Retro	Coil	16	N	2000-2004	E	N	8
Quadros, 2007 ¹⁵ France	Retro	Coil and Clip	22	4	2001-2006	E	Y	6
Oishi, 2009 ¹⁶ Japan	Retro	Coil	45	N	2001-2007	A	N	6
Suzuki, 2009 ¹⁷ USA	Retro	Coil	67	N	1990-1997	N	N	3
Bracard, 2010 ¹³ France	Retro	Coil	79	N	1992-2001	E	N	6
Kim, 2011 ¹⁸ Korea	Retro	Coil	70	N	2000-2009	A	N	7
Guglielmi, 2008 ¹⁹ USA	Retro	Coil	61	N	unknown	N	N	5*
Brinjiki, 2011 ⁶ USA	Retro	Coil	26	N	2002-2009	N	N	4
Horowitz, 2006 ²⁰ USA	Retro	Coil	10	N	1999-2005	N	N	6
Regli, 1999 ²¹ Switzerland	Prosp	Coil and Clip	13	32	1993-1997	E	Y	3
Lubicz, 2006 ²² Belgium	Retro	Coil	19	N	2004-2005	E	N	4
Niskanen, 2005 ²³ Finland	Retro	Coil and Clip	12	82	1997-2000	E	Y	6
Im, 2009 ²⁴ Korea	Retro	Coil	46	N	2002-2006	A	N	4
Kim, 2010 ²⁵ Korea	Retro	Coil and Clip	85	360	2006	A	Y	4
Guresir, 2011 ²⁶ Germany	Prosp	Coil and Clip	21	108	1999-2009	E	Y	5
Pierot, 2008 ²⁷ France	Prosp	Coil	218	N	2005-2006	E	N	8

Diaz, 2012 ²⁸ USA	Retro	Coil and Clip	71	25	2005 - 2010	N	Y	8
Dammann, 2014 ²⁹ Germany	Retro	Coil and Clip	16	87	2006 - 2010	E	Y	6
Iijima, 2005 ³⁰ France	Retro	Coil	77	N	1998-2002	E	N	6
Wanke, 200 ³¹ USA	Retro	Coil	4	N	1997-2000	N	N	5
Vendrell, 2009 ³² France	Retro	Coil	72	N	1999-2006	E	N	3
Mortimer, 2014 ³³ USA	Retro	Coil	56	N	1996-2012	N	N	9
Eboli, 2014 ³⁴ USA	Retro	Coil	113	N	2000-2013	N	N	7
Fiehler, 2008 ³⁵ Germany	Prosp	Coil	13	N	2006	E	N	7
Regli, 2002 ³⁶ Switzerland	Prosp	Clip	N	36	1997-2000	E	N	4
Moroi, 2005 ³⁷ Japan	Retro	Clip	N	201	1993-2000	A	N	7
Gerlach, 2007 ³⁸ Germany	Prosp	Clip	N	35	1999-2005	E	N	4
Deruty, 1996 ³⁹ France	Retro	Clip	N	29	1990-1995	E	N	5
Nussbaum 2006 ⁴⁰ USA	Retro	Clip	N	169	1997-2005	N	N	5
Aghakhani, 2008 ⁴¹ Belgium	Retro	Clip	N	117	1996-2006	E	N	8
Morgan, 2010 ⁴² Australia	Prosp	Clip	N	263	1989-2009	E	N	8
Nanda, 2002 ⁴³ USA	Retro	Clip	N	18	1995-2001	N	N	8
Grigorian, 2003 ⁴⁴ USA	Retro	Clip	N	101	1988-1999	N	N	5
Horn, 2004 ⁴⁵ Norway	Retro	Clip	N	23	1988-1998	E	N	6
van Dijk, 2011 ⁴⁶ Netherlands	Retro	Clip	N	19	2001-2006	E	N	7
Haug, 2009 ⁴⁷ Norway	Prosp	Clip	N	15	2003-2005	E	N	7
Seule, 2012 ⁴⁸ Switzerland	Retro	Clip	N	24	1999-2009	E	N	5
Ogilvy, 1995 ⁴⁹ USA	Retro	Clip	N	46	1985-1989	N	N	5
Rodríguez-Hernández, 2012 ⁵⁰ USA	Retro	Clip	N	216	1997-2010	N	N	6
Calvacante, 2013 ⁵¹ France	Retro	Clip	N	7	1990-2011	E	N	6

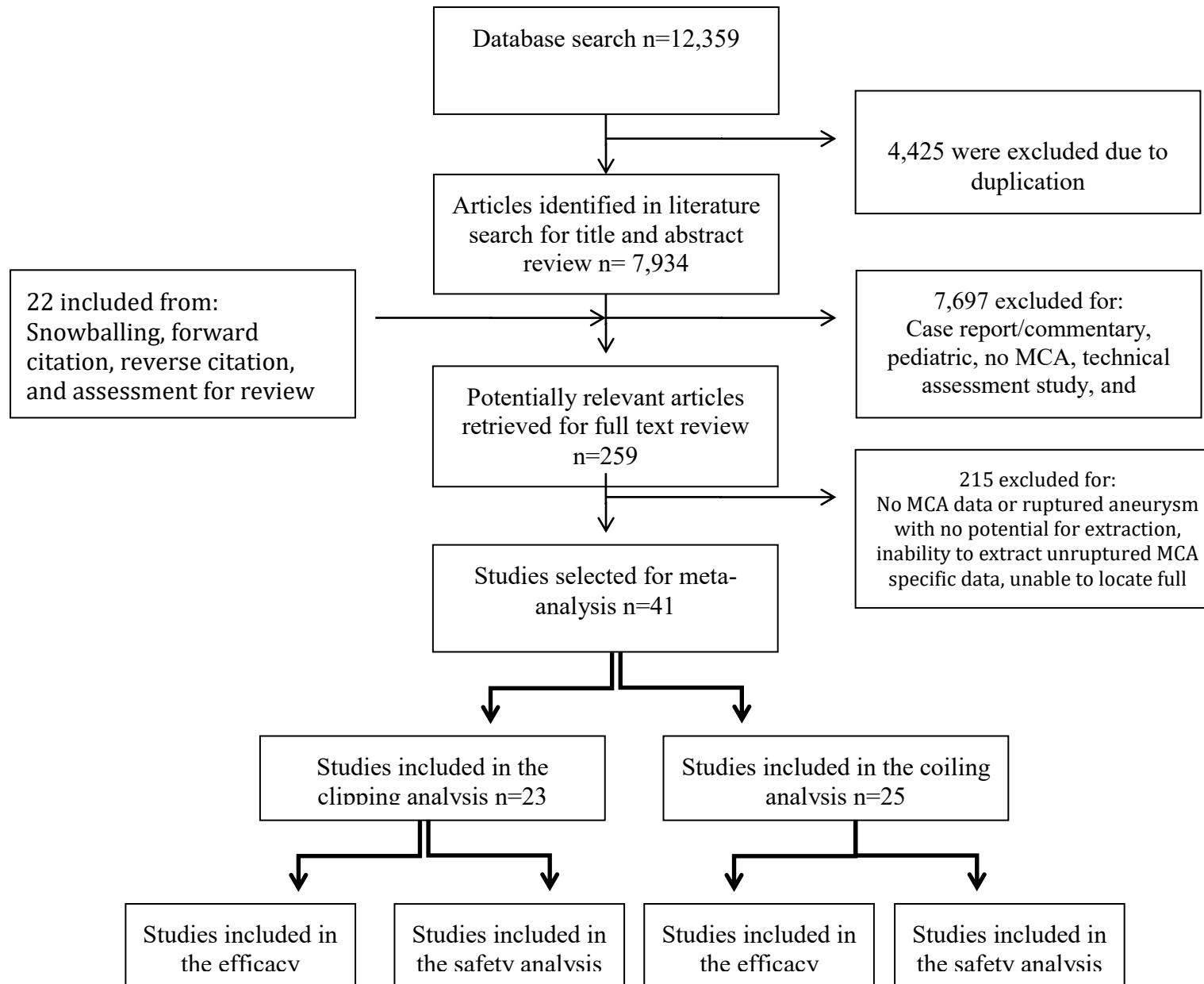
Table 3. Systematic Review of Coil Efficacy and Safety (n = 25)

Author, Year	Country	Cohort Study Des	Years of study	Only MCA (Y/N)	Only un-ruptured (Y/N)	N = 1244	# complete occlusion	Timing of assessment of Occlusion	Modified Rankin score (mRS) or Glasgow Outcome Scale (GOS) Details mRS 0-3 favorable GOS 4-5 favorable	Favorable Neuro-outcome with denominator of # patients	Timing of assessment of mRS or GOS
Raftopoulos, 2003 ¹⁴	Belgium	Prosp	1996-2001	N	Y	12	5 of 12	Post-op	GOS 4,5: 10 GOS: 1-3: 2	10 of 12	Discharge
Doerfler, 2006 ¹²	Germany	Retro	2000-2004	Y	N	16	10 of 16 11 of 16	Post-op 6 month	GOS: 13 GR,3MD GOS: 13 GR, 1 MD, 1 D, 1 lost to F/U	16 of 16 14 of 15	30 days 6 months
Quadros, 2007 ¹⁵	France	Retro	2001-2006	Y	N	22	9 of 22 8 of 22	Post-op 12 month	mRS 1.0 ± 1.66, 14 patients had mRS: 0 2 patient had mRS: I	20 of 22 20 of 22	Discharge 30 days

										2 patient had mRS: 2 2 patient had mRS: 3 1 patient had mRS: 4 1 patient had mRS: 6 GOS: 15 GR, 4 MD, 3 SD, 0 D	
Oishi, 2009 ¹⁶	Tokyo	Retro	2001-2007	Y	N	45	28 of 45*	Post-op	GOS: 44 GR, 1MD (Stroke)	45 of 45	Discharge
Suzuki, 2009 ¹⁷	USA	Retro	1990-1997	Y	Y	67	31 of 67*	Post-op	mRS 1.19/ 0.28 51 patient had mRS:0 13 patient had mRS:1 2 patient had mRS: 2 1 patient had mRS: 3	67 of 67	Post-Op
									52 patient had mRS:0 8 patient had mRS: 1 2 patient had mRS: 2 1 patient had mRS: 6	62 of 63	16 months
Bracard, 2010 ¹³	France	Retro	1992-2001	Y	N	79	25 of 79	Post-op	GOS: 61 GR, 5 MD, 1D	66 of 67	Discharge
Kim, 2011 ¹⁸	Korea	Retro	2000-2009	Y	Y	76	40 of 76	Post-op	61 patient had mRS: 0 7 patient had mRS: 1 or 2 2 patient died (76 aneurysm in 70 pts)	68 of 70	Discharge
Guglielmi, 2008 ¹⁹	USA	Retro	< 2000	Y	N	61	28 of 61	Post-op	Morbidity 9% Mortality 2%	NA	Discharge
Brinjikji, 2011 ⁶	USA	Retro	2002-2009	Y	N	32 (in 26 pts)	7 of 32*	Post-op	26: excellent/good	26 of 26	Post-op
Horowitz, 2006 ²⁰	USA	Retro	1999-2005	Y	N	10	8 of 10*	Post-op	10 patient had mRS: 0, 1	10 of 10	Post-Op
Regli, 1999 ²¹	Switzerland	Prospect	1993-1997	Y	Y	13	2 of 13	Post-op	12: excellent/good 1: fair 0: poor	13 of 13	Post-op
Lubicz, 2006 ²²	Belgium	Retro	2004-2005	Y	N	19	11 of 19*	Post-op	19 patient had mRS: 0,1	19 of 19	Post-op
Niskanen, 2005 ²³	Finland	Retro	1997-2000	N	Y	12	NA	NA	11 patient had GOS: 4-5 1 patient had GOS: 1	11/12	1 year
Im, 2009 ²⁴	Korea	Retro	2002-2006	N	Y	46	35 of 46	Post-op	45 patient had mRS: 0-1 1 patient had mRS: 2	46 of 46	Discharge
Kim, 2010 ²⁵	Korea	Retro	2006	N	Y	85	NA	NA	84 patient had mRS: 0-1 1 patient had mRS: > 3	84 of 85	1 month
Guresir, 2011 ²⁶	Germany	Prospect	1999-2009	Y	N	21	NA	NA	mRS 1 + 0.8, 20 patient had favorable	20 of 21	6 months

										outcomes: (0-2 score) 1 patient had permanent deficit		
Pierot, 2008 ²⁷	France	Prospect	2005-2006	N	Y	218	NA	NA	The treatment failed in 14 patients	204 of 218	Post-op	
Diaz, 2012 ²⁸	USA	Retro	2005-2010	Y	N	40	10 of 40 35 of 40	Post-op Up to 62 months	5 patient had mRS; 3-6	35 of 40	6 months	
Dammann, 2014 ²⁹	Germany	Retro	2006-2010	Y	Y	16	12 of 16	Post-op	13 patient had GOS: 5 1 patient had GOS: 4 2 patient had GOS: 3 14 patient had GOS: 5 1 patient had GOS: 4 1 patient had GOS: 3	14 of 16	Discharge	
Iijima, 2005 ³⁰	France	Retro	1998-2002	Y	N	77	59 of 77*	Post-op	2/77 permanent disability 1/77 dead No info on mRS or GOS	74 of 77	Discharge	
Wanke, 2002 ³¹	USA	Retro	1997-2000	N	Y	4	4 of 4	Post-Op	NA	4 of 4	Post-Op	
Vendrell, 2009 ³²	France	Retro	1999-2006	Y	N	72	47 of 72	Post-Op	40 patient had GOS: 5 4 patient had GOS: 4 3 patient had GOS: 3	44 of 47	Post-Op	
Mortimer, 2014 ³³	USA	Retro	1996-2012	Y	N	56	29 of 56	3 - 6 month	1 of 53 patients died and he was the only patient who experienced a permanent change in neurologic status	52 of 53	3 - 6 month	
Eboli, 2014 ³⁴	USA	Retro	200-2013	Y	N	113	NA	NA	Stroke 3/113	110 of 113	Post-Op	
Fiehler, 2008 ³⁵	Germany	Prospect	2006	N	N	32	24 of 32	Discharge	2 patient had mRS > 1	11 of 13	Discharge	

Table 4. Systematic Review of Clip Efficacy and Safety (n = 23)


Author, Year	Country	Cohort Study Des	Years of study	Only MCA (Y/N)	Only unruptured (Y/N)	N	# Cli	# complete occlusion	Timing of assessment of Occlusion	Modified Rankin score (mRS) or Glasgow Outcome Scale (GOS)	Favorable Neuro-outcome with denominator of # patients	Timing of assessment of mRS or GOS
							=2	138		Details mRS 0-3 favorable GOS 4-5 favorable		
Regli, 1999 ²¹	Switzerland	Prospect	1993-1997	Y	Y	32		32 of 32	Post-op	GOS 4.8 28 good 1 fair 1 poor	29 of 30	Post-op
Regli, 2002 ³⁶	Switzerland	Prospect	1997-2000	Y	Y	36		36 of 36	Post-op	36 patient had mRS: 0-3	36 of 36	Post-Op
Moroi, 2005 ³⁷	Japan	Retro	1993-2000	N	Y	201		NA	NA	2 of 201 had mRS >2 (1 with permanent deficit and 1 with temporary hemiparesis) Only 1 patient with a permanent disability (used GOS), 1 had a temporary non-disabling deficit	200 of 201	Discharge
Quadros 2007 ¹⁵	France	Retro	2001-2006	Y	N	4		4 of 4*	Post-Op	2 patient had mRS 0 1 patient had mRS 1 1 patient had mRS 2	4 of 4	Discharge
Ogilvy, 1995 ⁴⁹	USA	Retro	1985-1989	Y	N	46		NA	NA	44 patient with good/fair outcome 1 dead 1 with permanent	44 of 46	Long-term

										disability		
Gerlach, 2007 ³⁸	Germany	Prosp	1999- 2005	N	Y	35	33 of 35	Post-op	34 patients had mRS 0-3 1 patient had mRS 4	34 of 35	Discharge	
Deruty, 1996 ³⁹	France	Retro	1990- 1995	N	Y	29	NA	NA	28 patients had mRS: 0-3 1 patient had mRS: >3	28 of 29*	Discharge	
Niskanen, 2005 ²³	Finland	Retro	1997- 2000	N	Y	82	NA	NA	79 patients had GOS: 4,5 3 patients had GOS: 3	79/83	1 year	
Nussbaum 2006 ⁴⁰	USA	Retro	1997- 2005	N	Y	169	NA	NA	168 patients had GOS: 4,5 1 patients had GOS: 3	168 of 169	6 months	
Aghakhan, 2008 ⁴¹	Belgium	Retro	1996- 2006	N	Y	117	117 of 117	Post-op	114* patients had mRS: 0 3 patients had mRS: 1	117 of 117	3 months	
Kim, 2010 ²⁵	Korea	Retro	2006	N	Y	360	NA	NA	354* patients had mRS: 0-2 6 patients had mRS: > 3	354 of 360	1 month	
Rodriguez- Hernández, 2012 ⁵⁰	USA	Retro	1997- 2010	Y	N	261	NA	NA	136 patients had mRS 0 73 patients had mRS 1 31 patients had mRS 2 7 patients had mRS 3	247 of 261	Post-Op	
Calvacante 2013 ⁵¹	France	Retro	1990- 2011	Y	N	7	NA	NA	2 patients had mRS 0 1 patients had mRS 1 3 patients had mRS 2	6 of 7	Post-Op	
Guresir, 2011 ²⁶	Germany	Prosp	1999- 2009	Y	N	108	NA	NA	mRS 1 + 0.8 104 favorable (0- 2 score) 4 with permanent	104 of 108	6 months	

										disability		
Grigorian, 2003 ⁴⁴	USA	Retro	1988- 1999	N	Y	101	NA	NA	86/92 patients comprised the expected outcome	86 of 92	Discharge	
Diaz, 2012 ²⁸	USA	Retro	2005- 2010	Y	N	25	16 of 25 23 of 25	Post-OP Up to 28 month	0 patient had mRS; 3-6	25 of 25	6 months	
Morgan, 2010 ⁴²	Australia	Prospect	1989- 2009	Y	N	339 (in 263 pati ent s)	NA	NA	250 patients had mRS: 0 or 1 9 patient had mRS: 2 3 patient had mRS: 3 1 patient had mRS: 4 1 patient had mRS: 6	261 of 263	Discharge	
Dammann, 2014 ²⁹	Germany	Retro	2006- 2010	Y	Y	87	84 of 87	Post-OP	75 patient had GOS: 5 9 patient had GOS: 4 3 patient had GOS: 3	84 of 87	Discharge	
									80 patient had GOS: 5 6 patient had GOS: 4 1 patient had GOS: 3	86 of 87	12 months	
Horn, 2004 ⁴⁵	Norway	Retro	1988- 1998	N	Y	23	NA	NA	4 patient had GOS-E score: 3- 5	19 of 23	Post-Op	
van Dijk, 2011 ⁴⁶	Netherlands	Retro	2001- 2006	Y	N	19	NA	NA	All 19 patients had a good outcome (mRS 0-2).	19 of 19	1 year	
Nanda, 2002 ⁴³	USA	Retro	1995- 2001	N	Y	18	18 of 18	Post-OP	16 patient had GOS: 5 2 patient had GOS: 4	18 of 18	Discharge	
Haug, 2009 ⁴⁷	Norway	Prospect	2003- 2005	Y	N	15	NA	NA	8 patient had mRS 0 5 patient had	15 of 15	3 months	

									mRS 1		
									2 patient had		
									mRS 2		
									9 patient had	15 of 15	12 months
									mRS 0		
									2 patient had		
									mRS1		
									4 patient had		
									mRS 2		
Seule, 2012 48	Switzerland	Retro	1999- 2009	N	Y	24	NA	NA	2 patients had poor outcome	22 of 24	6 weeks

GOS (Glasgow Outcome Scale): 5 GR (good recovery),4 MD (moderate disability),3 SD (severe disability),2 PG (persistent vegetative),1 D (dead)
 * indicates a value that was derived from a % in the manuscript

FIG 1: Flow chart detailing the process of determining eligible trial for inclusion in meta-analysis

Appendix I,**Search Strategies**

The online database PubMed was used to perform a search of the literature between 1991 and January Week 4 2019. The following search terms were used:

Restricted search

("Intracranial Aneurysm"[Mesh] "Middle Cerebral Artery"[Mesh] OR Intracranial Aneurysm*[tw] OR Middle Cerebral Artery Aneurysm*[tw] OR MCA[tw] OR Unruptured Aneurysm*[tw] OR Unruptured Intracranial Aneurysm*[tw] OR UIA*[tw] OR unruptured MCA[tw] OR Brain Aneurysm[tw] OR Cerebral Aneurysm* [tw]) AND ("Endovascular Procedures"[Mesh] OR "Cerebral Angiography"[Mesh] OR Endovascular Coil*[tw] OR Coil*[tw] OR Endovascular Procedure[tw] OR Intravascular Procedure*[tw] OR Intravascular Technique*[tw] OR

Endovascular Technique*[tw] OR Cerebral Angiograph*[tw] OR "Neurosurgical Procedures"[Mesh:NoExp] OR "Microsurgery"[Mesh] OR "Surgical Instruments"[Mesh] OR "Neurosurgery"[Mesh] OR Surgical Clip*[tw] OR Clip*[tw] OR Tantalum Clip*[tw] OR Neurosurgical Procedure*[tw] OR Neurologic Surgical Procedure*[tw] OR Neurosurgeon*[tw] OR Microsurgeon*[tw] OR "Intracranial Pressure"[Mesh] OR "Brain/surgery"[Mesh] OR brain surg*[tw] OR intracranial pressure[tw]) 6272 result 01-24-2019 limit to (English language, humans, adult) Cochrane Library was used to perform a search of the literature between 1991 and January Week 4 2019. The following search terms were used: "aneurysm" in Title, Abstract or Keywords AND "endovascular procedure" OR "coil*" OR "cerebral angiography" OR "craniotom*" OR "neurosurg*" OR "clip*" OR "surg*" in Title, Abstract or Keywords 27 result 01-24-2019 The online database EMBASE was used to perform a search of the literature between 1991 to January 23, 2019. The following search terms were used:

Table 1. Terms Used for Search in PubMed

Searches	Results
1 'intracranial aneurysm'.tw. or exp intracranial aneurysm/	26452
2 'brain artery aneurysm'.tw. or exp brain artery aneurysm/	12833
3 'unruptured intracranial aneurysm'.tw. or exp unruptured intracranial aneurysm/	561
4 'brain artery '.tw. or exp brain artery/	40992
5 'middle cerebral artery '.tw. or exp middle cerebral artery/	31967
6 1 or 2 or 3 or 4 or 5	76659
7 exp endovascular surgery/ or 'Endovascular Coil*'.tw.	20469
8 exp brain angiography/	27709
9 exp coil embolization/ or 'coil embolization'.tw. or 'coil embolisation'.tw	8224
10 coil*.tw	51327
11 neurosurgery	23149
12 exp microsurgery/	27486
13 'aneurysm clip'.tw. or exp aneurysm clip/	2458
14 exp clip/ or 'Surgical Clip*'.tw.	11512
15 7 or 8 or 9 or 10 or 11 or 13 or 14	153309
16 6 and 17	17845
17 limit 16 to (human and english language and yr="1991 -Current" and adult <18 to 64 years>)	6060

6060 result 01-24-2019 limit to (English language, humans and adult).

Appendix 2



Fig 1. Overall pooled clipping occlusion rates analysis (efficacy)

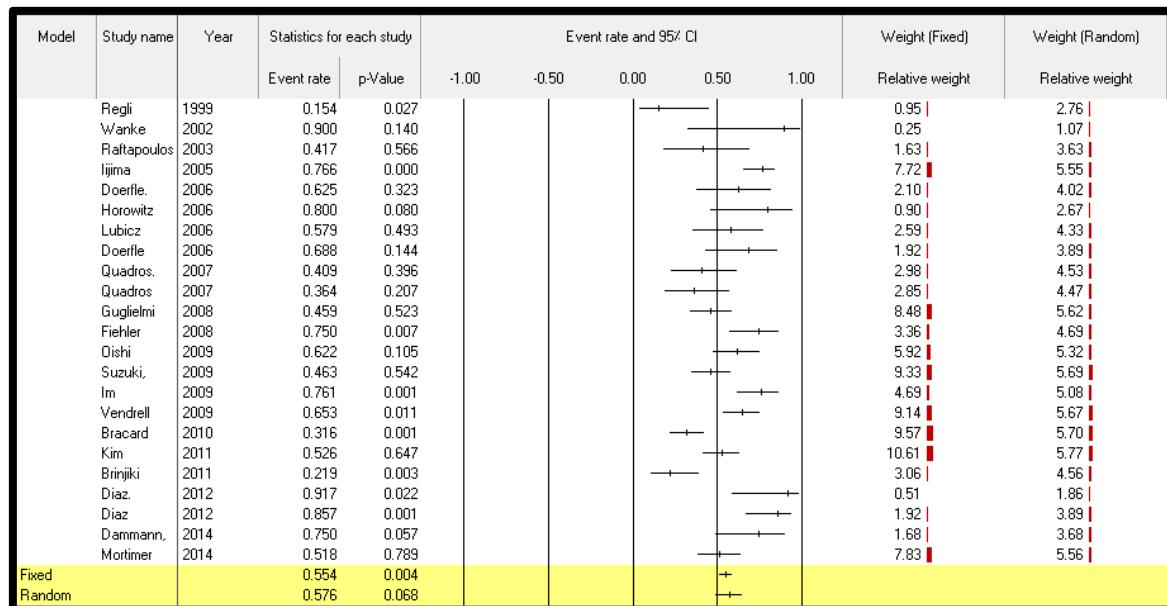


Fig 2. Overall pooled coiling occlusion rates analysis (efficacy)

Appendix 3

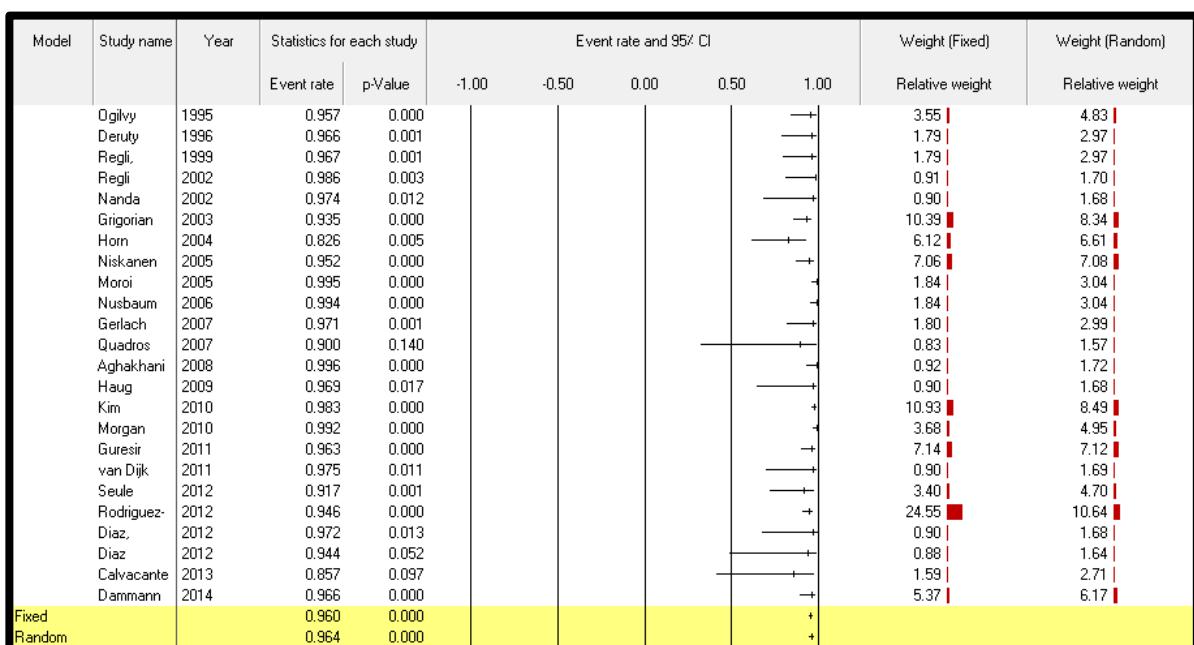


Fig 3. Overall pooled clipping neurological outcome analysis (safety)

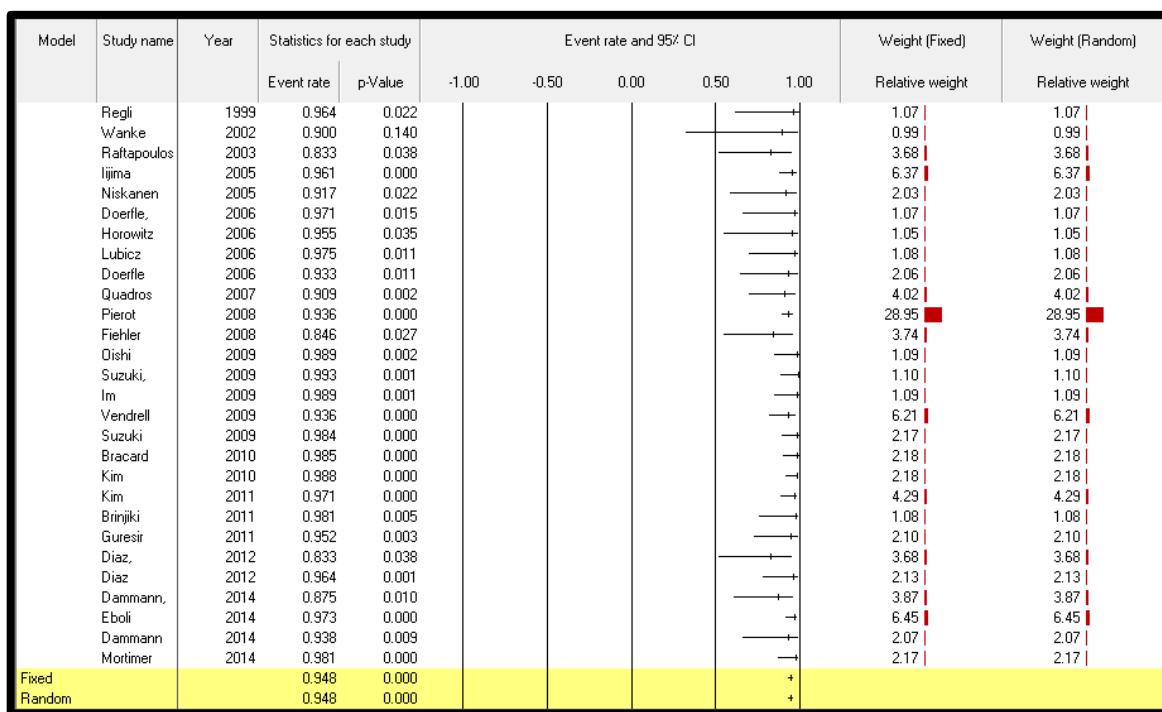


Fig 2. Overall pooled coiling neurological outcome analysis (safety)

5. CONCLUSION

Comparing the microsurgical clipping with the endovascular coiling for treatment of unruptured MCA aneurysms, clipping has a higher aneurysm occlusion rate than coiling. The rate of occlusion appears to decrease with time in the clipping group and increase with time in the coiling group. Both clipping and coiling have similar functional outcomes for treatment of unruptured MCA aneurysms. The rate of favorable functional outcomes appears to increase with time in the clipping group and decrease with time in the coiling group.

8. REFERENCES

- Mason AM, Cawley III CM, Barrow DL. Surgical management of intracranial aneurysms in the endovascular era: review article. *J Korean Neurosurg Soc.* 2009 Mar;45(3):133-42. doi: [10.3340/jkns.2009.45.3.133](https://doi.org/10.3340/jkns.2009.45.3.133), PMID [19352474](https://pubmed.ncbi.nlm.nih.gov/19352474/).
- Wiebers DO, Piegras DG, Meyer FB, Kallmes DF, Meissner I, Atkinson JL, Link MJ, Brown Jr RD. Pathogenesis, natural history, and treatment of unruptured intracranial aneurysms. *Mayo Clin Proc.* 2004 Dec 1;79(12):1572-83. doi: [10.4065/79.12.1572](https://doi.org/10.4065/79.12.1572), PMID [15595346](https://pubmed.ncbi.nlm.nih.gov/15595346/).
- Loumiotis I, Brown RD Jr, Vine R, Cloft HJ, Kallmes DF, Lanzino G. Small (< 10-mm) incidentally found intracranial aneurysms, Part 2: treatment recommendations, natural history, complications, and short-term outcome in 212 consecutive patients. *Neurosurg Focus.* 2011 Dec 1;31(6):E4. doi: [10.3171/2011.9.FOCUS11237](https://doi.org/10.3171/2011.9.FOCUS11237), PMID [22133187](https://pubmed.ncbi.nlm.nih.gov/22133187/).
- Campi A, Ramzi N, Molyneux AJ, Summers PE, Kerr RS, Sneade M, Yarnold JA, Rischmiller J, Byrne JV. Retreatment of ruptured cerebral aneurysms in patients randomized by coiling or clipping in the International Subarachnoid Aneurysm Trial (ISAT). *Stroke.* 2007 May 1;38(5):1538-44. doi: [10.1161/STROKEAHA.106.466987](https://doi.org/10.1161/STROKEAHA.106.466987), PMID [17395870](https://pubmed.ncbi.nlm.nih.gov/17395870/).
- Myaoka M, Sato K, Ishii S. A clinical study of the relationship of timing to outcome of surgery for ruptured cerebral aneurysms. A retrospective analysis of 1622 cases. *J Neurosurg.* 1993 Sep 1;79(3):373-8. doi: [10.3171/jns.1993.79.3.0373](https://doi.org/10.3171/jns.1993.79.3.0373), PMID [8360733](https://pubmed.ncbi.nlm.nih.gov/8360733/).
- Brinjikji W, Rabinstein A. A, Nasr D. M, Lanzino G, Kallmes D. F, Cloft H. J. Better outcomes with treatment by coiling relative to clipping of unruptured intracranial aneurysms in the United States, 2001–2008. *AJNR Am J Neuroradiol.* 2011 Jun 1; 32(6):1071-5. Doi: [10.3174/ajnr.A2453](https://doi.org/10.3174/ajnr.A2453).
- Qureshi AI, Vazquez G, Tariq N, Suri MF, Lakshminarayan K, Lanzino G. F. K. Impact of International subarachnoid Aneurysm Trial results on treatment of ruptured intracranial aneurysms in the United States: clinical article. *J Neurosurg.* 2011 Mar 1;114(3):834-41. doi: [10.3171/2010.6.JNS091486](https://doi.org/10.3171/2010.6.JNS091486), PMID [20653392](https://pubmed.ncbi.nlm.nih.gov/20653392/).
- Murayama Y, Nien YL, Duckwiler G, Gobin YP, Jahan R, Frazee J, Martin N, Viñuela F. Guglielmi detachable coil embolization of cerebral aneurysms: 11 years' experience. *J Neurosurg.* 2003 May 1;98(5):959-66. doi: [10.3171/jns.2003.98.5.0959](https://doi.org/10.3171/jns.2003.98.5.0959), PMID [12744354](https://pubmed.ncbi.nlm.nih.gov/12744354/).
- Byrne JV, Sohn MJ, Molyneux AJ, Chir B. Five-year experience in using coil embolization for ruptured intracranial aneurysms: outcomes and incidence of late

6. AUTHORS CONTRIBUTION STATEMENT

Fatema Turkistani, Pharm. D, MSc, PhD, DBA designed the study, collected and analyzed the data, and wrote many sections of the manuscripts. Aseel Bin Sawad, Pharm D, MSc, MCR, MS, PhD, DBA contributed to the study design, collected data, analyzed parts of the data, wrote and revised many sections of the manuscript. All the authors read and approved the final version of the manuscript.

7. CONFLICT OF INTEREST

Conflict of interest declared none.

rebleeding. *J Neurosurg.* 1999 Apr 1;90(4):656-63. doi: [10.3171/jns.1999.90.4.0656](https://doi.org/10.3171/jns.1999.90.4.0656), PMID [10193610](https://pubmed.ncbi.nlm.nih.gov/10193610/).

10. Plowman RS, Clarke A, Clarke M, Byrne JV. Sixteen-year single-surgeon experience with coil embolization for ruptured intracranial aneurysms: recurrence rates and incidence of late rebleeding. Clinical article. *Clinical article. J Neurosurg.* 2011 Mar 1;114(3):863-74. doi: [10.3171/2010.6.JNS091058](https://doi.org/10.3171/2010.6.JNS091058), PMID [20672900](https://pubmed.ncbi.nlm.nih.gov/20672900/).

11. Brinjikji W, Lanzino G, Cloft HJ, Rabinstein A, Kallmes DF. Endovascular treatment of middle cerebral artery aneurysms: a systematic review and single-center series. *Neurosurgery.* 2011 Feb 1;68(2):397-402; discussion 402. doi: [10.1227/NEU.0b013e318201d7f4](https://doi.org/10.1227/NEU.0b013e318201d7f4), PMID [21135730](https://pubmed.ncbi.nlm.nih.gov/21135730/).

12. Doerfler A, Wanke I, Goericke SL, Wiedemayer H, Engelhorn T, Gizewski ER, Stolke D, Forsting M. Endovascular treatment of middle cerebral artery aneurysms with electrolytically detachable coils. *AJNR Am J Neuroradiol.* 2006 Mar 1;27(3):513-20. PMID [16551986](https://pubmed.ncbi.nlm.nih.gov/16551986/).

13. Bracard S, Abdel-Kerim A, Thuillier L, Klein O, Anxionnat R, Finitsis S, Lebedinsky A, De Freitas CM, Pinheiro N, De Andrade GC, Picard L. Endovascular coil occlusion of 152 middle cerebral artery aneurysms: initial and midterm angiographic and clinical results. *J Neurosurg.* 2010 Apr 1;112(4):703-8. doi: [10.3171/2009.6.JNS09483](https://doi.org/10.3171/2009.6.JNS09483), PMID [19852536](https://pubmed.ncbi.nlm.nih.gov/19852536/).

14. Raftopoulos C, Goffette P, Vaz G, Ramzi N, Scholtes JL, Wittebole X, Mathurin P. Surgical clipping may lead to better results than coil embolization: results from a series of 101 consecutive unruptured intracranial aneurysms. *Neurosurgery.* 2003 Jun 1;52(6):1280-7; discussion 1287. doi: [10.1227/01.NEU.0000064568.71648.EC](https://doi.org/10.1227/01.NEU.0000064568.71648.EC), PMID [12762873](https://pubmed.ncbi.nlm.nih.gov/12762873/).

15. Quadros RS, Gallas S, Noudel R, Rousseaux P, Pierot L. Endovascular treatment of middle cerebral artery aneurysms as first option: a single center experience of 92 aneurysms. *AJNR Am J Neuroradiol.* 2007 Sep 1;28(8):1567-72. doi: [10.3174/ajnr.A0595](https://doi.org/10.3174/ajnr.A0595), PMID [17846214](https://pubmed.ncbi.nlm.nih.gov/17846214/).

16. Oishi H, Yoshida K, Shimizu T, Yamamoto M, Horinaka N, Arai H. Endovascular treatment with bare platinum coils for middle cerebral artery aneurysms. *Neurol Med Chir (Tokyo).* 2009 Jul 1;49(7):287-93. doi: [10.2176/nmc.49.287](https://doi.org/10.2176/nmc.49.287), PMID [19633399](https://pubmed.ncbi.nlm.nih.gov/19633399/).

17. Suzuki S, Tateshima S, Jahan R, Duckwiler GR, Murayama Y, Gonzalez NR, Viñuela F. Endovascular treatment of middle cerebral artery aneurysms with detachable coils: angiographic and clinical outcomes in 115 consecutive patients. *Neurosurgery.* 2009 May 1;64(5):876-88; discussion 888. doi: [10.1227/01.NEU.0000343534.05655.37](https://doi.org/10.1227/01.NEU.0000343534.05655.37), PMID [19287326](https://pubmed.ncbi.nlm.nih.gov/19287326/).

18. Kim BM, Kim DI, Park SI, Kim DJ, Suh SH, Won YS. Coil embolization of unruptured middle cerebral artery aneurysms. *Neurosurgery.* 2011 Feb 1;68(2):346-53; discussion 353. doi: [10.1227/NEU.0b013e3182035fdc](https://doi.org/10.1227/NEU.0b013e3182035fdc), PMID [21135721](https://pubmed.ncbi.nlm.nih.gov/21135721/).

19. Guglielmi G, Viñuela F, Duckwiler G, Jahan R, Cotroneo E, Gigli R. Endovascular treatment of middle cerebral artery aneurysms. Overall perioperative results. Apropos of 113 cases. *Interv Neuroradiol.* 2008 Sep 30;14(3):241-45. doi: [10.1177/159101990801400303](https://doi.org/10.1177/159101990801400303), PMID [20557720](https://pubmed.ncbi.nlm.nih.gov/20557720/).

20. Horowitz M, Gupta R, Gologorsky Y, Jovin T, Genevro J, Levy E, Kassam A. Clinical and anatomic outcomes after endovascular coiling of middle cerebral artery aneurysms: report on 30 treated aneurysms and review of the literature. *Surg Neurol.* 2006 Aug 1;66(2):167-71; discussion 171. doi: [10.1016/j.surneu.2005.12.022](https://doi.org/10.1016/j.surneu.2005.12.022), PMID [16876616](https://pubmed.ncbi.nlm.nih.gov/16876616/).

21. Regli L, Uske A, de Tribolet N. Endovascular coil placement compared with surgical clipping for the treatment of unruptured middle cerebral artery aneurysms: a consecutive series. *J Neurosurg.* 1999 Jun 1;90(6):1025-30. doi: [10.3171/jns.1999.90.6.1025](https://doi.org/10.3171/jns.1999.90.6.1025), PMID [10350247](https://pubmed.ncbi.nlm.nih.gov/10350247/).

22. Lubicz B, Graca J, Levivier M, Lefranc F, Dewitte O, Pirotte B, Brotchi J, Balériaux D. Endovascular treatment of middle cerebral artery aneurysms. *Neurocrit Care.* 2006 Oct;5(2):93-101. doi: [10.1385/NCC:5:2:93](https://doi.org/10.1385/NCC:5:2:93).

23. Niskanen M, Koivisto T, Rinne J, Ronkainen A, Pirskanen S, Saari T, Vanninen R. Complications and postoperative care in patients undergoing treatment for unruptured intracranial aneurysms. *J Neurosurg Anesthesiol.* 2005 Apr 1;17(2):100-5. doi: [10.1097/01.ana.0000163202.33236.mL](https://doi.org/10.1097/01.ana.0000163202.33236.mL), PMID [15840997](https://pubmed.ncbi.nlm.nih.gov/15840997/).

24. Im SH, Han MH, Kwon OK, Kwon BJ, Kim SH, Kim JE, Oh CW. Endovascular coil embolization of 435 small asymptomatic unruptured intracranial aneurysms: procedural morbidity and patient outcome. *AJNR Am J Neuroradiol.* 2009 Jan 1;30(1):79-84. doi: [10.3174/ajnr.A1290](https://doi.org/10.3174/ajnr.A1290), PMID [18768715](https://pubmed.ncbi.nlm.nih.gov/18768715/).

25. Kim JE, Lim DJ, Hong CK, Joo SP, Yoon SM, Kim BT. Treatment of unruptured intracranial aneurysms in South Korea in 2006: a nationwide multicenter survey from the Korean society of cerebrovascular surgery. *J Korean Neurosurg Soc.* 2010 Feb 28;47(2):112-8. doi: [10.3340/jkns.2010.47.2.112](https://doi.org/10.3340/jkns.2010.47.2.112), PMID [20224709](https://pubmed.ncbi.nlm.nih.gov/20224709/).

26. Güresir E, Schuss P, Berkefeld J, Vatter H, Seifert V. Treatment results for complex middle cerebral artery aneurysms. A prospective single-center series. *Acta Neurochir (Wien).* 2011 Jun;153(6):1247-52. doi: [10.1007/s00701-011-1008-3](https://doi.org/10.1007/s00701-011-1008-3), PMID [21487768](https://pubmed.ncbi.nlm.nih.gov/21487768/).

27. Pierot L, Spelle L, Vitry F, ATENA Investigators. Immediate clinical outcome of patients harboring unruptured intracranial aneurysms treated by endovascular approach results of the ATENA study. *Stroke.* 2008 Sep 1;39(9):2497-504. doi: [10.1161/STROKEAHA.107.512756](https://doi.org/10.1161/STROKEAHA.107.512756), PMID [18617659](https://pubmed.ncbi.nlm.nih.gov/18617659/).

28. Diaz OM, Rangel-Castilla L, Barber S, Mayo RC, Klucznik R, Zhang YJ. Middle cerebral artery aneurysms: A single-center series comparing endovascular and surgical treatment. *World Neurosurg.* 2014 Feb 1;81(2):322-9. doi: [10.1016/j.wneu.2012.12.011](https://doi.org/10.1016/j.wneu.2012.12.011), PMID [23238101](https://pubmed.ncbi.nlm.nih.gov/23238101/).

29. Dammann P, Schoemberg T, Müller O, Özkan N, Schlamann M, Wanke I, Sandalcioglu IE, Forsting M, Sure U. Outcome for unruptured middle cerebral artery aneurysm treatment: surgical and endovascular approach in a single center. *Neurosurg Rev.* 2014 Oct;37(4):643-51. doi: [10.1007/s10143-014-0563-5](https://doi.org/10.1007/s10143-014-0563-5), PMID [25005630](https://pubmed.ncbi.nlm.nih.gov/25005630/).

30. Iijima A, Piotin M, Mounayer C, Spelle L, Weill A, Moret J. Endovascular treatment with coils of 149 middle cerebral artery berry aneurysms. *Radiology.* 2005 Nov 2;237(2):611-9. doi: [10.1148/radiol.2372041015](https://doi.org/10.1148/radiol.2372041015), PMID [16244270](https://pubmed.ncbi.nlm.nih.gov/16244270/).

31. Wanke I, Doerfler A, Dietrich U, Egelhof T, Schoch B, Stolke D, Forsting M. Endovascular treatment of unruptured intracranial aneurysms. *AJNR Am J Neuroradiol*. 2002 May;23(5):756-61. PMID [12006272](#).

32. Vendrell JF, Menjot N, Costalat V, Hoa D, Moritz J, Brunel H, Bonafe A. Endovascular treatment of 174 middle cerebral artery aneurysms: clinical outcome and radiologic results at long-term follow-up. *Radiology*. 2009 Oct;253(1):191-8. doi: [10.1148/radiol.2531082092](#), PMID [19703857](#).

33. Mortimer AM, Bradley MD, Mews P, Molyneux AJ, Renowden SA. Endovascular treatment of 300 consecutive middle cerebral artery aneurysms: clinical and radiologic outcomes. *AJNR Am J Neuroradiol*. 2014 Apr 1;35(4):706-14. doi: [10.3174/ajnr.A3776](#), PMID [24231847](#).

34. Eboli P, Ryan RW, Alexander JE, Alexander MJ. Evolving role of endovascular treatment for MCA bifurcation aneurysms: case series of 184 aneurysms and review of the literature. *Neurol Res*. 2014 Apr 1;36(4):332-8. doi: [10.1179/1743132814Y.0000000324](#), PMID [24533619](#).

35. Fiehler J, Boor S, Dörbecker R, Eckert B, Götz F, Hartmann M, Knauth M, Koch C, Müller A, Ries T, Zeumer H. Table for optimization and monitoring of cerebral aneurysm therapy (TOMCAT). *Clin Neuroradiol*. 2008 Aug;18(3):168-76. doi: [10.1007/s00062-008-8021-9](#).

36. Regli L, Dehdashti AR, Uske A, de Tribolet N. Endovascular coiling compared with surgical clipping for the treatment of unruptured middle cerebral artery aneurysms: an update. *Acta Neurochir Suppl*. 2002;82:41-6. doi: [10.1007/978-3-7091-6736-6_8](#), PMID [12378989](#).

37. Moroi J, Hadeishi H, Suzuki A, Yasui N. Morbidity and mortality from surgical treatment of unruptured cerebral aneurysms at Research Institute for Brain and Blood Vessels-Akita. *Neurosurgery*. 2005 Feb;56(2):224-31; discussion 224. doi: [10.1227/01.neu.0000148897.28828.85](#), PMID [15670370](#).

38. Gerlach R, Beck J, Setzer M, Vatter H, Berkefeld J, Du Mesnil de Rochemont RD, Raabe A, Seifert V. Treatment related morbidity of unruptured intracranial aneurysms: results of a prospective single centre series with an interdisciplinary approach over a 6 year period (1999-2005). *J Neurol Neurosurg Psychiatry*. 2007 Aug 1;78(8):864-71. doi: [10.1136/jnnp.2006.106823](#), PMID [17210624](#).

39. Deruty R, Pelissou-Guyotat I, Mottolese C, Amat D. Management of unruptured cerebral aneurysms. *Neurol Res*. 1996 Feb;18(1):39-44. doi: [10.1080/01616412.1996.11740375](#), PMID [8714535](#).

40. Nussbaum ES, Madison MT, Myers ME, Goddard J. Microsurgical treatment of unruptured intracranial aneurysms. A consecutive surgical experience consisting of 450 aneurysms treated in the endovascular era. *Surg Neurol*. 2007 May;67(5):457-64; discussion 464. doi: [10.1016/j.surneu.2006.08.069](#), PMID [17445600](#).

41. Aghakhani N, Vaz G, David P, Parker F, Goffette P, Ozan A, Raftopoulos C. Surgical management of unruptured intracranial aneurysms that are inappropriate for endovascular treatment: experience based on two academic centers. *Neurosurgery*. 2008 Jun 1;62(6):1227-34; discussion 1234. doi: [10.1227/01.neu.0000333294.52115.28](#), PMID [18824989](#).

42. Morgan MK, Mahantanakul W, Davidson A, Reid J. Outcome for middle cerebral artery aneurysm surgery. *Neurosurgery*. 2010 Sep 1;67(3):755-61; discussion 761. doi: [10.1227/01.NEU.0000378025.33899.26](#), PMID [20651625](#).

43. Nanda A, Vannemreddy P. Surgical management of unruptured aneurysms: prognostic indicators. *Surg Neurol*. 2002 Jul;58(1):13-9; discussion 19. doi: [10.1016/S0090-3019\(02\)00774-7](#), PMID [12361640](#).

44. Grigorian AA, Marcovici A, Flamm ES. Intraoperative factors associated with surgical outcome in patients with unruptured cerebral aneurysms: the experience of a single surgeon. *J Neurosurg*. 2003 Sep;99(3):452-7. doi: [10.3171/jns.2003.99.3.0452](#), PMID [12959429](#).

45. Horn M, Morgan MK, Ingebrigtsen T. Surgery for unruptured intracranial aneurysms in a low-volume neurosurgical unit. *Acta Neurol Scand*. 2004 Sep;110(3):170-4. doi: [10.1111/j.1600-0404.2004.00297.x](#), PMID [15285774](#).

46. van Dijk JM, Groen RJ, Ter Laan M, Jeltema JR, Mooij JJ, Metzemaekers JD. Surgical clipping as the preferred treatment for aneurysms of the middle cerebral artery. *Acta Neurochir*. 2011 Nov;153(11):2111-7. doi: [10.1007/s00701-011-1139-6](#), PMID [21898188](#).

47. Haug T, Sorteberg A, Sorteberg W, Lindegaard KF, Lundar T, Finset A. Surgical repair of unruptured and ruptured middle cerebral artery aneurysms: impact on cognitive functioning and health-related quality of life. *Neurosurgery*. 2009 Mar 1;64(3):412-20; discussion 421. doi: [10.1227/01.NEU.0000338952.13880.4E](#), PMID [19240602](#).

48. Seule MA, Stienen MN, Gautschi OP, Richter H, Desbiolles L, Leschka S, Hildebrandt G. Surgical treatment of unruptured intracranial aneurysms in a low-volume hospital – outcome and review of literature. *Clin Neurol Neurosurg*. 2012 Jul 1;114(6):668-72. doi: [10.1016/j.clineuro.2011.12.054](#), PMID [22300889](#).

49. Ogilvy CS, Crowell RM, Heros RC. Surgical management of middle cerebral artery aneurysms: experience with transsylvian and superior temporal gyrus approaches. *Surg Neurol*. 1995 Jan 1;43(1):15-22; discussion 22. doi: [10.1016/0090-3019\(95\)80032-C](#), PMID [7701417](#).

50. Rodríguez-Hernández A, Sughrue ME, Akhavan S, Habdank-Kolaczkowski J, Lawton MT. Current management of middle cerebral artery aneurysms: surgical results with a "clip first" policy. *Neurosurgery*. 2013 Mar 1;72(3):415-27. doi: [10.1227/NEU.0b013e3182804aa2](#), PMID [23208060](#).

51. Calvacante T, Derrey S, Curey S, Langlois O, Fréger P, Gérardin E, Castel H, Proust F. Distal middle cerebral artery aneurysm: a proposition of microsurgical management. *Neurochirurgie*. 2013 Jun 1;59(3):121-7. doi: [10.1016/j.neuchi.2013.04.007](#), PMID [23806761](#).

52. Kadkhodayan Y, Delgado Almandoz JE, Fease JL, Scholz JM, Blem AM, Tran K, Crandall BM, Tubman DE. Endovascular treatment of 346 middle cerebral artery aneurysms: results of a 16-year single-center experience. *Neurosurgery*. 2015 Jan 1;76(1):54-60; discussion 60. doi: [10.1227/NEU.0000000000000562](#), PMID [25255254](#).

53. Rinne J, Hernesniemi J, Niskanen M, Vapalahti M. Analysis of 561 patients with 690 middle cerebral artery aneurysms: anatomic and clinical features as correlated to management outcome. *Neurosurgery*. 1996 Jan 1;38(1):2-11. doi: [10.1097/00006123-199601000-00002](https://doi.org/10.1097/00006123-199601000-00002), PMID 8747945.

54. Suzuki J, Yoshimoto T, Kayama T. Surgical treatment of middle cerebral artery aneurysms. *J Neurosurg*. 1984 Jul;61(1):17-23. doi: [10.3171/jns.1984.61.1.0017](https://doi.org/10.3171/jns.1984.61.1.0017), PMID 6726392.

55. Pierot L, Spelle L, Vitry F, ATENA investigators. Immediate anatomic results after the endovascular treatment of unruptured intracranial aneurysms: analysis of the ATENA series. *AJNR Am J Neuroradiol*. 2010 Jan 1;31(1):140-4. doi: [10.3174/ajnr.A1745](https://doi.org/10.3174/ajnr.A1745), PMID 19729540.